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Abstract

The concept of the developmental origins of health and disease via prenatal programming has 

informed many etiologic models of health and development. Extensive experimental research in 

non-human animal models has revealed the impact of in utero exposure to stress on fetal 

development and neurodevelopment later in life. Stress exposure, however, is unlikely to occur de 
novo following conception, and pregnancy health is not independent of the health of the system 

prior to conception. For these reasons, the preconception period is emerging as an important new 

focus for research on adverse birth outcomes and offspring neurodevelopment. In this review we 

summarize the existing evidence for the role of preconception stress exposure on pregnancy health 

and offspring neurodevelopment across species and discuss the implications of this model for 

addressing health disparities in obstetrics and offspring outcomes.
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Developmental origins of health and disease

Fetal programming is a model for understanding the development of health and disease 

focused on prenatal conditions that impact the vulnerability of individuals to multiple 

pathologies (Barker 1995; 2003). Maternal exposure to environmental stressors during the 

prenatal period is one such condition that has been consistently linked with suboptimal 
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developmental outcomes in the offspring. For example, evidence from animal studies 

demonstrates that maternal stress during pregnancy can permanently compromise offspring 

neurodevelopment (Chapillon et al., 2002; Weinstock, 2005) as evidenced by disturbances in 

executive function (Keenan & Hipwell, 2015; Schneider et al., 2002), impaired learning and 

disruption in neurogenesis (Chapillon et al., 2002; Coe, Lulbach & Schneider, 2002) and 

heightened anxiety-like behaviors (Schneider et al., 2002). The strength of the causal claim 

that maternal stress has a direct impact on offspring development is based on rigorous 

controlled experiments in animals, including distinguishing prenatal from postnatal effects 

using methods such as cross-fostering or nursery rearing.

In contrast to models tested in animals, research on the effect of prenatal stress on human 

offspring is more heterogenous both in terms of operational definitions of stress and in the 

consistency of the results. In humans, prenatal stress has been conceptualized as 

bereavement, financial hardship, maternal anxiety and depression, infection, poor nutrition, 

and exposure to natural disasters or terrorist attacks, each of which may co-occur and may 

be relatively chronic across development. Despite the heterogeneity in methodologies and 

operational definitions of prenatal stress, the pattern of findings in this body of research 

largely mirrors the findings from studies of animals, with some exceptions (see reviews by 

Kim, Bale & Epperson, 2017 and Talge et al., 2007). Several non-experimental, but 

prospective, studies of humans have also shown that maternal stress during pregnancy is 

associated with adverse birth outcomes (Ruth et al., 2012; Kent et al., 2013; Giscombe & 

Lobel, 2005), shorter gestational length, low birth weight, and preterm birth (Dole et al., 

2003; Dominguez et al., 2005; Holzman et al., 2001; Class et al., 2011; Dayan, et al., 2006; 

Glover, 2015; Wadhwa et al., 2011; Rice et al., 2010). Prenatal stress also is associated with 

impairments in multiple systems related to offspring neurodevelopment, including 

alterations in the reactivity of the offspring’s hypothalamic-pituitary-adrenal (HPA) axis 

(Keenan, Gunthorpe & Grace, 2007; O’Connor et al., 2005; Davis et al., 2011; Entringer et 

al., 2009), executive functioning (e.g., attention, learning, language problems) (O’Connor, 

Heron, & Glover, 2002; Buss et al., 2012; Laplante et al., 2008; Bergman et al., 2010), and 

neural structure and development (Korosi et al., 2012). Furthermore, maternal stress during 

pregnancy has been associated with an increased risk for neurodevelopmental disorders, 

including attention deficit/hyperactivity disorder (Linnet et al., 2003; Rodriguez & Bohlin, 

2005). These neurodevelopmental deficits and disorders are known to increase risk for later 

health problems and general impairments (Kelly et al., 2013; Colman, et al., 2014; Sibley et 

al., 2014; Hankin et al., 2010), underscoring the critical importance of optimizing the health 

of the fetal environment.

