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Abstract

In this work we have developed a hybrid QM and MM approach to predict pKa of small drug-like 

molecules in explicit solvent. The gas phase free energy of deprotonation is calculated using the 

M06–2X density functional theory level with Pople basis sets. The solvation free energy difference 

of the acid and its conjugate base is calculated at MD level using thermodynamic integration. We 

applied this method to the 24 drug-like molecules in the SAMPL6 blind pKa prediction challenge. 

We achieved an overall RMSE of 2.4 pKa units in our prediction. Our results show that further 

optimization of the protocol needs to be done before this method can be used as an alternative 

approach to the well established approaches of a full quantum level or empirical pKa prediction 

methods.

1 Introduction

Computational prediction of pKa values is of considerable interest for a number of fields 

including pharmaceutical and material sciences[1, 2, 3]. Even though several methods have 

been developed to predict this value, the problem still remains a challenge[4, 5, 6]. Most 

prediction methods can be divided into two broad categories - empirical and ab initio ones.

The first set of methods use a cheminformatics based approach [7, 8, 9]. In this approach the 

compound is represented as a vector of molecular descriptors including constitutional, 

topological, electrostatic and quantum descriptors [10]. Machine learning models for 

specific functional groups are trained based on these descriptors [10]. Notably, these 

methods ignore the three dimensional conformation of the compound explicitly [11]. 
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Although training the models might be expensive in terms of curating experimental pKa data 

for generating appropriate models, subsequent pKa prediction using trained models can be 

very fast and inexpensive.

Ab initio methods use a thermodynamic cycle combining with quantum mechanics (QM) 

calculations to compute the solvent-phase pKa [12, 13, 14, 15, 16, 17, 18, 19, 20] . It 

consists of the calculation of dissociation free energy in gas phase [21] along with solvation 

free energy of the acid and the conjugate base using dielectric continuum solvation models 

(DCSMs)[22, 12, 23, 24, 25].These methods have been very successful in calculating pKa. 

However, DC-SMs cannot model the hydrogen bonding between solute and water, which 

can be important in the protonation or deprotonation process. [26] Their accuracy in 

describing the short-range electrostatics of polar solutes and ions is also limited [12]. 

Moreover, typically only one conformation is used for the estimation of free energy although 

an ensemble of conformations is required for a complete statistical mechanics treatment of 

the free energy [27]. Even if multiple low lying conformations are included in the 

calculation, the entropic variations associated with the deprotonation process still cannot be 

completely accounted for without explicitly considering the solvent dynamics and 

extensively exploring the potential energy landscape of the solute-solvent systems.

Calculation of solvation free energy during pKa estimation remains one of the bottlenecks in 

getting accurate values. An alternative way of calculating solvation free energy is to use 

molecular dynamics simulations with empirical force field [28] [29] [30]. Shirts et. al. were 

able to do a very precise measurement of solvation free energy with 0.85 kcal/mol RMSE 

[31]. Gilson et. al. used double decoupling method and achieved 1.3 kcal/mol RMSE. König 

et. al.[29] used the annihilation approach and obtained accuracy on par with the quantum 

calculations. Mobley et. al. have created the FreeSolv [30] database to catalog molecules 

with known experimental solvation free energy and assist in development of new methods 

from these resources.

Given the large number of diverse methods available for predicting pKa, the Statistical 

Assessment of the Modeling of Proteins and Ligands (SAMPL) [32] blind prediction 

challenge was organized to assess the methods on a common set of small drug-like 

molecules. Previous iterations of the SAMPL competitions have focussed on assessing 

methods for solvation free energy calculations [33], distribution coefficient and other 

challenges.[34, 35, 36, 37] We note that in the SAMPL5 distribution coefficient competition, 

Pickard and coworkers have calculated pKa values with QM methods, and used computed 

pKa to further correct their prediction of distribution coefficients [34].

In this work we have presented a new method to computationally predict the pKa of small 

drug-like molecules in explicit solvent. This is a hybrid QM and MM approach that allows 

ab initio prediction of absolute pKa values and supports any chemistry. Since calculation of 

pKa requires relative solvation free energy between the acid (protonated species) and the 

conjugate base (deprotonated species), our method calculates this quantity directly rather 

than computing the absolute solvation free energies of both by employing two 

thermodynamic cycles.
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This paper is organized as follows. In Section 2, we describe the theory behind the 

prediction of the microscopic and macroscopic pKa values. Section 3 covers the details of 

the description of the QM and MM methods that we used to carry out calculations. Next in 

Section 4, we present our results that submitted to the SAMPL6 competition and analyze the 

accuracy of the results. Finally in Section 5, a brief conclusion is provided.

