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Abstract

Objectives: Finding recent clinical studies that warrant changes in clinical practice (“high 

impact” clinical studies) in a timely manner is very challenging. We investigated a machine 

learning approach to find recent studies with high clinical impact to support clinical decision 

making and literature surveillance.

Methods: To identify recent studies, we developed our classification model using time-agnostic 

features that are available as soon as an article is indexed in PubMed®, such as journal impact 

factor, author count, and study sample size. Using a gold standard of 541 high impact treatment 

studies referenced in 11 disease management guidelines, we tested the following null hypotheses: 

1) the high impact classifier with time-agnostic features (HI-TA) performs equivalently to 

PubMed’s Best Match sort and a MeSH-based Naïve Bayes classifier; and 2) HI-TA performs 

equivalently to the high impact classifier with both time-agnostic and time-sensitive features (HI-

TS) enabled in a previous study. The primary outcome for both hypotheses was mean top 20 

precision.

Results: The differences in mean top 20 precision between HI-TA and three baselines (PubMed’s 

Best Match, a MeSH-based Naïve Bayes classifier, and HI-TS) were not statistically significant 

(12% vs. 3%, p=0.101; 12% vs. 11%, p=0.720; 12% vs. 25%, p=0.094, respectively). Recall of 

HI-TA was low (7%).

Conclusion: HI-TA had equivalent performance to state-of-the-art approaches that depend on 

time-sensitive features. With the advantage of relying only on time-agnostic features, the proposed 

approach can be used as an adjunct to help clinicians identify recent high impact clinical studies to 

Conflict of interest
None declared.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
J Biomed Inform. Author manuscript; available in PMC 2020 January 01.

Published in final edited form as:
J Biomed Inform. 2019 January ; 89: 1–10. doi:10.1016/j.jbi.2018.11.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



support clinical decision-making. However, low recall limits the use of HI-TA for literature 

surveillance.

Graphical Abstract

1. Introduction

Unmet clinical information needs at the point of care is an important challenge in medical 

practice [1,2]. Despite substantial advances in information retrieval technology and wide 

availability of online evidence-based resources, over half of the questions clinicians raise 

regarding scientific evidence for the care of specific patients are left unanswered [1,2]. 

These unanswered questions may compromise clinical decision making and patient care 

quality [3]. Multiple barriers exist that prevent clinicians from pursuing answers to their 

questions with evidence from the up-to-date primary literature, such as lack of time and 

doubt that a useful answer exists or can be easily found [2]. As the main resource providing 

access to the primary literature in health care, PubMed contains answers to most clinical 

questions [4], but its use at the point of care is still limited due to several challenges [5,6]. 

One of these challenges is finding reports of studies with a high clinical impact in a timely 

manner [7]. High impact clinical studies are not only scientifically sound studies but also 

provide evidence warranting changes in routine clinical practice. Identifying recent 

scientifically sound and high impact clinical studies is not only a key requirement for 

literature surveillance efforts [8] but also an essential step for clinicians to adopt evidence-

based practice. Literature surveillance is used to update evidence summaries, such as 

systematic reviews and clinical guidelines [9–11] and could be used to help translate clinical 

research evidence to routine clinical practice. Also, early prediction of article impact may 

help clinicians become aware of latest evidence that may warrant changes in clinical practice 

as soon as it is published, as opposed to having to wait years for relevant accurate predictors 

to become available.

Previous efforts have investigated methods focused on retrieving reports of scientifically 

sound studies [12–17]. However, little has been done to identify reports of high impact 

clinical studies. In a previous study, we developed classification models to automatically 

identify high impact clinical studies in PubMed using a combination of bibliometrics, social 
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media attention, and citation metadata features [18]. An important limitation of most 

previous approaches is the reliance on time-sensitive features that take from several months 

to years after the article publication to be available, such as citation counts and MeSH terms.

In the present study, we proposed a machine learning approach to identify high impact 

clinical studies right after they are included in PubMed. We build over our previous work 

using the same gold standard and leveraging several of the features that we previously 

investigated [18]. However, to classify recently published articles, we only used features that 

are static or do not change significantly over time, such as journal impact factor, author 

count, study sample size, funding, and the reputation of the authors’ institutions. We 

compared this time-agnostic classification model (HI-TA) with prevalent approaches and 

with our previous classifier that uses time-sensitive features (HI-TS).

