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Abstract

There is now overwhelming experimental and clinical evidence that atherosclerosis is a chronic 

inflammatory disease. Lessons from genome-wide association studies, advanced in vivo imaging 

techniques, transgenic lineage tracing mice, and clinical interventional studies have shown that 

both innate and adaptive immune mechanisms can accelerate or curb atherosclerosis. Here, we 

summarize and discuss the pathogenesis of atherosclerosis with a focus on adaptive immunity. We 

discuss some limitations of animal models and the need for models that are tailored to better 

translate to human atherosclerosis and ultimately progress in prevention and treatment.
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Introduction

Atherosclerosis is the most common underlying pathology of coronary artery disease 

(CAD), peripheral artery disease (PAD), and cerebrovascular disease1, 2. The chronic build-

up of vessel-occluding plaques in the subendothelial intimal layer of large and medium sized 

arteries eventually results in significant stenosis that restricts blood flow and causes critical 

tissue hypoxia3. The most common complications, myocardial infarction (MI) and stroke, 

are caused by spontaneous thrombotic vessel occlusion and represent the most common 

cause of death worldwide4, 5. Current clinical guidelines focus on the treatment of these 

complications6. Clinically used therapies that efficiently prevent or curb the progression of 

atherosclerosis are limited to drugs that lower low-density lipoprotein (LDL) cholesterol. 
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Traditionally, atherosclerosis was regarded as a cholesterol storage disease caused by the 

retention of lipoproteins including LDL in the intimal space of arteries. Retained LDL is 

modified and taken up by scavenger receptor-mediated phagocytosis. This process results in 

the continuous growth of fatty infiltrates rich in inflammatory leukocytes that 

macroscopically appear as plaques. Levels of plasma cholesterol, LDL cholesterol, and 

apolipoproteins, including Apolipoprotein B (ApoB), are highly correlated with clinical 

atherosclerosis7, 8. Mice along with other animal models suggest causality: Elevating plasma 

cholesterol levels, as achieved by genetic knock-outs of LDL-receptor (LDLR) or 

Apolipoprotein E (ApoE) in mice, causes atherosclerosis in C57BL/6 mice that otherwise do 

not develop spontaneous disease9, 10. Genome-wide association studies (GWAS) have 

correlated many single nucleotide polymorphisms (SNPs) in or near the genes encoding 

lipid-associated proteins. Examples include LDLR, APOB and proprotein convertase 

subtilisin/kexin type 9 (PCSK9), which modulate LDL cholesterol levels, as risk factors in 

atherosclerosis and MI11, 12. In addition, atherosclerosis is accompanied by a chronic, low-

grade inflammatory response that attracts cells of the innate and adaptive immune systems 

into the atherosclerotic plaque3, some of them recognizing ApoB, the core protein of LDL 

particles. Thus, atherosclerosis is a chronic inflammatory disease with an autoimmune 

component13. This autoimmune response is clinically best documented by antibodies against 

LDL and other atherosclerosis antigens, which are found in all patients and animal models. 

In many studies, low-affinity ‘natural’ antibodies against oxidation epitopes in LDL were 

found to be negatively correlated with atherosclerosis, while high-affinity antibodies 

secreted by IgG-producing plasma cells were positively correlated14. Here, we will 

summarize and discuss the adaptive autoimmune mechanisms that accompany and modify 

atherosclerotic disease.

LDL accumulation initiates vascular inflammation

The atherogenic process starts with the accumulation of several plasma lipoproteins in the 

subendothelial space at sites of flow perturbation and endothelial dysfunction. This is best 

documented for LDL, whose accumulation correlates with classical risk factors, such as 

smoking, hypertension, and metabolic dysregulation in obesity and diabetes15. In the intima, 

LDL undergoes oxidative modifications by reactive-oxygen species (ROS), which promote 

the uptake of oxLDL into macrophages16. In addition, oxidized phospholipids per se trigger 

inflammation of the arterial wall17 by binding to Toll-like receptors (TLRs), a group of 

widely expressed pattern-recognition receptors (PRRs) that cause pro-inflammatory 

signaling18. Clinically, oxLDL is a marker of plaque inflammation19. Native LDL can also 

be taken up by macrophages by micropinocytosis, or in its aggregated form as cholesterol 

complexes or -crystals by phagocytosis. The sustained influx of cholesterol eventually 

exceeds the phagocytes’ metabolic capacity and intracellular lipid droplets form. 