2 Theory

SAMPL6 pKa challenge involved blind computational prediction of pKa of 24 small drug-

like molecules (Fig. 1). These molecules were similar to kinase inhibitors and were chosen 

for experimental tractability. All the molecules were polyprotic in nature i.e. there were 

multiple sites on each molecule where the molecule could lose a proton. For further details, 

please refer Isik et. al [38] where the organizers have described the rationale for choosing 

the molecules as well as the methods used for experimental pKa prediction.

In order to compare the computational and experimental pKa predictions, it is important to 

understand the difference between the microscopic and macroscopic pKa of a molecule. The 

chemical environment around a functional group (in this case, the protonation state of other 

titrable moieties) affect the propensity of the group to lose its proton. This is referred to as 

the microscopic pKa, i.e. pKa for deprotonation at a site at a fixed protonation state of all 

other titrable sites in the molecule. This differs from the macroscopic pKa which is related to 

the dissociation constant of losing a proton from the molecule as a whole and can be 

experimentally measured. Converting microscopic pKas to macroscopic pKas or vice versa 

is complicated due to the large number of equilibrium processes involved.[8, 39] If, for a 

specific charge transition, the microscopic pKas are fairly well separated (ex. More than one 

pKa unit), the smallest pKa can be considered as the macroscopic pKa. However, if they are 

close, the macroscopic pKa is shifted as multiple microscopic transitions contribute to the 

macroscopic value. Several studies [40, 41] discuss this in greater detail. In our method, we 

calculate microscopic pKa value for each acid-base pair of microscopic states. We then 

assign one dominant mi croscopic pKa as the macroscopic pKa for each titration 

process,which can be directly compared with the experimental observables.

To calculate the microscopic pKa of a particular acid-base pair, let us consider the 

dissociation of acid HA

HAaq Haq
+ + Aaq

−

Here the subscripts ‘‘aq’’ indicate that the species are solvated in water. The dissociation 

constant and pKa value for this dissociation are given by the following relations:

Ka =
H+

aq A−
aq

HA aq
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pKa =
△ Gaq*

RTln(10)

Where

△Gaq* = G*(Haq
+ ) + G*(Aaq

− ) − G*(HAaq)

Here, G refers to the absolute Gibbs free energy of the solvated species. The superscript * 

implies that the standard state of one mole per liter and 298.15 K have been used. R and T 
are the gas constant and the absolute temperature respectively. Thus, to calculate pKa we 

need to calculate aqueous phase deprotation free energy △Gaq.

Rather than calculating the absolute free energies in the aqueous phase directly, the aqueous 

phase calculations are coupled with gas phase calculation using the following 

thermodynamic cycle (Figure 2a). The two vertical lines in the figure refer to the solvation 

of the species into aqueous phase. Thus, the ∆Gaq can be calculated as

△Gaq* = △Gg* + △Gsolv* (H+) + △Gsolv* (A−) − △Gsolv* (HA)

The absolute free energy for proton H+ in the gas phase at standard temperature and pressure 

is calculated by Sackur-Tetrode equation and has been previously calculated as −6.28 

kcal/mol [42]. Solavtion free energy of proton (−264.5 kcal/mol) has been taken from 

Tissandier et. al.[43]. The gas phase calculations are done at standard gas conditions i.e. one 

atmosphere of pressure. Converting them to 1 mole/litre further involves a standard state 

correction of −1.89 kcal/mol.