2. Background

2.1 Previous related approaches

Previous approaches to retrieving scientifically sound studies fall into three main categories: 

i) search filters [12,13], ii) citation-based algorithms [14], and iii) supervised machine 
learning algorithms [15–17]. Search filters include the Clinical Query filters developed by 

Haynes et al., which are available in PubMed [12,13]. Clinical Queries are Boolean search 

strategies relying on keywords and MeSH terms that aim to retrieve scientifically sound 

studies. Filters are available for topics such as treatment, diagnosis, and prognosis; and can 

be tuned for recall or precision. Citation-based algorithms rely on citation counts and 

linkage. For example, Bernstam et al. investigated citation count and PageRank methods that 

rely on the linkage (i.e., citations) analysis between studies [14]. The citation count method 

only considers one-layer of citation relationships, whereas the PageRank method considers 

multiple layers. They found that citation-based algorithms outperformed Clinical Queries 

(precision = 6% versus 0.85%) on retrieving oncology studies included in the Society of 

Surgical Oncology’s Annotated Bibliography (SSOAB) [14]. Supervised machine learning 
algorithms include approaches by Aphinyanaphongs et al. and Kilicoglu et al. [15–17]. The 

former found that a support vector machine classifier with features such as MeSH terms, 

publication type, and text words outperformed Clinical Queries in retrieving etiology (recall 

= 0.76 versus 0.28) and treatment (recall = 0.80 versus 0.40) articles contained in the 

American College of Physicians (ACP) journal club [16]. In addition to the features 

employed by Aphinyanaphongs et al., Kilicoglu et al. investigated semantic features, such as 

Unified Medical Language System (UMLS) concepts, UMLS semantic relations, and 

semantic predications. The classifier with the highest F-measure in retrieving scientifically 

sound treatment studies from the Clinical Hedges database[19] obtained a precision and 

recall of 82.5% and 84.3% respectively [15].

Of the previous approaches above, both the Clinical Query filters and the machine learning 

studies were designed to retrieve scientifically sound studies regardless of clinical impact. 

On the other hand, the citation-based approach developed by Bernstam et al. can be used to 

identify high impact clinical studies since it is based on article popularity. In prior work, we 

investigated machine learning classifiers that combine features used in previous approaches 

to identify high impact treatment studies. Features included bibliometrics (i.e., journal 
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impact factor and article citation count), social media attention (Altmetric® score [20]), and 

PubMed metadata (MeSH terms and publication type). Using a gold standard of clinical 

studies providing evidence to support treatment recommendations in 11 clinical guidelines, 

our high impact classifier (HI-TS) outperformed Kilicoglu et al.’s Naïve Bayes classifier and 

PubMed’s relevance sort in terms of top 20 precision (mean = 34% vs. 11% vs. 4% 

respectively; both p = 0.009). The performance did not decrease significantly after removing 

proprietary features (i.e., citation count, Altmetric score) (mean top 20 precision = 34% vs. 

36%; p = 0.085) [18].

2.2 Time-sensitive features and their limitations

All previous approaches are susceptible to concept drift, a significant and prevalent problem 

that compromises the model performance due to changes in the model features and/or 

outcomes over time [21,22]. Concept drift can be addressed by specific techniques, such as 

periodically updating a prediction model with more recent data or using concept drift 
learning techniques [23]. However, concept drift is more difficult to address in situations 

where specific features do not become available for a certain period of time, such as citation 

counts and MeSH terms.

There are two types of concept drift: sudden and gradual [24]. Methods that depend on 

MeSH terms and publication type, such as Clinical Query filters [12,13], MeSH-based 

supervised machine learning algorithms[15–17], and our previous high impact classifier, 

[18] are susceptible to sudden concept drift, since MeSH terms and publication type are 

added to PubMed citations 23 to 177 days after the citation is added to PubMed [25]. Once 

MeSH terms and publication type are added to a citation, its classification output may 

suddenly change. On the other hand, citation-based algorithms [14] and our previous high 

impact classifier [18] are susceptible to gradual concept drift because of their dependency on 

features that change gradually over time such as citation count and journal impact factor. As 

an article initially classified as “negative” accrues citations, its classification may slowly 

move towards the “positive” threshold. Citation accrual rate peaks between two to six years 

after an article is published and then decreases [26]. Besides having to handle a non-linear 

citation growth pattern, approaches that rely on citation counts may have a substantial time 

lag until an article starts receiving its first set of citations allowing to compute an accurate 

citation growth rate. Journal impact factors are based on the number of citations received by 

the articles published in a particular journal and can be used as a feature for an article’s 

future citation count. Although impact factors also change over time, most changes are 

negligible (maximum of ±3.0 between 2013 and 2014 for a group of Journal Citation 

Reports (JCR) journals [27]) and classification models can use the impact factor at 

publication time as the classification input for a certain article.