From a developmental and life-course perspective, stress exposure is unlikely to occur de 
novo following conception. Similarly, pregnancy health is not independent of the health of 

the system prior to conception. For these reasons, the preconception period is emerging as an 

important new focus for research on adverse birth outcomes and offspring neurodevelopment 

(Grandjean et al., 2015), as well as a model for understanding and ultimately preventing 

health disparities during pregnancy and in child health outcomes (Vaivada et al., 2017). We 

review the existing evidence for the role of preconception stress exposure on pregnancy 

health and offspring neurodevelopment across species and outline a program of research to 
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further probe the role of preconception stress exposure within the developmental origins of 

disease model.

Extending the developmental origins of disease model

Evidence suggests that one primary mechanism by which stress exposure confers risk for 

offspring neurodevelopment is via maternal neuroendocrine functioning, including the HPA 

axis. Support for this mechanism comes from decades of research linking prenatal maternal 

stress and adverse offspring outcomes with dysregulation of maternal gluccocorticoids 

(GCs) and placental stress regulation on the rapidly developing fetal nervous system. Briefly, 

the normal response to stress has the effect of maintaining physiological homeostasis, which 

typically results in adrenal activation and the release of cortisol. However, repeated or 

chronic increases in stress exposure, and hence chronically increased plasma cortisol, can 

lead to responses that have pathological and illness-inducing consequences for the offspring: 

maternal GCs are transported across the placenta, entering the fetal circulation leading to 

alterations in fetal stress architecture (Weinstock, 2005).

Additionally, the maternal HPA axis system is impacted by the growth and development of 

the placenta, (O’Donnell, O’Connor & Glover, 2009). In contrast to the inhibitory control of 

cortisol on the expression of CRH in a non-pregnant state, maternal cortisol activates the 

promoter region in the placenta and stimulates further CRH synthesis during pregnancy 

(King, Smith, & Nicholson, 2001). Maternal GCs also induce placental CRH production that 

stimulates the fetal HPA axis, leading to increased levels of fetal cortisol (Beijers, Buitelaar, 

& de Weerth, 2014). Typically, the placental enzyme 11-β hydroxysteroid dehydrogenase-

type 2 (11-β-HSD2) converts maternal cortisol to inactive cortisone, thereby decreasing the 

level of GCs in the placenta. Prenatal stress exposure, however, results in the down-

regulation of the 11-β-HSD2 enzyme, which in turn exposes the fetus to higher levels of 

maternal GCs (O’Donnell, et al., 2012).

Substantial work has led to the identification of numerous candidate genes associated with 

individual differences in stress regulation. The glucocorticoid receptor (GR) gene, for 

example, is a well-researched gene; several single nucleotide polymorphisms (SNPs) have 

been functionally characterized including. Experimental manipulations of the sensitivity of 

GR have been associated with impaired functioning in the negative feedback of the HPA-

axis and depression in animals (Pariante, 2004). In humans, the BclI GG genotype is 

associated with the high levels of cortisol in response to a controlled laboratory stressor 

(Kumsta et al., 2007). Variations in the FK506-binding protein 5 (FKBP5) gene also are 

associated with the regulation of the HPA axis, particularly in the recovery following 

termination of the stressor. Ising and colleagues (2008) found that three SNPs of the FKBP5 

gene were associated with cortisol response to a social stressor. Thus, genotype likely 

accounts for some variability in sensitivity to stress exposure prior to conception as well as 

changes in HPA axis functioning over the course of pregnancy.

There is increasing evidence that epigenetic effects are likely to play a major role in the 

molecular mechanisms underlying the long-lasting effect of stress exposure on adult health. 

Indeed, there is a growing body of evidence that the epigenome is responsive to 
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environmental exposures including the social environment both across development in 

animals and in humans. A potential mechanism by which prenatal stress impacts offspring 

outcome is via epigenetic changes in placental 11β-HSD2. In rodent models, maternal stress 

during pregnancy has been shown to decrease placental 11β-HSD2 mRNA levels (Mairesse 

et al., 2007; Welberg, Seckl & Holems, 2000), thus impairing the conversion of maternal 

glucocorticoids to less active forms. In humans, maternal depression and anxiety during 

pregnancy has been associated with increased maternal NR3C1 methylation, and greater 

methylation of placental NR3C1 and 11β-HSD2, as well as indications of offspring 

neurodevelopmental problems (Hompes et al., 2013; Jensen Peña, Monk & Champagne, 

2012; O’Donnell et al., 2012; Togher, et al., 2017).