The above equation involves the calculation of solvation free energies of the deprotonated 

△Gsolv* (A−) and of the protonated species △Gsolv* (HA), respectively. Most ab initio pKa 

prediction methods compute them in implicit solvent using quantum chemistry and 

continuum solvent approaches. We note that, however, the only relevant quantity for pKa 

prediction is the difference of solvation free energies

△△Gaq* = △Gsolv* (A−) − △Gsolv* (HA)

In the present work, we directly compute this solvation free energy difference in explicit 

solvent. The calculation is done at the force field level in order to be computationally 

tractable. Furthermore we consider a second thermodynamic cycle (Figure 2b) that 

alchemically change HA into A− in the gas and the aqueous phases. As we are interested in 

only the free energy difference between the two species HA and A− and free energy is a state 

function so that its sum over a thermodynamic cycle equals zero, we can rewrite △△Gsolv*

as
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△△Gsolv* = △Gsolv* (A−) − △Gsolv* (HA) = △Gdeprot, aq* (HA) − △Gdeprot, g* (HA)

, where △Gdeprot* (HA) can be calculated using free energy perturbation (FEP)methods such 

as the thermodynamics integration (TI) method. By introducing a number intermediate λ 
states that alchemically connecting two states 0 and 1, the free energy difference between the 

two end state is computed by TI as

△G = ∫0
1 dU

dλ λ
dλ

It’s worth pointing that for each acid-base pair only one relative free energy in the aqueous 

phase is computed, rather than two absolute solvation free energies. It has previously been 

shown by Jorgensen et. al [44] that this allows the cancellation of errors in MM calculations 

such as inaccuracy of force field parameters and inadequate conformational samplings. In 

their work they calculated the relative solvation free energy of methanol and ethane using al-

chemical transformation of methanol to ethane and vice versa and got results close to 

experimental relative solvation free energy value. The major advantage of using such a 

secondary thermodynamic cycle (Fig. 2b) is that the alchemical FEP only involves changing 

HA into A− in the gas and the aqueous phase,instead of annihilating whole molecules in the 

aqueous phase. This greatly improves the efficiency, accuracy and the throughput of our 

calculations.

In summary, we calculate the △Gaq*  by the following equation

△Gaq* = △Gg* + △G*(H+) + △Gdeprot, aq* (HA) − △Gdeprot, q* (HA)

, where △Gg* is calculated in the gas phase at the QM level, △G*(H+) is obtained from 

experimental value reported in literature, △Gdeprot, aq* (HA) calculated using FEP in 

condensed phase at the MM level and △Gdeprot, g* (HA) in gas phase at the MM level.

3. Method

The work flow for the complete method is shown in Fig. 3. First the geometry of each 

microstate was optimized in gas phase. Then for each acid (protonated) base (deprotonated) 

pair, ∆G for deprotonation in gas phase was calculated at the QM level. To carry out the MM 

simulations, force field parameters were generated for each of the microstates. Next, the gas 

phase and aqueous phase alchemical free energy difference between each acid-base pair 

were computed using FEP and MD simulations. All the QM calculations were performed 

with Gaussian16 [45] , while all the MD simulations were done with CHARMM [46, 47].
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3.1 Geometry optimization and gas phase QM calculation

SAMPL6 pKa challenge had 24 molecules, each with different number of microstates. 

SMILES [48] string of the microstates were converted to PDB files sing OpenBabel [49]. 

Geometry optimization and gas phase deprotonation energy △Gg* was calculated with the 

M06–2X density functional theory [50] and 6–31G* basis set for neutral-cationic microstate 

pairs and 6–31+G* for neutral-anionic microstate pairs. Ultrafine grid and Tight 

convergence criteria were used in all calculations.

We would like to point out that as the computed pKa are directly related to the calculated 

electronic energies, higher-level methods such as MP2 and larger basis sets such as cc-pVTZ 

would improve calculation results. These, however, have not been pursued in this study. We 

also did not test other functionals, which might potentially lead to better pKa prediction 

results.

3.2 Parameterization of microstates

In order to carry out molecular dynamics simulations, we first generated force field 

parameters for the microstates based on the fixed-charge molecular mechanics potential 

energy functions used in CHARMM [51]. The potential energy is given by a sum of bonded 

and non-bonded components :

U = Ubonded + Unon − bonded

where,

Ubonded = ΣbondKb(ri j − r0)2 + ΣangleKθ(θi j−θ0)2

+ΣdihedralsKχ(1 + cos(nχ −δ)) + ΣimproperKimp(ϕ−ϕ0)2

Unon−bonded = Σ
qiq j

4π ∈0 ri j
+ ∈i j [(

Rmin
ri j

)
12

− 2(
Rmin
ri j

)
6
]

Here, Kb and r0 are bond force constant and equilibrium bond-length for each atom type 

pair. Kθ and θ0 are angle force constant and equilibrium angle for each angle type triplet. 