3. Methods

To address the concept drift challenges described above, we investigated an approach (HI-

TA) to achieve the most accurate classification model using time-agnostic features that are 

stable and readily available at article publication time, including author, author affiliation, 

and references. We also used several features as surrogates for article citation counts, 
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including SJR (SCImago Journal Rank) indicator, SJR journal h-index, and citations per 

document for the past two years [28]. We developed our study approach in six steps (Figure 

1): 1) gold standard development; 2) training and testing datasets preparation; 3) feature 

extraction and preprocessing; 4) feature ranking and selection; 5) classification model 

development and testing; and 6) hypothesis testing.

3.1. Gold standard development

For positive cases, we used a gold standard developed in a previous study [18], which 

consists of 629 original clinical studies providing evidence that supports recommendations 

in 11 clinical guidelines on the treatment of cardiac, autoimmune and respiratory diseases. 

The study citations and PubMed IDs were extracted from the reference lists of each 

guideline. Clinical practice guidelines contain evidence-based recommendations for the 

clinical management of specific conditions. The studies that support clinical guideline 

recommendations are selected by an expert panel through a systematic literature search, 

relevance screening and quality appraisal process [29]. Therefore, articles cited in clinical 

guidelines can be considered the most important in a specific topic and thus are reasonable 

surrogates for high impact clinical studies. In this research, we focused on treatment studies 

because most of the questions clinicians raise at the point of care are about treatment [2].

3.2. Preparation of training and testing datasets

At the time of article publication, time-sensitive features are not available. However, the 

articles included in the dataset used in this study were published a few years ago, so time-

sensitive features, such as MeSH and publication type, are now available for these articles. 

Since the goal of our study is to find recently published high impact clinical articles, we had 

to create an experimental environment that reproduces the status of article features soon after 

their publication. The overall goal is to predict which articles will likely produce a high 

impact over time before any impact actually happens. The approach consisted of four-steps 

(Figure 2). First, to find potentially relevant citations for each disease covered in the 11 

guidelines, we used PubMed search strategies without time-sensitive terms (i.e., MeSH 

terms, publication type) that are not readily available once an article is added to PubMed. 

Each search strategy included three components: a set of keywords representing synonyms 

for the disease of interest, limited to the article title and abstract; a date filter, matching the 

time range of the systematic literature search that has been conducted as a part of each 

guideline development; and other filters, such as citations with an abstract and written in 

English [30]. Keywords were associated with PubMed’s [Title/Abstract] tag to suppress 

automatic MeSH term mapping, which is conducted by default in PubMed searches (see 

example in Box 1; other searches are available in the online supplement, Boxes s1-s10). This 

search strategy allowed us to stimulate article retrieval before MeSH terms are available. 

Second, we used the Medical Text Indexer (MTI) to automatically extract MeSH terms and 

publication types from the titles and abstracts of the retrieved citations. MTI is an automated 

indexing service for medical text provided by the National Library of Medicine (NLM) [31]. 

The precision and recall of MTI in 2014 was 60% and 56%, respectively [31]. Third, we 

selected from the articles retrieved in Step 1, only those with a publication type reflecting 

high quality scientific methods for clinical research (i.e., randomized controlled trials, 

systematic reviews) and those with a MeSH subheading related to treatment (i.e., 
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[therapeutic use] and [therapy] MeSH terms along with their hierarchical descendants) [32]. 

Last, citations in the dataset were marked as “positive” if included in the gold standard and 

negative otherwise. The resulting dataset consisted of 11 sub datasets with relevant citations 

for each of the diseases covered in the clinical guidelines.

3.3. Feature extraction and processing

We used a combination of features investigated in our previous study and a set of new 

features, including journal bibliometrics, PubMed metadata, and citation-based features. All 

the features are time-agnostic. Table 1 describes the features used in HI-TA, the steps to 

obtain each feature, and whether or not the feature is also used in HI-TS. These features 

were extracted from a variety of resources through a set of Java programs and stored in a 

local relational database.

3.4. Feature ranking and selection

For feature ranking and selection, we conducted the following steps: 1) Descriptive analysis 

to obtain mean, standard deviation, and frequency of missing values, which helps us 

understand the distributions of our data and features. 2) Univariate analyses to determine the 

relationship between each feature and the outcome variable (i.e., article impact). The Chi-

square test was used for categorical independent features and the Mann-Whitney U test was 

used for numerical features. We only kept the features that were significantly correlated with 

the outcome variable based on their 99% confidential interval. 3) Feature ranking using the 

Information Gain attribute evaluator with the Ranker search method in Weka [61]. We only 

kept the features that had an information gain score greater than zero. 4) Multicollinearity 

detection among features using variance inflation factors and a threshold of five [62]. In all 

these steps, we used the citations retrieved for atrial fibrillation (training dataset in 

classification model development) in the dataset whose number of citations was close to the 

average across diseases.