Microscopically, cholesterol-laden macrophages are ‘foam cells’. Cholesterol loading is 

thought to cause a myeloid cell response with pro-inflammatory cytokine secretion, in situ 
macrophage proliferation, and further recruitment of myeloid cells (summarized in20). A 

clinically important consequence of cholesterol loading is the formation of intracellular 

cholesterol microcrystals that activate the inflammasome, a molecular machinery comprising 

molecules of the cytosolic-nucleotide binding domain and leucine-rich repeat gene family 

(NLRP3) that cleaves pro-IL-1β into its biologically active form21. IL-1β serves as an 
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inflammatory master cytokine that enhances the expression of many pro-inflammatory 

cytokines, as well as of CRP22. Notably, attenuating cholesterol storage and enhancing 

cholesterol efflux pathways may favor the resolution of plaque inflammation end even 

promote plaque regression (summarized in23). The myeloid response is accompanied by the 

infiltration of cells of the adaptive immune system, B and T cells24, 25. Notably, the plaque’s 

growing content of myeloid cells and lymphocytes correlates with clinical complications and 

may predispose for future thromboembolic events caused by large cellular infiltrates and a 

thin fibrous cap (‘unstable plaque’)26, 27.

Evidence for an autoimmune response in atherosclerosis

The presence of T and B cells in the plaque28 sparked the hypothesis that atherosclerosis 

includes an autoimmune response. Adaptive immunity in infection and autoimmunity 

proceeds by a humoral arm that comprises specific antibodies against the antigen secreted by 

plasma cells, and a cellular arm with T cells that either activate B cells during co-stimulation 

or differentiate into effector T cells with pro- or anti-inflammatory cytokine production29. 

CD8+ and CD4+ T cells only initiate immune responses to peptides presented MHC-I on all 

nucleated cells or MHC-II on antigen-presenting cells (APCs), respectively. Such responses 

are MHC-restricted, i.e. they only occur in individuals expressing a specific MHC-allele 

with the ability to bind the relevant peptide epitope. Binding of a specific T cell receptor 

(TCR) concomitant with co-stimulatory events provided by APCs activates T cells and 

causes their clonal proliferation30. In mouse atherosclerosis, 2-photon microscopy has 

revealed an increased rate of APC-CD4+ T-helper cell interactions in the plaque specifically 

in the setting of hypercholesterolemia that resulted in pro-inflammatory cytokine 

secretion31. In addition, T-helper cells show an increasing maturation into antigen-

experienced effector/memory (TEM) and central-memory (TCM) T cells in the lymph nodes 

(Figure 1a) that is also observed in atherosclerotic plaques28, 31. Sequencing of the TCR 

revealed an oligoclonal origin of lesional T cells32, 33 suggesting that some (antigen-

specific) T cell clones actively expand in the plaque. The enhanced activation of T cells is 

accompanied by an expansion of lymph nodes draining the atherosclerotic aorta in aged 

atherosclerotic Apoe−/− mice (Figure 1b) and a local and systemic pro-inflammatory 

response that is further enhanced by a hypercholesterolemia-inducing diet34-36. These 

findings support the concept that specific antigens drive an immune-response in the aorta 

and lymph nodes during atherosclerosis.

LDL – an autoantigen within the plaque

Of all candidates that may serve as B- and T cell activating antigens, plasma levels of LDL 

and its core protein ApoB show the strongest clinical and causal link with atherosclerosis in 

humans37. ApoB-containing triglyceride-rich remnant particles also show a strong 

association with CVD, inflammation, and immune pathways7. Indeed, LDL as (auto-) 

antigen was first suggested by Gero et al in 1959: immunization with LDL protected against 

atherosclerosis in rabbits38, suggesting that autoimmune response against LDL can be 

atheroprotective39. Many CD4+ T cells in human plaques recognize oxLDL40 by binding to 

MHC-presented peptide epitopes from ApoB-10041, 42. A tetramer of recombinant MHC-

molecules loaded with an ApoB-derived peptide – a tool to detect antigen-specific T-helper 

cells in vivo43 – found a naturally occurring population of CD4+ T cells in the blood that 
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recognizes the human peptide ApoB3036-3050
42. Furthermore, atherosclerosis is 

accompanied by IgG-antibodies against LDL, oxLDL, and ApoB44. Collectively, these 

findings strongly suggest LDL as a relevant self-antigen that drives an autoimmune response 

against self-proteins in the atherosclerotic plaque. Besides LDL/ApoB, heat shock proteins 

(HSPs)45-47 and some foreign peptides from pathogens such as Cytomegalovirus (CMV), 

Hepatitis C Virus (HCV), Human Immunodeficiency Virus (HIV), Human Papilloma Virus 
(HPV), and others48-50 have been proposed as atherosclerosis-relevant antigens.