Kimp and φ0 are improper angle force constant and equilibrium improper angle for each 

improper angle. Kχ, n, and δ are the force constant, periodicity, and phase for each torsional 

degree of freedom. The non-bonded potential energy terms involve Coulombic interactions 

between partial charge qi and qj, and the van der Waals (VdW) interactions modeled by the 

ϵij and Rmin parameters.

We used Antechamber to generate GAFF parameters. Single point calculation was done on 

the optimized geometry mentioned above using Gaussian16 at MP2 level of theory with 6–
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31G* basis set. RESP charges were calculated using the protocol mentioned in Jakalian et.al.

[52]. Electrostatic potential was written in a data file using the option IOp(6/33=2) in 

Gaussian, and the RESP charges were fitted. Other parameters - bonded (bond, angle and 

torsion) and non-bonded (van der Waals) were assigned as per the General Amber Force 

Field (GAFF) [53] using the Antechamber [52] program in the AmberTools16 software. 

CHARMM formatted parameter and topology files were produced. These parameters were 

modified by in-house scripts to make the formats compatible with CHARMM molecular 

dynamics package. If the residues did not have an integer charge in the generated topology 

file (typically off by ±0.0 − 0.003 ), an ad-hoc fix was done by adjusting the charge on a 

random non-hydrogen atom to round up the total charge of residue.

3.3 Free energy simulations

All molecular dynamics simulations were carried out with CHARMM [47] and parameter 

sets mentioned in the previous subsection. Thermodynamic Integration calculations were 

carried out using the PERT module of CHARMM. 12 λ windows were used (0.0. 0.075, 

0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75,0.85, 0.95, 1.00) for transforming the partial charges 

of the acid into those of the conjugate base, with the charge on the dissociating proton 

transforming to zero. Each λ window was equilibrated for 1 ps followed by 10 ps MD 

simulations for sampling.

MD simulations in the gas phase were carried out with Langevin dynamics at a temperature 

of 298 K and using a time step of 2 fs with a friction coefficient of 5 ps−1 on all the atoms. 

No cutoffs were used in calculation of nonbonded interactions for gas phase simulations. For 

aqueous phase simulations, we used 2022 water molecules to solvate the solute molecule, 

onstituting a 38 Å cubic water box to start with. 50 ps NPT simulations were run at 298 K 

and 1 atm, after which NVT simulations at 298 K were carried out for TI calculations. A 

Nosé-Hoover thermostat [54] was used to maintain the microcanonical ensemble. Particle 

mesh ewald [55] was used to calculate the long range electrostatic interactions with a direct 

space cutoff of 10 Å. Charge was spread on a grid of 48×48×48 for reciprocal space 

calculation using 6th order B-spline interpolation method [56]. A cutoff of 12 Å was applied 

for van der Waals interactions, and the integration time step is 1 fs.

4 Result and Discussion

The results discussed in this report are the ones that we submitted for the SAMPL6 

competition [submission id: 0wfzo]. We submitted only the microscopic pKas for all acid-

base pairs of all the 24 molecules. These results were compared to macroscopic pKas using 

two different approaches – closest and Hungarian. This analysis was done with the 

assumption that experimentally observed pKas with only one observed pKa or fairly-distant 

pKas (separated by more than 3 units) are equal to the microscopic pKa of the corresponding 

microscopic pKa. Only two molecules – SM14 and SM18 – did not satisfy this criterion and 

hence they were excluded from this analysis. Detailed analysis of the results can be found at 

https://github.com/MobleyLab/SAMPL6/tree/master/physical_properties/pKa/analysis/

analysis_of_typeI_predictions
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In the closest analysis approach, the experimentally observed pKa is matched with the 

microscopic pKa which minimizes the absolute error i.e. the one that is closest to the 

observed pKa. We achieved a root mean squared error (RMSE) of 2.42 pKa units with 

respect to the experimental values. The mean absolute error(MAE) was 1.61 pKa units. The 

corresponding R2 for regression fit was 0.53 and the slope of line was 1.08.