3.5. Classification model development and testing

We selected one disease for training (atrial fibrillation), one for validation (chronic 

obstructive pulmonary disease 2014), and the remainder for evaluation. The size and 

frequency of positive samples in the training and validation datasets were similar to the 

overall frequency across all datasets.

To identify an optimal classifier, we evaluated 12 classifiers with the above training and 

validation datasets: Bayesian Network, Decision Table, J48 (Decision Tree), K-Nearest 
Neighbor, Logistic Regression, Multilayer Perceptron (Neural Network), Naïve Bayes, 
Naïve Bayes Multinomial, Random Forest, Simple Logistic Regression, Stochastic Gradient 
Descent (SGD) and Support Vector Machine (SVM). We selected the optimal hyper-

parameters for each classifier following the same method as in our previous study (Table 2) 

[18]. Overall, we employed an iterative and empirical process to tune the hyperparameters. 

We started with wide ranges for numeric hyperparameters and several categories for 

categorical hyperparameters, progressively narrowing the search to focus on the most 

promising ranges and categories.
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Next, we bootstrapped with replacement the validation dataset into 20 datasets. Then we 

measured the top 20 precision for each classifier using optimal hyperparameter settings and 

averaged the results to choose the best classification model. If there was a tie between top 

classifiers, we used the following measurements in descending sequence to break the tie: top 

20 mean average precision, top 20 mean reciprocal rank [63], precision, recall, and F-

measure.

Using the best classification model, a curve was drawn based on the average over nine 

datasets for k levels of 10, 20, 50, 100, 200, 300 and 500.

3.6. Hypothesis testing

Hypothesis 1.HI-TA performs equivalently to Kilicoglu et al.’s high quality 
Naïve Bayes classifier and PubMed’s Best Match sort in terms of top 20 
precision.—We relied on the probability score of the Naïve Bayes classifier to rank the 

citations for Kilicoglu et al’s baseline. PubMed’s Best Match sort is a relevance-based 

algorithm that uses weighted term frequency and machine learning [64]. We relied on 

PubMed’s E-utilities service to obtain the ranked citations [65].

Hypothesis 2.HI-TA performs equivalently to HI-TS [18] in terms of top 20 
precision.—HI-TS assumes that all time-agnostic and time-sensitive features are available 

at classification time. We extracted features for HI-TS using the same approach as in our 

previous study. Next, we ran the same classification model that was prepared and employed 

in our previous study on the features that were extracted from the first step to get the 

probability for each citation.

3.6.1. Study outcomes—Top 20 precision was the primary outcome for all hypotheses. 

We chose this measure because busy clinicians may only have time to read through the first 

20 retrieved citations [66] and 20 is the default number of citations per page displayed in 

PubMed. We also measured top 20 mean reciprocal rank, top 20 mean average precision 

[63], precision, recall, and F-measure. Since top 20 precision, top 20 mean average 

precision, and top 20 mean reciprocal are outcomes that depend on a ranked output, we 

ranked the articles classified as positive according to the optimal classifier’s prediction 

score/probability for the positive class. For the PubMed baseline, we used PubMed Best 

Match’s ranked output.

3.6.2. Statistical analysis—We employed the Wilcoxon signed-rank test to assess the 

significance of the differences between HI-TA and each of the baselines. We used Stata IC 

15 for the statistical analyses.

4. Results

The subsections order in this section matches the order in method section except that we 

removed the gold standard development and feature extraction and processing steps. We re-

used the gold standard that was developed in our previous study [18]. The results of feature 
extraction and processing step is covered in Table 1.
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4.1. Retrieval and filtering of candidate citations

A total of 45,553 citations were retrieved with the PubMed search queries, publication type 

filter and treatment filter for the diseases represented in the 11 guidelines. Among these 

citations, 541 were high impact clinical studies (recall of 86.0% for the total 629 guideline 

citations and precision of 1.2% for this initial dataset) (Figure 2).

4.2. Feature ranking and selection

Feature ranking and selection is shown in Figure 3. Detailed results of each step are 

available in the online supplement, Table s1 - s4. Of the initial set of 21 features, 9 remained 

in the final set for classifier training (minimal feature set). We found that journal impact 
factor (SJR) was the top feature followed by core clinical journal, registration in 
ClinicalTrials.gov, number of authors, study sample size, number of institutions, number of 
clinically useful sentences, number of countries, and article page count (Table 3).