T-helper cell dependent immunity in atherosclerosis

Early evidence from immunohistochemistry studies28, 51, more recent scRNAseq24, 52, and 

CyTOF approaches24, 53 have estimated that ~ 25-38 % of all leukocytes in mouse aortic and 

human atherosclerotic plaques are CD3+ T cells, with CD3+CD4+ T-helper cells accounting 

for ~ 10 %. T cells predominantly populate atherosclerotic lesions with an enrichment in the 

fibrous cap28, 51, but are also found in the adventitia of older lesions24, 54. Their recruitment 

to the plaque occurs via chemokine receptors C-C chemokine receptor type 5 (CCR5), -X-C 

Motif Chemokine Receptor 6 (CXCR6), and others55, 56. CD4+ T cells are critical regulators 

of the adaptive immune response with the ability to differentiate into distinct T-helper 

subtypes that can either be immune-dampening or activating to other T cells, exert direct 

anti- or pro-inflammatory effects on tissue resident cells, provide B cell help to induce the 

production of high-affinity IgG antibodies, or exhibit cytolytic activity29 (Figure 2). Thus, 

the function of T-helper cells in atherosclerosis is multi-faceted and depends on specific 

transcriptional programs and patterns of cytokine secretion that can either fuel or attenuate 

atherosclerosis. Early evidence from Rag-1 deficient mice, which cannot produce mature T- 

and B cells, suggested a pathogenic role for T and B lymphocytes only in early 

atherosclerosis with moderately enhanced lipid levels, but not in severely 

hypercholesteremic Apoe−/− mice57, 58. Genetic absence of T cells in athymic nu/nu mice or 

a depletion of CD4+ T cells by anti-CD4 antibodies protected from lesion development59. 

After antigen presentation by APCs, lesional T cells differentiate into functionally distinct T-

helper subtype (TH) −1, −2, −17, T-regulatory cells (Treg), T-follicular helper cells (TFH) and 

Type 1 regulatory (TR1) cells60. Atherosclerosis is a known TH1-disease. Many CD4+ T 

cells in the plaque express the pro-inflammatory, TH1-associated cytokines IFN-γ, IL-2, 

IL-3, TNF, and lymphotoxin (LT), which can activate macrophages, T cells, and other 

components of the plaque, and thereby aggravate the inflammatory response61. T cells that 

express the plaque-homing chemokine receptor CCR5 in lymph nodes, and T cells from 

atherosclerotic lesions secrete IFN-γ and express T-bet, the TH1-lineage defining 

transcription factor55, 62. Knocking out IFN-γ, its receptor, or T-bet protects mice from 

atherosclerosis63-65. IFN-γ may directly reduce plaque stability by inhibiting smooth muscle 

cell proliferation66, affecting macrophage polarization, and modulating cardiovascular risk 

factors67. On the other hand, regulatory CD4+ T cells (Tregs) that express the transcription 

factor FoxP3 and the high affinity IL-2 receptor CD25 protect mice from 

atherosclerosis68, 69. Tregs exert their atheroprotective properties by secreting the anti-

inflammatory cytokine IL-1070, plaque-stabilizing TGF-β71, and by suppressing the 

proliferation of pro-inflammatory T-effector cells72. Atheroprotective effects of in-vivo 
treatment with IL-2 complexes73 and anti-CD3 treatment74, 75 have been attributed to a 

relative increase of Tregs. In addition, TR1 cells that lack FoxP3 expression but express 
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CD49b and Lag-3 secrete IL-10 and are atheroprotective76, 77. In the atherosclerotic plaque, 

a substantial proportion of T cells moreover express transcripts for the TH2 cytokines IL-4, 

IL-5, and IL-1324. In contrast to abdominal aortic aneurysm formation, which is a clear TH2-

dependent disease78 and the negative correlation of IL-4 with clinical atherosclerosis79, the 

relevance of TH-2 immunity in atherosclerosis remains unclear. The TH2 cytokine IL-4 

antagonizes TH1 responses and diminished lesion formation in one study80, while depletion 

of IL-4 has also been reported to be atheroprotective81. Likewise, the role of TH17 cells in 

atherosclerosis is controversial: Deletion or neutralization of the master cytokine IL-17 

protected from atherosclerosis82-84, while other studies reported that TH17 immunity 

protected from atherosclerosis and induced a stable plaque phenotype85-87. T-follicular 

helper cells (TFH), which are required to co-stimulate B cells and to induce an Ig-class 

switch, have also been proposed to be pro-atherogenic88 or to protect from atherosclerosis 

by secreting LDL-lowering/neutralizing anti-LDL/ApoB secreting antibodies89. The 

different findings in these studies may reflect different but unknown antigen specificities of 

the T cells studied.