In the hungarian approach [57], an optimum global match between experimentally observed 

pKa and predicted set of pKas is found by minimizing the linear sum of squared errors of the 

paired match. We achieved a root mean squared error (RMSE) of 2.89 pKa units with 

respect to the experimental values. The mean absolute error(MAE) was 1.88 pKa units. The 

corresponding R2 for regression fit was 0.48 and the slope of line was 0.99.

Out of the 22 molecules whose results were compared to experimental results, 3 of the 

molecules (SM06, SM15 and SM22) had 2 macroscopic pKas in the 2–12 pKa range while 

the other molecules had just 1 pKa in this range. Among these 25 comparisons, only 5 

predictions were more than 2 pKa units away from the experimental values. The most 

erroneous one concerns SM15, of which the fist predicted pKa underestimated the 

experimental measurement by 8.86 pKa units, and the second pKa overestimated by 3.52 

pKa units.

In general, our results compare less favorably to some of the more-established methods of 

pKa prediction, as used by other submissions in the SAMPL6 challenge. By carefully 

examining our calculations after the submission, a few mistakes were spotted, which are 

further analyzed and discussed here.

One major error is that the standard state correction was missed in our submission. The QM 

level gas phase calculation are done at standard state of gas while the aqueous phase species 

are at 1M concentration. This standard state correction needs to be applied while calculation 

of the overall free energy difference. This contribution is equal to −1.89 kcal/mol, i.e. 1.4 

pKa units.

Another source of error comes from the inconsistency with GAFF protocol. Standard 

AMBER and GAFF force fields scale the electrostatic interaction between third-neighbors 

(1–4 interactions) by 0.833, while CHARMM force fields on the other hand do not scale the 

electrostatic 1–4 interactions. In the CHARMM program, an option e14fac (electrostatic 1–4 

interaction scaling factor) should be set to 0.833 to use GAFF force fields, however its 

default value of 1.0 was used in our simulations by mistake. Furthermore, the CHARMM 

modified TIP3P parameter were used for water molecules which place a small ϵ value on the 

water hydrogen atom. These deviations to the standard GAFF practice render the force field 

parameters used in this work less optimal.

Other methods to generate more CHARMM-like force field parameters for the microstates 

have been attempted. The Paramchem server [58], which generates CGENFF force field 

parameters, was found to report error messages when parametrizing several charged species. 

The ffTK(force field ToolKit) [59], which is a plugin in VMD that generates CHARMM 

parameters, was found to be difficult in automatically generating parameters for all the 
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microstates. Since we needed a method that could parameterize all the microstates in a high 

throughput fashion, we instead opted for using for Antechamber from AmberTools package.

From the absolute error analysis (Fig. 6) we can assume that SM15 parameters are not 

optimal as the errors for both pKa are very high for this molecule. Force field 

parameterization for small molecules is indeed difficult due to the very large chemical space 

of these molecules as compared to the amino acids [60]. The latter have seen several decades 

of work for a very limited number of species. The general strategy of optimization of 

parameters of molecules involves the use experimental hydration free energy data[61] . 

Optimization with this parameter would also be helpful as we indeed need to predict the 

solvation free energy difference. However, many of microstates of these molecules are 

charged species and getting high accuracy experimental hydration free energy data would be 

difficult. Even Self-Consistent Reaction Field (SCRF) based mplicit solvent model (SMD) 

calculations have one order of magnitude higher error as compared to neutral species [23] 

[62]. One way to study the SM15 errors would be to generate parameters with a different 

force field and compare their relative performance. While Antechamber generates GAFF-

based parameters, ffTK can be used to used to generate CHARMM-based parameters.

Our simulation runs also suffered from inadequate sampling of the phase space in the 

aqueous phase simulation. For the calculation of hydration free energy in SAMPL4 

competition with similar system sizes, Gilson et. Al.[28] had simulated each λ point for 5 

ns. König et. Al. [29] for the same set of molecules had used a 0.5–1 ns simulation for each 

λ state in aqueous phase. In principle much less sampling time would be required in our 

FEP calculations as relative free energies instead of absolute solvation free energies were 

being computed. However, the MD simulation time used in this study was still too short (10 

ps per λ state), not allowing full water reorganization upon solute deprotonation. The 

number of simulations that we were performing was much larger (∼650 in SAMPL6 vs 24 in 

SAMPL4) and hence we performed only 0.12 ns simulations for each acid-base pair. 