We compared the performance between the whole feature set and minimal feature set using 

multiple classifiers on the pre-allocated training dataset (atrial fibrillation). We found that 

the performances were equivalent. Therefore, we used the minimal feature set for developing 

the classification models, optimizing the related hyper-parameters, and testing our two 

hypotheses.

4.3. Classification model development and testing

J48 classifier with hyper parameters (reduced error pruning = false; confidence factor = 0.2) 

had the most accurate results compared with all other classifiers (Table 4) and its model was 

selected for hypothesis testing. Table 4 shows outcomes of the best performance for each 

classifier with optimized hyper-parameters. The results are the averaged numbers on twenty 

bootstrapped COPD2014 datasets.

Top k precision curve—The precision among the top 10 to top 50 citations ranged from 

18.9% to 7.6% and slowly reduced after the first 50 retrieved results (Figure 4).

4.4. Hypothesis testing

Hypothesis #1: HI-TA performs equivalently to Kilicoglu et al.’s high quality 
Naïve Bayes classifier and PubMed’s Best Match sort in terms of top 20 
precision.—Figure 5 shows the results. The differences between HI-TA and two baselines 

(Kilicoglu et al.’s classifier and PubMed’s Best Match) were not statistically significant 

(mean top 20 precision = 12% vs. 11% and 3% respectively; p = 0.720 and p = 0.101). 

Similar results were found for the secondary outcomes F-measure (mean = 7% vs. 9% and 

3% respectively; p = 0.767 and p = 0.441). HI-TA performed equivalently to Kilicoglu et 

al.’s classifier and outperformed PubMed’s Best Match sort in terms of top 20 mean average 

precision (mean = 5% vs. 5% and 1% respectively; p = 0.767 and p = 0.018) and top 20 

mean reciprocal rank (mean = 49% vs. 19% and 7% respectively; p = 0.096 and p = 0.018). 

HI-TA outperformed Kilicoglu et al.’s classifier and PubMed’s Best Match sort in terms of 

precision (mean = 30% vs. 5% and 2% respectively; p = 0.028 and p = 0.021) but performed 

opposite in terms of recall (mean = 7% vs. 56% and 82% respectively; both p = 0.008).
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Hypothesis #2: HI-TA performs equivalently to HI-TS in terms of top 20 
precision.—Figure 6 shows the results. There was no significant difference between the 

two classifiers in terms of mean top 20 precision (mean = 12% vs. 25%; p = 0.094), top 20 

mean average precision (mean = 5% vs. 9%; p = 0.473), top 20 mean reciprocal rank (mean 

= 0.49 vs. 0.26; p = 0.169), precision (mean = 30% vs. 18%; p = 0.441), and F-measure 

(mean = 7% vs. 15%; p = 0.066). HI-TA had significantly lower recall (mean = 7% vs. 30%; 

p = 0.008) than HI-TS.

5. Discussion

We investigated a machine learning approach using time-agnostic features to automatically 

identify recent high impact clinical studies in PubMed. We used a combination of features 

including citation metadata, bibliometrics, and sample size. To our knowledge, this is the 

first study that attempted to classify high impact clinical studies addressing the concept drift 

nature of this problem. We found that the top 20 precision of HI-TA was equivalent to 

Kilicoglu et al.’s high quality Naïve Bayes classifier (12% vs. 11%; p = 0.720), PubMed’s 

Best Match sort (12% vs. 3%; p = 0.101), and HI-TS (12% vs. 25%; p = 0.094). Compared 

with previous approaches [12–18], the main strengths of the proposed method are the use of 

time-agnostic features and the accessibility of key features such as journal impact factor and 

article authorship. The main weakness is a low recall (7%), which compromises the use of 

the classifier for literature surveillance. Our approach could be used as an adjunct to other 

approaches to help identify high impact studies for clinical decision support.

5.1. Time-agnostic classifier versus time-sensitive baselines

Experiment 1 failed to reject the null hypothesis that HI-TA had equivalent top 20 precision 

to Kilicoglu et al.’s high quality Naïve Bayes classifier and PubMed’s Best Match ranking. 

However, HI-TA outperformed PubMed’s Best Match ranking in terms of secondary 

measurements such as top 20 mean average precision (5% vs. 1%; p = 0.018) and top 20 

mean reciprocal rank (49% vs. 7%; p = 0.018). Since both baselines depend on time-

sensitive features, HI-TA presents an interesting alternative for retrieving recent articles from 

PubMed, with equal to better performance than the times-sensitive baselines.