It is noteworthy that antigen presentation initiates and modulates the CD4+ T-helper cell 

response atherosclerosis. T cell activation in an antigen-specific manner is an exclusive 

consequence of antigen-presenting cells (APCs) that present antigenic peptides displayed on 

MHC molecules29. Blocking MHC-II during co-stimulation or on APCs abrogates the 

downstream CD4+ T cell response31, 90. T cell immune responses are typically initiated by 

antigen-loaded dendritic cells (DCs) migrating to lymph nodes. Several cells in the 

atherosclerotic plaque act as APCs for recall responses of antigen-experienced effector and 

memory T cells, including macrophages in the plaque, B cells in the adventitia, along with 

conventional DCs and plasmacytoid dendritic cells (pDCs). Depending on co-stimulatory 

signals and cytokines provided by these APCs, the immune response can be skewed into a 

tolerogenic (immune-suppressive) or an immunogenic response (summarized in91, 92).

The role of other T cell subsets remains less well defined. It has been suggested that MHC-I 

dependent cytotoxic CD8+ T cells contribute to plaque inflammation and the build-up of the 

necrotic core93, 94, but antigen specificity has not been considered95. Natural killer (NK) 

cells regulate antigen-specific T cell immunity besides the killing of infected and tumor 

cells. They are detected at low frequencies in the plaque and may therefore modulate 

atherosclerosis96. In contrast to earlier studies, a recent report, however, suggested that NK 

cells do not affect atherogenesis97-100. In addition, CD1d-restricted NK-cells can recognize 

glycolipid antigens. Some NKT cell subsets were reported to aggravate atherosclerosis, but 

the atherosclerosis-relevant glycolipids detected by these NKT-cells remain unknown101-103.

The function of ApoB-specific, auto-reactive T-helper cells

It has been challenging to determine the phenotype of ApoB-specific CD4+ T cells, i.e. the 

fraction of T cells with a TCR recognizing ApoB-peptides presented on MHC-II, within the 

pool of all lesional T cells. In animal models, ApoB-specific T cells have been expanded in-
vitro or by vaccination against LDL or ApoB-peptides in-vivo. A direct transfer of 

vaccination-induced T cells in one study aggravated atherosclerotic disease104. T cells re-

stimulated with oxLDL ex-vivo promoted atherosclerotic disease after adoptive transfer in a 
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model of immunodeficient scid/Apoe−/− mice105. Neutralization of T cells that responded to 

oxLDL stimulation by a monoclonal antibody directed against the TCRBV31 chain 

protected from atherosclerosis106, suggestive of a pro-atherogenic function of ApoB-reactive 

T cells. However, more recent technologies to specifically detect ApoB-specific T cells in-
vivo suggest the opposite: Tracking of ApoB-reactive T cells in mice and humans suggests 

that a majority of antigen-specific T cells are immunosuppressive Tregs
42

. This is consistent 

with recent work from Gistera et al. who transferred ApoB-reactive T cells from a mouse 

with a transgenic TCR directed against oxLDL/ApoB, which protected from 

atherosclerosis89. These mixed results obscure the exact function of antigen-specific T cells. 

Likely, their phenotype and function depend on presented peptides, the microenvironment, 

and cytokine milieu, which potentially affects T cell polarization. Some pro-atherogenic 

antigen-specific T cells104, 106 were isolated and cloned for in vitro assays by a procedure 

known to pre-dispose and select pathogenic TH1 and to neglect Treg clones. It is possible 

that the population of antigen-specific T cells may be multi-potent to give rise to several TH-

lineages in-vivo – an idea consistent with the recent observation that MHC-II multimer 

selected ApoB-reactive T cells can express several TH-defining transcription factors 

simultaneously42.

The Treg-switch hypothesis – how protective immunity turns into a pathogenic response

The notion that atherosclerosis has an autoimmune component raised the question whether 

atherosclerosis is prevented in an antigen-specific manner by ApoB-reactive Tregs
39 in 

healthy individuals. Tregs prevent the onset on autoimmune disease107. Naturally occurring 

Tregs are generated in the thymus (nTregs) and peripheral are induced Tregs from naïve T cells 

(iTregs). Despite the proven atheroprotective role of bulk Tregs
68, 69 it has been unclear 

whether Tregs reactive to ApoB exist and how these may contribute to disease. Interestingly, 

ample clinical data suggest a strong inverse relationship between Tregs and atherosclerosis: 