A life-course perspective (Elder & Rockwell, 1979) naturally extends the prenatal stress 

model to the integrity of the system prior to conception. Numerous studies have shown links 

between stress exposure and compromised health earlier in development. For example, 

psychosocial stress exposure (e.g., poverty, neighborhood crime) during childhood and 

adolescence is associated with higher ambulatory blood pressure (Beatty & Matthews, 2009) 

and higher levels of C-reactive protein (CRP) (Broyles et al., 2012; Fuligni et al., 2009; 

Lande et al., 2008), both of which signal risk for later disease. Exposure to stress in 

childhood and adolescence is also associated with cortisol reactivity to a controlled stressor 

(Jaffee et al., 2015), higher concentrations of hair cortisol (Simmons et al., 2016), greater 

inflammatory activity including Tumor Necrosis Factor (TNF)-alpha (Hartwell et al., 2013), 

as well as altered Interleukin-6 (IL-6) immune response to a bacterial stimulus in the 

laboratory (Miller, Rohleder & Cole, 2009).

Adolescence may be a point in development during which stress exposure is especially 

impactful on health. Data from cross-sectional studies suggest that there are significant 

changes in the functioning of the HPA axis during late adolescence as measured by diurnal 

cortisol and cortisol reactivity (Gunnar et al., 2009; Oskis et al., 2009; Sumter et al., 2010). 

There also appear to be changes in functioning of brain regions involved in the regulation of 

the HPA axis during late adolescence (McCormick et al., 2010). In a study of rodent 

behavior, (Jankord et al., 2011), the effects of chronic, variable stress were exaggerated in 

animals exposed in late adolescence compared to those exposed in early adolescence and 

adulthood, and the late adolescent exposed animals were the only group for which stress was 

associated with an increase in basal corticosterone. Evidence for the impact of early stress 

exposure of epigenetic changes that impact HPA-axis functioning is emerging. Childhood 

adversity, such as parental loss and maltreatment, has been associated with increased 

methylation and alterations in HPA axis response to a controlled stressor (Tyrka et al., 2012). 

In one of only a handful of studies testing the impact of preconception stress exposure on 

perinatal gene expression, preadolescent female mice who were exposed to chronic variable 

stress differed from controls in their HPA axis response to stress during pregnancy, but not 

postpartum, and in expression of a number of genes in the paraventricular nucleus of the 

hypothalamus (Morrison et al., 2016). These findings suggest that adolescence may be a 

developmental period during which the HPA-axis may be highly sensitive to environmental 

factors, and that exposures during this period may shape the responsiveness of the system in 

the future. Stress exposure, therefore, is associated with health indices across development, 

and dimensions of exposure such as developmental timing, chronicity and acuity are likely 
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important factors. There has been relatively little research, however, linking work on stress 

exposure over the course of development on later pregnancy health and offspring 

development. Among the existing studies, the period immediately preceding conception has 

been the focus. We review that literature in the following section.

Non-human models of preconception stress exposure on offspring 

neurodevelopment

Animal models provide compelling evidence for preconception stress effects on offspring 

neurodevelopment. Exposure to highly translatable stressors (e.g., overcrowding, 

temperature, and pain stress), results in altered behavior, neurobiology and brain 

morphology; effects which have been shown to persist into adulthood. Results from these 

studies are summarized in Table 1. Shachar-Dadon and colleagues (2009) exposed female 

rats to unpredictable and variable stress (e.g., swim test, isolation, water and food 

deprivation) for either a week or two weeks prior to mating and compared the offspring of 

those two groups (n = 83 and 25, respectively) to offspring of unexposed females (n= 86). 