Achieving proper sampling is an area of active research in the molecular dynamics field. 

Indeed, one of the competitions in the SAMPL6 challenge focused on benchmarking this 

quantity especially in a blind setup. The results from that study would be able to set 

community-wide guidelines for benchmarking. A heuristic that we should have used to 

reduce the number of microstate pairs should have been to exclude all microstates that had 

charges more than 1 or less than −1 i.e. consider only neutral and singly-charged 

microstates. Some of the other submissions, have used this strategy to limit the number of 

microstate pairs that needs to be considered without loss in accuracy.

The FEP scheme we used for alchemical transformation included only the transformation of 

charges on all atoms from the protonated acid to the its deprotonated conjugate base. This 

was similar in principle to the strategy used by Juyong et. Al. in their enveloping distribution 

sampling (EDS) based constant-Ph simulations [63], where each state differed from the 

reference state in only the charges on the residue of deprotonation. The changes in the 

parameters for VdW interactions as well as the internal degrees of freedom during the solute 

deprotonation process will also contribute to free energy difference, which is not captured in 

our FEP calculations. We note that it’s feasible to include these effects by interpolating all 
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force field parameters, although the bonded interactions might need to be carefully handled 

[64].

Another possible source of error comes from the value of ∆G∗(H+). Solvation free energy of 

proton is a contentious value and a range of values from −259 to −264 kcal/mol are available 

in the literature. This can lead to large errors in the absolute prediction of pKa as just an 

difference of 1.36 kcal/mol is equivalent to 1 pKa unit. One way to handle this error is to use 

isodesmic reactions with another acid with known experimental pKa and couple two 

thermodynamic cycles together such that the solvation free energy of proton cancels out. 

The second acid chosen should also be similar to the original acid that we are interested in. 

Essentially, the pKa shift is calculated with respect to a simpler model compound with 

known experiemental pKa values, as being done in most constant Ph simulation methods. 

[65, 66, 63] Our approach instead aims at prediciting the absolute pKa, and a fixed value of 

−264.5 kcal/mol is used for ∆G∗(H+) as derived from cluster-ion solvation data by 

Tissandier et al [43]. An alternative way to handle this issue, as well as other systematic 

errors in absolute pKa calculations, is to perform a linear free energy regression against 

molecules with known experimental pKa, i.e., to consider ∆G∗(H+) as a variable whose 

value is fitted to best reproduce a set of known pKa values. The empirical correction has 

been shown to improve the results although the slope of the regression still remains a 

debatable issue [12]. We have also used the assumption that only one microscopic pKa 

contributes to the macroscopic pKa if the former are fairly well separated. However, this is 

an approximation as for a given charge transition, multiple protonated-deprotonated pairs of 

microstates contribute to the macroscopic pKa [41].

In our approach the △Gg* is computed using QM calculations at the M06-2X level using 6–

31G* basis set (6–31+G* for microstate pairs involving anionic species). Higher level of ab 
initio methods, larger basis set, and including counterpoise correction should improve our 

results. Although our method allows the sampling of the phase space during the calculation 

of the solvation free energy difference, only one conformation (the energy minimized one) is 

considered for the calculation of △Gg* by QM in the gas phase. This is again an 

approximation as previous work by Bochevarov et.al. [11] have shown that multiple low 

lying conformations do contribute to the deprotonation free energy. There can be a couple of 

different strategies to handle this phenomenon. Multiple low lying conformations can be 

sampled and the deprotonation energy of each important conformation can be calculated 

separately and combined together in a Boltzmann weighted sum. Another solution for this 

problem is to use reweighting as used by Tao et.al. [67]. Free energy of constraining the 

geometry to the ones used the calculation of gas-phase QM step, can be calculated 

separately and will have to be added for the protonated microstate and subtracted for the 

deprotonated microstate.

One of the key physics behind the free energy of deprotonation and hence pKa is the water 

reorganization when the solute is protonated or deprotonated, which involves water response 

to the sudden changes of charge distributions. In this case, polarizable force fields should in 

principle provide higher accuracy in our approach as fixed charge force-fields are limited in 

their ability to account for the change in charges during the course of the simulation. A 
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theoretically-promising method to handle this effect is to use polarizable force fields such as 

AMOEBA [68] [69] , Drude [70] or a recently formulated multipole and induced dipole 

(MPID) model [71]. Any of these polarizable models should improve the pKa prediction 

results of our method, given high quality polarizable force field parameters for general drug-

like molecules are available.