Numbers of Tregs and IL-10 expression are lower in patients with myocardial 

infarction108, 109. Low Treg numbers predict cardiovascular events110. Blood Treg numbers in 

established murine atherosclerosis decline in later disease, while effector T cells increase36 

(Figure 3a). However, in subclinical human atherosclerosis, Treg numbers correlate 

positively with LDL111. Likewise, in mice hypercholesterolemia initially favors the 

differentiation of Tregs
112, an effect that may be a counter-regulatory response to enhanced 

inflammation36, intracellular lipid accumulation113, or an antigen-specific response. The 

latter hypothesis was supported by enhanced T cell receptor (TCR) downstream signaling 

events in hypercholesterolemic mice114, suggesting that a sub-population of T cells responds 

to antigens associated with increased LDL levels or to components of LDL particles itself. 

Thus, these data indirectly suggest the existence of LDL/ApoB-reactive Tregs that bear a 

TCR specifically responding to ApoB auto-peptides. These cells respond when the 

corresponding peptides are presented by MHC-II molecules by various APCs. Indeed, we 

directly demonstrated the existence of such ApoB-reactive T cells by MHC-II tetramers 

loaded with the human and mouse auto-peptide ApoB3036-3050. Using this tool, we showed 

that among all ApoB3036-3050-reactive CD4+ T-cells in patients free of cardiovascular 

disease, two thirds exclusively expressed FoxP3, indicative of a large population of ApoB-

reactive Tregs. In patients with subclinical atherosclerosis, the percentage of exclusively 

FoxP3-positive T cells declined to ~ 30%, while a substantial proportion of the remaining 
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FoxP3+ T cells acquired simultaneous expression of ROR-γT or T-bet, the TH17 and TH1-

defining transcription factors, respectively42. These observations, along with the diminished 

pool of Tregs in later mouse and human disease, support the idea that the immunosuppressive 

phenotype of Tregs disappears as atherosclerosis progresses. Consist with this hypothesis, 

Tregs in late atherosclerosis in mice simultaneously express T-bet, lose their ability to 

regulate and to protect from atherosclerosis, while retaining some phenotypic similarity with 

Tregs, such as some residual expression of FoxP336, 55, 62. Gaddis et al. recently proposed 

that FoxP3 expression may be lost in favor of the transcription factor Bcl-6, the defining 

transcription factor for follicular-helper T cells88. Adoptively transferred ApoB+ T-helper 

cells turned into TFH cells after adoptive transfer89. In other autoimmune conditions, such as 

experimental autoimmune encephalitis (EAE) and arthritis, an instability of FoxP3 

expression triggers the formation of antigen-specific, but dysfunctional, partially non-

protective former Tregs (exTregs)115-117. The instability of FoxP3 may be caused by 

increased methylation of the FoxP3 locus, which is observed in patients with severe 

cardiovascular disease118 and that may be prevented by modifications of lipid metabolism or 

anti-cytokine interventions88, 115. In addition, the function of FoxP3 may be regulated by 

alternative splicing favoring pathogenic transcriptional programs119. These data suggest that 

the initial protective immune response by Tregs switches into a pathogenic response as 

atherosclerosis progresses39 (Figure 3b,c).

Pro- and anti-atherogenic B cell responses in atherosclerosis

Classically, two types of B cells can be distinguished: B1 cells that are part of the innate 

immune system and secrete germ-line encoded IgM antibodies in a T cell independent 

manner, and B2 cells that need to be activated by T follicular helper cells (TFH) to 

differentiate into plasma cells that secrete IgG antibodies. In infection and vaccination 

against pathogens, B cell-derived plasma cells secrete IgG antibodies that neutralize or 

opsonize bacteria and viruses29. In addition, B cells can secrete numerous cytokines that 

distinctly affect inflammation. Examples include IRA-B cells, which are pro-atherogenic 

and secrete GM-CSF to drive myeloid cell activation and to induce pro-atherogenic TH1 

immunity120. B-regulatory cells (Breg) secrete the anti-inflammatory cytokine IL-10 and 

induce protective T-regulatory cells or directly act anti-inflammatory121, although the 

relevance for atherosclerosis is controversial122. The role of other cytokine producing B-

effector (Be) cells is unclear. Only a few B cells are found in the atherosclerotic plaque24; 

the majority of B cells reside in the adventitia, in particular in aged atherosclerotic animals, 

where arterial tertiary lymphoid organs (ATLOs) form123. B cells in the spleen respond to a 

high cholesterol diet124, suggesting local and systemic B cell responses in atherosclerosis. 