5.2. Time-agnostic versus time-sensitive classifier

Experiment 2 failed to reject the null hypothesis that HI-TA performs equivalently to HITS 

[18] in terms of top 20 precision (12% vs. 25%; p = 0.094). Still, the absolute difference was 

relatively large and could be significant with a larger sample size. A couple of factors could 

have contributed to this finding. HI-TS relies on strong features such as citation counts and 

the Altmetric® score. The former may not be available until at least a year after publication 

and the latter is proprietary. Also, the search strategies used to retrieve relevant articles for 

HI-TS relies on MeSH terms and publication type, which typically take from 23 to 177 days 

to become available in PubMed citations. Automatic extraction of these features may 

improve classification accuracy.
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5.3. Top k precision curve

The top k precision curve of HI-TA demonstrated among the top 10, 20 and 50 retrieved 

citations, there were on average 2, 2.5 and 4 high impact clinical articles respectively. 

Therefore, busy clinicians looking for high impact clinical studies on the treatment of a 

certain condition would be able to find a couple of those articles within the first set of a 

default PubMed search results page, which includes 20 citations.

5.4. Potential biases of high impact classification

A number of biases can result from the use of a high impact classifier. First, clinicians could 

potentially suffer from an automation bias, i.e. overreliance on technology to make decisions 

[67]. For example, a high impact classifier could bias clinicians to only consider evidence 

pubished in high impact journals by reserachers with an established track record. This could 

also lead to confirmation bias, i.e. clinicians developing a narrow view of the evidence that 

tends to confirm their preexisting viewpoints or beliefs when interpreting new information 

[68]. Second, articles that are predicted to produce high impact may be more likely to 

actually succeed in producing impact because the algorithm prediction directs people to read 

those articles (i.e., a self-fulfilling prophecy). However, due to the fact that our time-agnostic 

model (HI-TA) does not use any citation features (Table 3), it will be less prone to citation 

bias, which is another advantage over the time-sensitive model (HI-TS).

5.5. Limitations

An important limitation was that the recall of HI-TA was very low (7%). This has important 

negative implications, especially for literature surveillance where recall is as critical as 

precision. Moreover, the relatively small gold standard precluded the use of methods such as 

deep learning. Future studies should investigate methods to help produce larger gold 

standards, such as obtaining access to databases that were used to maintain the citations used 

in systematic review databases (e.g., Cochrane Database of Systematic Reviews [69,70]) and 

clinical guidelines.

5.6. Future research

Other relevant features, such as scientific productivity or impact of the author team and other 

free text features, could be explored. The scientific productivity or impact of the author team 
can be operationalized as the author’s h-index. However, obtaining this feature for each 

author of every article is computationally expensive (i.e., time). Future studies should 

investigate approaches to obtain this feature, such as creating a repository of authors with 

pre-computed h-index. Free-text features such as sample size are available as soon as an 

article is included in PubMed. Future studies could investigate the utility of free-text features 

extracted through text mining techniques from the article title and abstract. In addition, a 

larger gold standard would enable researchers to investigate the effect of other advanced 

classification models such as deep learning [71] and graphical models such as conditional 

random fields and hidden Markov models [72–74]. Alternatively, transfer learning methods 

could be investigated as a part of a deep learning approach. In transfer learning, a model is 

pre-trained for a similar task in the same domain using larger datasets. The pre-trained 

model is then “transfered” as input to deep learning training, this time using a small dataset 
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that is the subject of the task of interest [75–77]. Since the pre-trained model captures the 

underlying relations in data, it helps reduce the required size of the dataset for understanding 

the new task.

6. Conclusion

We investigated a machine learning approach to identify high impact clinical studies 

addressing the concept drift challenge faced by previous approaches. We found that a 

classifier using time-agnostic features (e.g., JIF, authorship, study sample size) performed 

equivalently to state-of-the-art approaches that depend on time-sensitive features and 

therefore are susceptible to concept drift. Our classifier could be used as an adjunct to help 

clinicians identify recent high impact clinical studies in PubMed to support clinical decision 

making. However, due to low recall, the classifier is less useful for literature surveillance. 

Time-sensitive features such as citation count still play an important role in identifying high 

impact clinical studies in PubMed, but only in scenarios where identifying very recent 

citations is less important.
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Highlights

• High impact clinical studies provide evidence influencing clinicians’ patient 

care.

• We studied machine learning classifiers to identify high impact studies from 

PubMed.

• To minimize concept drift, we only used time-agnostic features.