Five probes were used to examine behavior of the offspring in adulthood: navigation of an 

elevated maze, shock avoidance learning, acoustic startle response, open field test, and social 

interaction test; with offspring from each litter distributed across each test. Stress exposure 

experienced within one week of, but not two weeks prior to, conception resulted in increased 

anxiety and activity and decreased social interaction in the offspring. There were also 

significant interactions between stress exposure and sex of the offspring on later 

development: preconception stress exposure resulted in greater shock avoidance among male 

offspring whereas the opposite effect was observed for females. In contrast, male offspring 

of dams exposed to preconception stress showed less startle than control males, whereas the 

female offspring stress showed greater startle than control females. In a follow-up to the 

study described above, Bock and colleagues (2016) examined dendrite morphology in the 

medial prefrontal cortex (mPFC) in a subsample of the offspring. These analyses revealed an 

effect for preconception stress experienced two weeks prior to conception: dendrites in the 

left mPFC were more complex in male and female offspring and the spines longer in the 

male offspring of the stress exposed dams. Within the same sample, therefore, effects of 

preconception stress varied as a function of timing, sex of the offspring, and phenotype, as 

well as the characterization of altered offspring behavior as heightened or dampened.

Li and colleagues (2010a) reported statistically significant differences in behavior and 

neurochemistry between adult male offspring of maternal rats exposed to 21 days of chronic 

unpredictable stress prior to conception (n = 8) to male offspring of control dams (n=8). 

Regarding impact on behavior, exposed offspring had decreased spatial memory, and lower 

sucrose consumption, which may indicate altered reward sensitivity. In terms of 

neurochemistry, exposed offspring had higher levels of norepinephrine (NE) in the 

hippocampus, lower levels of serotonin (5-HT) in the hypothalamus, and less protein 

expression of phosphorylated Cyclic AMP responsive element binding protein (P-CREB), 

which also may indicate dysregulated serotonergic and noradrenergic neurotransmitter 

systems.
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Neurochemistry and behavior also were altered as a function of chronic, unpredictable, and 

variable preconception stress administered for a period of three weeks immediately prior to 

conception (Huang et al., 2010). In this study, behavior of maternal rats was observed prior 

to and after stress exposure. Weight loss and decreases in sucrose intake and motor activity 

during the open field test, all of which are animal analogues of depression phenotypes, were 

observed in the stress exposed rats. Adult male and female offspring of stress exposed rats 

had longer escape latencies during the Morris water maze task and higher serum 

corticosterone levels following the task. Expression of brain-derived neurotrophic factor and 

N-methyl-D-aspartate receptor in the hippocampus, both of which are critical to synaptic 

plasticity, was decreased in the stress exposed offspring compared to the controls. In this 

study, preconception stress impacted several systems – maternal behavior and offspring 

learning, and offspring HPA axis activity, and neural integrity.

Effects of preconception stress exposure on neuroendocrine functioning have been observed 

in both the first (F1) and second (F2) generation offspring. Zaidan and colleagues (2013; 

2015) exposed female rats to one week of chronic, unpredictable stress two weeks prior to 

conception. First, expression of corticotropin releasing factor (CRF) type 1 and 2 receptors 

in the brain, which mediate the initial activation of the HPA axis response to stress, were 

increased in neonatal and adult brains, compared to brains of control offspring. In addition, 

corticosterone levels were increased in the F1 females. Corticosterone levels were also 

altered as a function of preconception stress exposure in the second generation: males 

showed higher levels, whereas females showed lower levels, than offspring of controls.

Human models of preconception stress and offspring health

A small but growing evidence base in human studies provides preliminary support for the 

impact of preconception stress exposure on birth outcomes. Many of these studies are based 

on maternal retrospective report of stress exposure (see Table 2 for a summary). For 

example, in a Swedish population-based cohort, preconception stress, operationalized as 

maternal bereavement of a first-degree relative within 6 months of conception, was 

associated with elevated risk of adverse birth outcomes (e.g., preterm birth, low birth weight, 

small for gestational age), as well as increased risk for infant mortality (Class et al., 2013). 

These findings have been replicated and extended to predict childhood mortality in a Danish 

population-based sample (Class et al., 2015), in which bereavement experienced prior to 
conception, but not post-conception, increased the risk of neonatal and infant mortality.