Global gain and loss of function experiments have suggested an overall protective role of B 

cells125, 126. In general, innate B1 response seem to be atheroprotective and adaptive B2 

responses pro-atherogenic (Figure 4):

B1 cells: B 1 cells represent a first-line, innate defense against common pathogens. In 

mice, they are characterized as CD11b+CD43+CD23−B220lowCD19+ cells and may be sub-

divided into B1a and B1b cells depending on their location and surface markers127. 

Typically, most B1 cells reside in the peritoneal cavity. In the atherosclerotic plaque, a few 

CD11b+ B220negCD19+ B1-like cells are found that further decrease in more advanced 
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disease24. B1 cells secrete germ-line encoded IgM. Typically, B1-derived IgM recognize 

phosphocholine (PC) head groups of polysaccharides in the wall of bacteria, such as S. 
pneumoniae. The same IgMs also bind oxidation-specific neo-epitopes on LDL and epitopes 

on apoptotic cells128-130. Oxidative neo-epitopes also seem to be generated in the spleen 

during sterile inflammation131. In cardiovascular disease, IgM recognizing epitopes on LDL 

or ApoB are inversely correlated with atherosclerosis, complications, and outcome132-138. It 

has been shown that IgMs directed against oxLDL inhibit its uptake by macrophages and 

prevent myeloid-cell inflammation139, 140. Consistently, several studies with gain- and loss-

of-function experiments have established an atheroprotective role for B1 cells141-145.

B2 cells: IgG antibodies originate from plasma cells that have undergone B cell maturation 

with the help of TFH cells in germinal centers, which causes a switch from low-affinity IgM 

to high-affinity IgG146. IgG antibody titers to native and oxidized LDL or ApoB are 

positively correlated with atherosclerotic disease in mice and humans133, 147-149. Inhibiting 

B2 cells is reportedly atheroprotective150-152, while specifically interfering with plasma cell 

functioning seems to be proatherogenic153. The role of IgG antibodies in atherosclerosis is 

controversial: It was suggested that IgGs against ApoB aggravate154 or protect from 

atherosclerosis155, 156. A clinical phase II study (Goal of Oxidized LDL and Activated 

Macrophage Inhibition by Exposure to a Recombinant Antibody, ‘GLACIER’) using a 

monoclonal IgG antibody against a human ApoB-peptide failed to show its expected 

atheroprotective effect157. The design of the study with the use of 8F-fluorodeoxyglucose 

(FDG) PET-imaging as surrogate for plaque inflammation instead of cardiovascular 

endpoints, the short observation period of 85 days, and the small study population may have 

contributed to its lack of efficacy.

Vaccination against atherosclerosis – a translatable strategy?

The discovery of the autoimmune component of atherosclerosis has sparked the idea of 

immunizing with LDL or peptides from ApoB to prevent atherosclerosis by inducing or 

maintaining the traits of protective immunity against ApoB. Almost 60 years ago, it was 

shown that rabbits develop smaller atherosclerotic lesions after subcutaneous injection of 

LDL38. That vaccination with LDL can be atheroprotective was confirmed in a variety of 

species, LDL preparations, routes, and adjuvants158-160. At least seven MHC-II-restricted 

peptides from ApoB, which contains the immunodominant epitopes of LDL, are protecting 

from atherosclerosis when used in vaccines: p3, p6, p101, p102, p103, p18, p21042, 161-163. 

An ongoing challenge is to decipher the mechanism of action, which is critically required to 

define vaccination protocols translatable to humans. It has been proposed that either 

Tregs
42, 164-167, IL-1042, 161, 167, 168, or vaccination-induced IgG-antibodies may confer 

atheroprotection, depending on doses, routes, and adjuvants used44. Recent studies, however, 

suggest that atheroprotection does not require IgG-antibodies169 and primarily proceeds by 

IL-10+ ApoB-specific Tregs
42.

Whether vaccination strategies can be translated to humans remains unclear. A first step 

towards a translatable approach was the identification of human ApoB-peptide epitopes 

accessible to immunomodulation in two recent studies42, 170. In mice, ApoB-peptides have 

been delivered in the non-translatable classical adjuvants Complete Freund’s Adjuvant 
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(CFA), an emulsion of mineral oil supplemented with inactivated mycobacteria, or 

Incomplete Freund’s Adjuvant (IFA), which lacks the mycobacteria component of CFA. 

Subcutaneous or intraperitoneal injections of both, CFA and IFA, were shown to elicit non-

specific inflammation171, 172. This limitation was recently overcome by the discovery that a 

squalene oil, a class of adjuvants already used in clinical practice, can be used as an adjuvant 

for ApoB-peptides169. In addition, it remains unclear whether vaccination is effective in 

established atherosclerosis as most studies tested the prevention of de-novo atherosclerosis 

in rodents.