• The classifier identified 2 to 3 high impact studies out of 20 ranked citations.

• Our approach performed equivalently to a baseline with time-sensitive 

features.
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Box 1: PubMed search strategy for retrieving relevant citations on the 
treatment of chronic obstructive pulmonary disease.
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Figure 1 –. 
Overview of the study method.
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Figure 2. 
Article retrieval process with descriptive statistics of intermediate and final datasets.
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Figure 3. 
Feature ranking and selection.
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Figure 4. 
Average precision of HI-TA at different levels of k citations.
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Figure 5. 
Comparison of HI-TA, PubMed’s Best Match sort and Kilicoglu et al.’s high quality Naïve 

Bayes classifier according to the average top 20 precision, top 20 mean average precision 

(MAP), top 20 mean reciprocal rank (MRR), precision, recall and F-measure (Experiment 

#1). The top p value corresponds to the statistical significance of the comparison between 

HI-TA and PubMed Best Match. The bottom p value corresponds to the statistical 

significance of the comparison between HI-TA and Kilicoglu et al.’s classifier.
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Figure 6. 
Comparison between HI-TA versus HI-TS according to the mean top 20 precision, top 20 

mean average precision (MAP), top 20 mean reciprocal rank (MRR), precision, recall and F-

measure (Experiment #2).
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Table 1.

Classification features used in HI-TA to identify high impact clinical articles on disease treatment.

Feature name Feature description Data Type Used in HI-TS

Number of clinically 
useful sentences

Clinicians prefer sentences that provide patient-specific, actionable 
recommendations for a particular intervention [33–37]. Clinical useful sentences 
in the citation title and abstract were identified using a sentence classifier 
developed in a previous study [38].

Numeric No

Journal impact factors Journal impact factors (JIF) are measures of the reputation and Numeric
impact of a journal. In general, they are calculated as the ratio between the 
number of citations received by articles published in the journal and the number 
of articles published in the journal during a certain period of time (e.g., two years) 
[39,40]. We retrieved the JIFs for each citation at the time of its publication. We 
obtained JIFs from the Scimago Journal & Country Rank® (SJR®), developed by 
Scimago Lab with the data source provided by Scopus® [28]. We obtained three 
different JIFs from SJR: 1) SJR (SCImago Journal Rank) indicator, which 
represents the ratio of the weighted citation counts to the documents published in 
the journal of interest for the past three years [41]; 2) journal h-index, which 
represents the number of articles in the journal that received more than h citations; 
and 3) citations per document for the past two years.

Numeric Yes

Study sample size Number of participants in the study. High impact clinical studies Numeric often 
have larger sample sizes [5]. The sample size was extracted using enhanced 
EasyCIE [42], a rule-based information extraction tool. This tool uses ConText 
algorithm [43] to identify the numbers within the context of sample size related 
description in abstracts. Then it applies predefined rules to solve the conflicts if 
there is any. For instance, if there are multiple numbers that are likely to be the 
sample size, it will choose the first one. We developed the rules base on 700 
training abstracts randomly sampled from PubMed and evaluated on another 100 
abstracts.
We measured the performance in two metrics: the F1- score and the average 
numeric difference rate (the average of the normalized difference between the 
extracted sample sizes and the true sample sizes). The F1-score of the test set is 
0.82, and the average numeric difference rate ((Z|Es-Ts|/Ts)/n, Es = extracted 
sample sizes, Ts = true sample size, n = number of abstracts) is 0.12. Analyses on 
the extracted sample sizes showed that a sample size of greater than 30000 or 
smaller than 10 are usually not the actual study sample size. We treated them as 
missing values of this feature.

Numeric Yes

Number of grants Research shows that publications sponsored by grants have higher impact than 
studies without grant support [44]. We obtained the number of grants supporting a 
study using the Scopus API [45].

Numeric No

Number of authors The number of authors is an independent predictor for the number of citations an 
article will receive [46]. We obtained this feature using the Scopus API [45].

Numeric No

Scientific impact of the 
authors’ institution

The overall scientific impact of the authors’ institution could be a surrogate for 
the impact of the authors’ work. We collected a snapshot of year 2017 for the 
following features both for the first author and the corresponding author: 1) total 
number of citations to publications from the first/corresponding author’s 
institution; 2) total number of authors from the first/corresponding author’s 
institution; 3) institution’s average citation count per author. In case an author had 
multiple affiliations, we used the institution with the highest reputation. We 
obtained all these features using the Scopus API [45].