Data from representative U.S. samples also support the association between retrospective 

recall of preconception stress exposure and offspring outcome, as well as the unique effects 

of preconception exposure, controlling for post-conception exposure. In a study of nearly 

1,000 participants, women who reported stressful life events (e.g., death of a family 

member) prior to conception were 40% more likely to deliver a child of very low birth 

weight, controlling for pregnancy complications; stressful life events experienced during 

pregnancy were not associated with birth weight (Witt et al., 2014a). The magnitude of this 

association was greatest among offspring of women residing in low-income neighborhoods 

(Witt et al., 2014a).
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One important study to this emerging field in humans is The National Child Development 

Study, a cohort study of children born in Britain during one week of March 1958. Over 

18,000 participants were enrolled and then followed up at ages 7, 11, 23, 33, and 41 

(Atherton et al., 2008). Stressors were assessed by parental report and interviewer 

observation in the home and included financial, parenting, family, and community stressors. 

At ages 33 and 41 years, female participants (n≈5,000) were asked about pregnancy 

outcomes, including gestational age and birth weight. The results revealed that exposure to 

stressors during childhood was associated with higher rates of preterm birth and low 

offspring birth weight. These results held even after controlling for stress exposure and 

smoking during pregnancy (Harville et al., 2010).

Investigation of associations between preconception stress and indices of later 

neurodevelopment are scarce. First, in a cohort of women from the Southampton Women’s 

Survey (SWS), who were recruited between 20–34 years of age and followed through their 

subsequent pregnancies, associations between maternal preconception psychological stress 

(e.g., symptoms of depression and anxiety) and infant sleep were tested. Based on a sample 

of 874 mother-infant pairs, preconception psychological distress was prospectively 

associated with compromised sleep in offspring, including middle of the night awakening, at 

6 and 12 months even when controlling for postnatal symptoms of distress (Baird et al., 

2009). In a nationwide population-based cohort study, including all 1,015,912 singletons 

born in Denmark from 1987 to 2001, associations between bereavement stress and ADHD 

were tested: 29,094 children were born to women who lost a close relative during pregnancy 

or up to 1 year before pregnancy. Maternal bereavement stress in the 6 months prior to 

pregnancy was shown to increase the risk for attention-deficit hyperactivity disorder 

(ADHD) in male offspring by almost fifty percent (Li et al., 2010b).

Although relatively few studies have been conducted in human samples, there is growing 

evidence of an association between preconception stress exposure and birth outcomes, using 

both retrospective and prospective data. Extant data from animal studies converge to 

highlight the potential critical influence of preconception stress exposure on offspring 

neurodevelopment in ways that may affect learning, memory, and stress reactivity.

Developmental timing and chronicity of preconception stress exposure

The timing of preconception stress exposure may differentially influence offspring 

outcomes. Although the period immediately prior to pregnancy may present the most 

vulnerable period for uterine priming, successful implantation of the zygote and healthy 

early placental development, more distal environmental exposures leading up to that point 

may be as important in shaping maternal biological, physiological, and psychological 

responses to stress. Additionally, a life-course maternal “health capital” perspective that 

considers all gains and losses in biological, psychological, and physical health over the 

lifetime is likely to provide the fullest picture of the impact of environmental exposures.

For females, adolescence is a likely sensitive period with regard to preconception stress 

exposure. In fact, a number of prevention scientists have argued that preconception care 

should begin in puberty (Witt et al., 2014; Dean et al., 2013). This is based, in part, on 
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evidence from neurodevelopmental studies that have revealed significant changes in brain 

morphology and function during adolescence (Casey, Getz & Galvan, 2008; Zehr et al., 

2006). The pruning of brain regions involved in emotion regulation and higher cognitive 

functioning is hypothesized to render these regions particularly vulnerable to the experience 

of stressors (McCormick et al., 2010). Changes in adrenal hormones also occur during 

adolescence. Among girls, these changes result in slower recovery to baseline of cortisol in 

response to a stressor with more advanced maturation (Stroud et al., 2004). The effects of 

age on stress response are also evident in animal models: pubertal female rats have 

prolonged corticosterone release in response to restraint stress compared to adult females 

(Romeo, Lee & McEwen, 2005). This potential adolescent programming of the HPA axis 

may have implications for later functioning. For example, female, but not male, rats who 

were exposed to stress during adolescence showed altered behavioral response to stress in 

adulthood (McCormick et al., 2005). In humans, individual differences in HPA-axis 

functioning in adolescence are associated with self-reported exposure to stressors, and these 

individual differences appear to be relatively stable (Doane et al., 2015). Thus, late 

adolescence may be a particularly vulnerable period for sensitization of the HPA axis to 

environmental stress resulting in stable individual differences in reactivity and regulation 

that continue into adulthood.