Limitations of animal models

The principles of the cellular and humoral adaptive immune response in experimental 

murine atherosclerosis have been established. The efficacy of anti-inflammatory therapy in 

human atherosclerosis has been validated in the CANTOS trial recently. However, 

significant challenges remain for the translation of animal studies to humans. First, mice, 

which represent the most widely employed atherosclerosis model, neither develop 

spontaneous atherosclerosis, nor do atherosclerotic knockout mice develop coronary artery 

disease. In addition, spontaneous atherothrombotic events resembling heart attacks and 

strokes do not occur in atherosclerotic mice. Also, blood lipoprotein profiles in mice are 

unlike those in humans, even in the genetic atherosclerosis models. Second, most 

atherosclerosis studies are conducted in a single mouse strain (C57BL/6) that cannot capture 

the genetic diversity seen in humans. Genetic diversity is known to modulate the response 

against antigens and atherosclerosis-relevant stimuli within a spectrum from pro- to anti-

inflammatory173174. Third, some cytokines and immune receptors are not conserved 

between mice and humans, because the immune systems of both species are under intense 

evolutionary pressure. Fourth, mice represent a simplified model system for antigen 

presentation and recognition. Unlike humans, mice are housed in specific-pathogen free 

(SPF) facilities, which neglects the likely pathogen-driven activation, antigenic repertoire, 

and differentiation of immune cells175. While C57BL/6 mice bear just one MHC-II allele/

molecule (I-Ab), humans express several alleles of a large pool of different MHC-II variants 

that are termed human leukocyte antigens (HLA) with over 10,000 different HLA allelic 

forms. This extreme variability renders the direction and amplitude of autoimmunity in 

humans difficult to predict.

Clinical considerations

Decreasing LDL levels and attenuating the inflammatory response represent the two 

fundamental therapeutic strategies against atherosclerosis available today. The most 

successful causal medication as measured by event-free person years are inhibitors of 

endogenous cholesterol synthesis by the HMG-CoA reductase (statins)176, 177, which lower 

LDL-cholesterol and have pleiotropic anti-inflammatory effects beyond what can be 

expected from the reduction of LDL178. Statins can prevent, reduce, and even reverse 

atherosclerotic plaque burden179. Monoclonal antibodies to Proprotein convertase subtilisin/

kexin type 9 (PCSK9) lower LDL-cholesterol even more dramatically by blocking LDL 

degradation180, 181 without apparent impact on levels of CRP levels182, a biomarker of 

systemic inflammation. However, even after LDL-lowering with statins and PCSK9-

inhibition, a substantial residual inflammatory risk remains183. These observations have 
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established the distinct, but overlapping, roles of inflammation- and lipid associated risk. 

Low-dose treatment with the anti-proliferative and anti-inflammatory drug colchicine 

prevented cardiovascular events in a small prospective clinical trial184. In addition, the 

Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS) showed that 

inhibition of inflammation by the Interleukin 1-β (IL1-β) antibody canakinumab reduced 

cardiovascular end-points in patients with established atherosclerosis by 15%185. Strikingly, 

these observations have proven the inflammatory hypothesis on a conceptual basis, yet it is 

unclear, which patients may benefit from novel anti-inflammatory therapies: First, inhibition 

of IL1-β impaired host defense, which was reflected by an increased incidence of lethal 

infections185. Second, the recent Cardiovascular Inflammation Reduction Trial (CIRT) that 

tested low-dose anti-inflammatory methotrexate in patients with coronary heart disease did 

not reach its endpoints186. This lack of efficacy was partially explained by the inclusion of 

patients at low inflammatory risk and calls for a future personalized risk stratification 

(inflammatory versus lipid risk) and treatment once anti-inflammatory therapy is available in 

clinical practice. Whether the autoimmune component of atherosclerosis may already be 

addressable by unspecific anti-inflammatory therapy is currently unknown. However, 

vaccination and immunomodulation may provide a future antigen-specific therapy that is 

unlikely to impair host defense. The first validation of MHC-II tetramers to quantify the 

ApoB-reactive T cell responses42 and the measurement of auto-antibodies187 in humans may 

provide feasible risk stratification tools in the challenge to define patients at a high immune 

risk for atherosclerosis in future.

Conclusion

Atherosclerosis is a chronic inflammatory disease of the vessel wall that is largely driven by 

an innate immune response through myeloid cells as monocytes and macrophages. 