5 Conclusion

This work reports our submission for the SAMPL6 pKa prediction challenge, where we have 

attempted to calculate pKa of small drug-like molecules in explicit solvent using a hybrid 

QM and MM approach. While including multiple solvation shells is difficult in pure ab initio 
(QM) methods, modeling the dissociation of a proton is difficult at the MM level using 

conventional force fields. The novel contribution of this work is devising a method to allow 

the calculation of ∆G in explicit solvent while limiting the cost of the calculations. This is 

important for a high throughput prediction where a large number of microstates need to be 

considered.

However, traditional limitations in molecular dynamics simulation approaches limits its 

competitiveness as compared to a machine learning approach or a full-quantum level 

implicit solvent approach. At the same time we committed a few avoidable mistakes in 

carrying out the simulations. Due to these results from the present version of our method did 

not do very well in the SAMPL6 pKa challenge. More work needs to be done to optimize 

and automate the protocols.

We are currently working on improving the method. We need to improve force field 

parameters for the small molecules, ensure proper sampling of the intermediate lambda 

points during free energy calculations and utilize a higher level of theory for the gas phase 

QM calculations. Our new version of the method is an open source tool where we can use 

test the method easily for each of these factors. It will allow the method to be used for not 

just pKa calculation of small molecules but for larger proteins of interest as well. The open 

source tool, currently in development, is available at https://github.com/samarjeet/hpka.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Molecules in the SAMPL6 prediction challenge.
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Fig. 2. 
Thermodynamic cycles used in the pKa calculations a) chemical reaction of acid 

dissociation. This relates the free energy of dissociation in the aqueous phhase as with the 

gas phase free energy of dissociation and solvation free energies of the acid, base and 

proton. b) Alchemical cycle for deprotonation. This cycle relates the solavtion free energy 

difference of the HA and A− with difference in free energy for deprotonation in the aqueous 

and gas phases.
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Fig. 3. 
Workflow for the hybrid QM and MM pKa prediction approach.
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Fig. 4. 
Plot of the closest analysis scheme and experimental pKa values. Plot courtesy of the 

organizers https://github.com/MobleyLab/SAMPL6/blob/master/physical_properties/pKa/

analysis/analysis_of_typeI_predictions/analysis_outputs_closest/pKaCorrelationPlots/

0wfzo.pdf
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Table 1

Statistics of the performance of the method using Hungarian and closest schemes.

Evaluation scheme RMSE MAE r2 m

Hungarian 2.89 1.88 0.48 0.99

Closest 2.42 1.61 0.53 1.08

RMSE : Root mean square error

MAE : Maximum absolute error

r2 : correlation coefficient of determination

m : slope of the linear regression line
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Table 2

Comparison of experimental and calculated values using the closest scheme.

Molecule Exp. value Calculated value

SM01 9.53 ± 0.01 10.5

SM02 5.03 ± 0.01 8.68

SM03 7.02 ± 0.01 8.81

SM04 6.02 ± 0.01 5.23

SM05 4.59 ± 0.01 1.31

SM06(1) 3.03 ± 0.04 4.84

SM06(2) 11.74 ± 0.01 10.96

SM07 6.08 ± 0.01 4.52

SM08 4.22 ± 0.01 5.85

SM09 5.37 ± 0.01 4.89

SM10 9.02 ± 0.01 8.83

SM11 3.89 ± 0.01 5.52

SM12 5.28 ± 0.01 5.78

SM13 5.77 ± 0.01 5.48

SM15(1) 4.7 ± 0.01 −4.16

SM15(2) 8.94 ± 0.01 12.46

SM16 5.37 ± 0.01 2.86

SM17 3.16 ± 0.01 1.22

SM19 9.56 ± 0.01 9.6

SM20 5.7 ± 0.03 5.03

SM21 4.1 ± 0.01 4.12

SM22(1) 2.4 ± 0.02 3.79

SM22(2) 7.43 ± 0.01 6.29

SM23 5.45 ± 0.01 4.78

SM24 2.6 ± 0.01 2.74
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