Numeric No

Number of institutions 
and countries in a study

Multi-center studies are more likely to produce high impact. Collaboration helps 
better utilize resources and produces higher quality research [47]. In addition, 
collaborative studies receive more citations [47,48]. Multi-center studies may also 
have stronger design, such as larger sample sizes and more diverse subjects. We 
obtained the number of institutions and countries participating in a study using the 
Scopus API [45].

Numeric No

Number of bibliographic 
references

Research shows that article impact (based on citation count) is correlated with the 
number of bibliographic references included in the article [19,46,49,50]. We 
obtained this feature using the Scopus API [45].

Numeric No

Article page count and 
title word count

Research shows that article impact (based on citation count) is correlated with the 
article length [46] and title length [51,52]. We used the Scopus API [45] to obtain 
page count and a Java program to obtain the title word count.

Numeric No

Core clinical journal Represents whether the journal in which the study is published is part of a subset 
of core clinical journals. The list was obtained from the union of journals in the 
MEDLINE Core Clinical journals [53] and the McMaster Premium LiteratUre 

Categorical Yes
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Feature name Feature description Data Type Used in HI-TS

Service (Plus) journals [54]. Periodic evaluation and updates by experts ensure the 
quality of these lists [55–57].

Trial registration in 
ClinicalTrials.gov

Represents whether the study that produced the publication is registered in 
ClinicalTrials.gov. Registering a clinical trial in national registries, such as 
ClinicalTrials.gov, is required by funding agencies and by many of the core 
clinical journals. This feature was extracted from PubMed citation metadata using 
the eUtils API.

Categorical Yes

Publication in PubMed 
Central®

Represents whether the article is included in the PubMed Central database. 
Studies funded by the US National Institutes of Health (NIH) are included in 
PubMed Central. They tend to be more balanced than commercial funded studies, 
which is an indication of strong clinical impact [58–60]. This feature was 
extracted from PubMed citation metadata using the eUtils API.

Categorical Yes
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Table 2

- Classification algorithms and the parameters that were varied to identify optimal settings.

Algorithm Parameters varied to identify optimal settings

Bayesian Network Search algorithm and estimator algorithm

Decision Table Attribute selection method

J48 (decision tree) Pruning confidence threshold and reduced error pruning

K-Nearest Neighbor Number of nearest neighbors and neighbor weighting methods

Logistic Regression Default parameter setting in Weka

Multilayer Perceptron Learning rate

Naive Bayes Kernel density estimator

Naive Bayes Multinomial Default parameter setting in Weka

Random Forest Number of features, number of trees, and the maximum depth of the trees

Simple Logistic Default parameter setting in Weka

Stochastic Gradient Descent Loss function

Support Vector Machine Kernel type
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Table 3

- Information gain of the final 9 features selected for classifier training

Rank Feature Information gain

1 Journal Impact Factor (SJR) 0.01794

2 Core Clinical Journal 0.0095

3 Registration in ClinicalTrials.gov 0.00939

4 Number of Authors 0.00799

5 Study Sample Size 0.00423

6 Number of Institutions 0.0034

7 Number of Clinically Useful Sentences 0.0034

8 Number of Countries 0.00338

9 Article Page Count 0.0026
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Table 4.

Best performance of each classifier with optimized hyper-parameters.

Optimized hyper-parameters Top 20 Precision Top 20 
Mean 
Average 
Precision

Top 20 
Mean 
Reciprocal 
Rank

Precision Recall F1

Bayesian Network Default 0.18 0.05 0.34 0.12 0.09 0.1

Decision Table Default 0.02 0 0.02 0 0 0

J48 (decision tree) Reduced error pruning = 
false; Confidence factor =0.2;

0.24 0.11 0.46 0.39 0.09 0.14

K-NearestNeighbors KNN = 4; distance weighting = 
Weight by 1-distance;

0.16 0.05 0.3 0 0 0

Logistic Regression Default 0.18 0.05 0.24 0.13 0.02 0.03

Multilayer Perceptron Learning rate = 0.6 0.22 0.08 0.28 0 0 0

Naive Bayes Use kernel estimator = true 0.01 0 0.01 0.04 0.02 0.02

Naive Bayes Multinomial Default 0.06 0.03 0.39 0 0 0

Random Forest Max Depth = 11; Num of Trees 
= 41; Num of features = 4;

0.23 0.1 0.54 0.31 0.02 0.03

Simple Logistic Default 0.02 0 0.02 0 0 0

Stochastic Gradient Descent Loss function = Log loss 
(logistic regression)

0.19 0.05 0.14 0 0 0

Support Vector Machine Default 0.02 0 0.02 0 0 0
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