Autoimmunity against ApoB and other antigens involve CD4+ T-helper cells that instruct 

myeloid cells and antigen-specific antibodies that may directly modify the pathogenicity of 

these antigens. This autoimmune response is detectable in humans and animal models with 

atherosclerosis. While the classical perception is that autoimmunity is pathogenic per se, 

recent evidence suggests that ApoB-specific CD4+ T-helper cells are already detectable in 

subjects without clinical atherosclerosis, where many of them show atheroprotective 

features. As atherosclerosis progresses, the protective auto-immune response converts into a 

pathogenic one. It is unknown whether this switch in functionality represents a cause or a 

consequence of atherosclerosis and inflammation. It is clear that the adaptive immune 

system in atherosclerosis can be pro- or anti-inflammatory and thus pro- or anti-atherogenic. 

Manipulating the adaptive immune system by immunomodulatory strategies or vaccination 

is an attractive concept. Limitations in the predictive power of animal models and a lack of a 

full understanding of the role of auto-antibodies, B- and T cells present formidable hurdles 

to clinical translation.
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Figure 1: Activation of T cells is a hallmark of atherosclerosis.
(a) During feeding with a Western Diet (WD), CD4+ T-helper cells from atherosclerosis-

prone Apoe−/− build-up a significant immune memory with more than one half of T cells 

express markers of CD62L− CD44+ T-effector memory cells (TEM) and CD62L+ CD44+ 

central-memory cells (TCM) when compared to atherosclerosis-free wildtype (WT) mice. (b) 

Along with enhanced T cell activation, lymph nodes draining the aorta and supra-aortic 

arteries (cervical, axillary lymph nodes) massively increase in size. Courtesy of D. Wolf and 
K. Ley
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Figure 2: T cell polarization in atherosclerosis.
Naïve T helper cells (TH) acquire the complete phenotype of an effector T cell in the plaque 

after presentation of antigenic peptides from ApoB by antigen-presenting cells (APCs). 

Therefore, an APC takes up (oxidized) LDL-cholesterol particles, processes, and presents 

peptides from ApoB on MHC-II. The T cell recognized this complex by a specific T cell 

receptor (TCR). This process is guided by the binding of co-stimulatory ligands to their 

corresponding receptors on T cells. As a result of co-stimulatory signals and cytokines 

secreted by the APC, T cells express transcription factors (denoted in the cells) that favor the 

differentiation into distinct TH-types. These express specific cytokines that can either act in 

an atheroprotection or pro-atherogenic manner. The relevance for atherosclerosis remains 

controversial for some TH-phenotypes.
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Figure 3: Decline of protective T-regulatory cells (Treg) in the course of atherosclerosis.
(a) As disease progresses, the pool of Treg-dominated antigen-specific T cells is 

overwhelmed by effector T cells (Teff) with a presumably pro-atherogenic function. (b) Over 

time, Tregs expressing their defining transcription factor FoxP3 start to express alternative 

TH-transcription factors, such as RORγ-T (TH17), Bcl-6 (TFH), or T-bet (TH1). FoxP3 either 

remains co-expressed or disappears. Likely, this switch into FoxP3-low expressed or -

negative exTregs may be caused by antigen-specificity of the T cell, the cytokine milieu in 

the atherosclerotic plaque, or the loading of the T cell with intracellular cholesterol. (c) 

These observations have built the concept of an increasing replacement of (athero-) 

protective immunity with a pro-atherogenic response.
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Figure 4: Distinct role of B cells in atherosclerosis.
B cells on a developmental stage (Pre-B) turn into innate-like B1 cells or adaptive, 

conventional B2 cells (right panel). B1 cells recognize epitopes on LDL and oxLDL 

particles, which leads to their activation and expression of low-affinity IgM antibodies by 

proliferation. Often, these IgM show cross-reactivity with epitopes on bacteria such as 

Streptococcus pneumoniae or on apoptotic cells. Interfering with B1 functionality aggravates 

atherosclerosis. B2 cells require co-stimulation by TFH cells by MHC-II:peptide:TCR 

interactions and co-stimulatory signaling events to fully differentiate into plasma cells that 

express high-affinity IgG antibodies against atherogenic antigens, such as ApoB, oxLDL, or 

heat-shock proteins (HSP). Neutralizing B2 cells is atheroprotective, while the role of IgG-

antibodies remains controversial with reported pro- and anti-atherogenic functions. 

Independent of the classification of B1/2 cells, distinct B cell subsets have been shown to 

express non-exclusive sets of cytokines, which allows the definition of cytokine-secreting B-

effector (Be) −1 and −2 cells, regulatory B cells (Bregs), and innate-response activator (IRA) 

B cells (left panel).
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