We are aware of only one study in which the developmental timing of preconception stress 

on offspring development has been tested. In the aforementioned prospective cohort study of 

nearly 5,000 women (Harville et al., 2010), exposures most strongly influenced the birth 

outcomes if they occurred in adolescence: the highest risk for both low birth weight and 

preterm birth was among females who experienced multiple hardships in adolescence only, 

although exposure at any time during childhood/adolescence raised the risk of poor birth 

outcomes. These results are consistent with the conceptualization of adolescence as a critical 

period with regard to the development and sensitivity of biological systems involved in later 

reproductive health. However, a much clearer understanding of the developmental effects of 

stress exposure is needed given that life stressors are known to cluster and interact, leading 

to chronic and accumulating patterns across development (Evans, Li & Whipple, 2013). 

Furthermore, a wealth of data has shown that exposure to sustained, repeated or multiple 

stressors is associated with more severe and chronic impairment and distress in individuals 

(Clancy et al., 2006; Cloitre et al., 2001; Dohrenwend et al., 2006; Gerard & Buehler, 2004; 

Larson et al., 2008; Margolin et al., 2010; Mistry et al., 2010) than is exposure to single, 

discrete forms of stress. Gaining an understanding of the developmental effects of stress 

exposure on health, including prenatal health, is fundamental to informing the timing and 

type of prevention efforts.

Relevance of preconception stress exposure to understanding health 

disparities

As stated earlier, a developmental and life-course perspective would posit that because stress 

exposure is unlikely to occur de novo following conception, pregnancy health is not 

independent of the health of the system prior to conception. In the U.S., higher levels of 

acute and chronic stress are found among families living in low-income environments than 
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among families living in other income environments. Neighborhood disorder, lack of safety 

and exposure to violence are all significantly higher in areas with lower per capita income 

(Evans, 2003; Ewart & Shuchdat, 2002). African Americans live in poverty at a 

disproportionately high rate; more than a quarter of African Americans live in poverty 

(DeNavas-Walt & Proctor, 2014).

Both minority race and living in a low resourced environment appear to impact both the 

diurnal rhythm and feedback loop of the stress response system, and the interface between 

HPA-axis and other systems critical for maintaining health such as immune functioning 

beginning in adolescence and continuing into adulthood. Discrimination and unfair 

treatment as a result of minority status (e.g., race, poverty) are associated with health risks in 

adolescence, including higher ambulatory blood pressure (Beatty & Matthews, 2009) and 

higher levels of CRP (Lande et al., 2008). Higher levels of cortisol in the afternoon and 

evening have been reported among African Americans and individuals living in lower SES 

environments than among European Americans and individuals living in higher SES 

environments (Chen & Paterson, 2006). African American women also are more likely to 

demonstrate a significant increase in cortisol in response to a psychosocial stressor than are 

European American women (Fowles & Gabrielson, 2005). Furthermore, data from studies 

using exposure to a controlled stressor provide evidence for racial differences in 

inflammatory response (i.e., interleukin-6) to stress, with African American pregnant and 

non-pregnant women show higher responses than European American women (Christian et 

al., 2013). In a study in which both cortisol and pro-inflammatory cytokines were measured 

during pregnancy, minority race and low-income status was characterized by high levels of 

cortisol without a compensatory decrease in cytokines, suggesting impaired feedback 

between the neuroendocrine and immune systems (Corwin et al., 2013).

In the U.S., African American women living in urban low-income environments are more 

likely to experience pregnancy complications than other women (Giscombé & Lobel, 2005; 

Kent et al., 2013). A primary cause of maternal and child health disparities for African 

Americans in the U.S. is likely due to compromised health from earlier stress exposure. If 

this is the case, then successfully improving health of the offspring via prenatal interventions 

will be challenging, as the maternal systems for maintaining health have already been 

impacted for the current generation. The application of the developmental origins of health 

and disease model to health disparities may serve to identify targets that will disrupt 

intergenerational cycles of poverty and impairment.

Conclusion and future directions

There is strong evidence for negative effects of maternal prenatal stress on the developing 

fetus; effects that continue to impact development throughout childhood. There is 

developing evidence that the observed association between prenatal stress and offspring 

neurodevelopment may be largely due to stress exposures that occur prior to conception. 

Consistent with a kindling or stress sensitization model, we posit that the development of the 

stress architecture during childhood and adolescence is in part based on environmental 

inputs, and that observed differences in stress regulation during pregnancy are largely due to 

variability in those earlier inputs. This hypothesis is testable via several interrelated 
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approaches. First, more research is needed to understand the developmental timing of stress 

exposure on pregnancy health and offspring neurodevelopment, including models that 

compare chronicity and type of stressor (e.g., social, safety, health). Second, animal models 

will be critical for characterizing the unique effects of preconception stress exposure on 

pregnancy health and postnatal caregiving and offspring development. For example, cross-

fostering is needed to determine the relative contribution of preconception stress on fetal 

development as opposed to postnatal caregiving effects on offspring neurodevelopment. 

Third, examining prevention effects will provide further information on the relative impact 

of preconception stress on offspring development. An example is using an enriched 

environment to attenuate earlier stress exposure. Cutuli and colleagues (2017) demonstrated 

that exposure to an enriched environment prior to reproduction had neuroprotective effects 

on the offspring even after exposure to a stressor; adolescent offspring of enriched dams had 

a more modulated immune response and more climbing behavior in response to the forced 

swim test, and greater expression of gluccocorticoid receptors in the amygdala, which was 

comparable to adolescent offspring of dams who were not stress exposed. Testing the timing 

and dose of an enriched environment on the attenuation of the effects of preconception stress 

exposure on offspring neurodevelopment is necessary for pursuing a preventive intervention 

program in humans.

In parallel to hypothesis-testing in animal models, prospective studies of humans from 

childhood through pregnancy are required to provide further evidence and to characterize the 

stress phenotype in terms of type, timing, and chronicity. Much of the current research in 

humans is limited by retrospective, self-reports of exposures and or emotional distress. Bias 

in recall and individual differences in perceptions and definitions of stress exposure may 

obscure true effects between preconception stress exposure and pregnancy health. 

Alternatively, observed associations based on recall and individual differences in perceptions 

may be in fact due to third variables such as genetic factors that account for variance in both 

maternal recall of stress exposure and infant outcomes. The likelihood of the co-occurrence 

stressors in humans (e.g., parental bereavement, financial hardship, poor nutrition) provides 

an additional challenge. In addition, although most models of social stress exposure (e.g., 

economic, housing, community stress) in humans assume chronicity of exposure or 

equivalence of effects across development, there is often substantial variability in timing and 

chronicity within and across domains of stressors (e.g., Keenan et al., unpublished 

manuscript). Capturing these dimensions will be important for testing the specificity of 

timing of exposure on offspring development, especially for stress exposure that occurs both 

pre- and post-conception. Key elements to future programs of research in humans, therefore, 

include prospective, repeated assessments of a range of stress exposure in childhood and 

adolescence and objective biomarkers of stress sensitivity and stress related health 

conditions in controlled settings. Characterizing stress phenotypes at multiple levels (e.g., 

behavioral, immune, endocrine), as well as severity, timing, and chronicity, will be important 

for articulating measurable targets of preventive interventions.

The results from the proposed research agenda will fill a critical gap in knowledge about the 

developmental origins of disease. To date, the model has been limited by right-hand 

censoring, with the possibility that effects attributed to exposures during pregnancy are in 

fact causally linked to environmental exposures occurring prior to conception and the 
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resulting alterations in biological systems critical in supporting healthy fetal development. 

Filling these gaps could lead to the design and deployment of public health initiatives that 

communicate the importance of reduction of stress and improved stress regulation during 

childhood, adolescence and early adulthood to support later maternal and offspring health. 

Consequently, the proposed research is uniquely poised to elucidate the type and timing of 

biobehavioral targets for early preventive interventions.
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