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Abstract

Anterograde cell surface transport of nascent G protein-coupled receptors (GPCRs) en route from 

the endoplasmic reticulum (ER) through the Golgi apparatus represents a crucial checkpoint to 

control the amount of the receptors at the functional destination and the strength of receptor 

activation-elicited cellular responses. However, as compared with extensively studied 

internalization and recycling processes, the molecular mechanisms of cell surface trafficking of 

GPCRs are relatively less defined. Here, we will review the current advances in understanding the 

ER-Golgi-cell surface transport of GPCRs and use angiotensin II type 1 receptor as a 

representative GPCR to discuss emerging roles of receptor-interacting proteins and specific motifs 

embedded within the receptors in controlling the forward traffic of GPCRs along the biosynthetic 

pathway.
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Anterograde transport of GPCRs

G protein-coupled receptors (GPCRs) constitute the largest and most structurally diverse 

superfamily of membrane signaling proteins and modulate a wide variety of physiological 

and pathological functions. The functions of GPCRs are mediated through coupling to 

heterotrimeric G proteins, arrestins and other signaling molecules which in turn activate 

downstream effectors, such as protein kinases, adenylyl cyclases, phospholipases and ion 

channels. One important factor that crucially regulates the precise function of the receptors 

is their intracellular trafficking, including anterograde cell surface transport, endocytosis, 

recycling, and lysosomal degradation, which control the number of the receptors at the cell 

surface, the functional destination for most GPCRs, which in turn dictates the magnitude of 
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receptor activation-elicited cellular responses at a given time. However, as compared with 

well-characterized internalization and recycling, the molecular mechanisms underlying the 

cell surface transport of nascent GPCRs are relatively less well understood.

Similar to many other plasma membrane proteins, the life of GPCRs begins at the 

endoplasmic reticulum (ER), where they are synthesized, folded and assembled. Correctly 

folded and properly assembled receptors are able to pass the ER quality-control system, 

move forward from the ER to the cell surface, en route pass through the ER-Golgi 

intermediate complex (ERGIC), Golgi cisternae, and trans-Golgi network (TGN), during 

which the receptors may undergo post-translational modifications to attain a fully mature 

status. Emerging evidence from the studies in recent years suggest that the cell surface 

transport of GPCRs is regulatable, mediated through multiple pathways, and in a cell type 

and receptor specific manner. The most significant progress towards the understanding of 

anterograde transport of GPCRs is the identification of a number of regulatory proteins 

(Table 1), which may function as chaperones, escort proteins, gatekeepers, transport 

machinery, sorting molecules or signaling proteins to regulate receptor correct folding, 

maturation, assembly, recruitment onto the transport vesicles, retention in and export from 

the ER and Golgi compartments, sorting from other plasma membrane proteins or other 

GPCRs, transportation along the microtubule network, and delivery to the plasma 

membrane. As demonstrated in different protein-protein interaction assays, many of these 

regulatory proteins are able to directly interact with the receptors they regulate and thus, by 

virtue of their ability to interact with selective GPCRs, some of these regulatory proteins 

may only regulate the cell surface transport of a specific GPCR, while others may influence 

the transport of a group of GPCRs. It is also of interest to note that the final impact of these 

regulatory proteins on the cell surface expression of the receptors could be beneficial or 

deleterious.

Another important progress achieved over the past years is that a number of specific motifs 

embedded within the receptors have been revealed to be required for the cell surface 

transport of GPCRs, such as the E(x)3LL motif in vasopressin receptor 2 (V2R)88, the F/

Y(x)3F(x)3F motif in dopamine D1 receptor (D1R)15 and neuropeptide Y receptor type 289, 

the FN(x)2LL(x)3L motif in vasopressin V1b/V3 receptor90, the F(x)6LL motif in α2B-

adrenergic receptor (AR), angiotensin II (Ang II) type 1 receptor (AT1R), α1B-AR, β2-AR 

and M1-muscarinic receptor (MR)91–93, the YS motif in α2A-AR and α2B-AR94 , the VxPx 

motif in rhodopsin4,5,82, the RRR and R(x)3R(x)4R motifs in α2B-AR23,83,95, di-acidic and 

di-basic motifs in AT1R, AT2R and GPR1584,96,97, and serine-rich motifs in melanocortin 5 

receptor98. These motifs may regulate receptor correct folding, function as independent 

export signals to dictate receptor exit from the ER or the Golgi or as retention motifs to 

prevent receptor export from intracellular compartments, or provide docking sites for 

regulatory proteins.

In addition, the constitutive dimerization (including homo- and hetero-dimerization) in the 

ER and post-translational modifications of GPCRs also regulate their cell surface transport. 

For example, γ-aminobutyric acid B1 receptor (GABABR1) has an ER retention motif at its 

C-terminus and thus, when expressed alone it is retained in the ER, unable to transport to the 

cell surface. When co-expressed with GABABR2, it forms hetero-dimers with GABABR2 
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which masks the ER retention signal, leading to the ER export and cell surface 

transport99,100. Glycosylation at Asn residues and palmitoylation at Cys residues are the 

most common post-translational modifications of GPCRs which have been well 

demonstrated to play an important role in the maturation and cell surface transport of some 

GPCRs101–105. AT1R possesses three Asn-linked glycosylation sites at positions 4, 176 and 

188 and glycosylation is absolutely required for its cell surface expression101,102. AT1R also 

has a Cys residue at position 355 in the distal C-terminal region which is in marked contrast 

to many other GPCRs containing Cys residues next to helix 8 which anchor the helix 8 to 

the plasma membrane. However, the effect of Cys355 on the cell surface transport of AT1R 

remains to be determined.

Next, we will use AT1R as a representative GPCR to discuss in more detail the function of 

specific motifs and regulatory proteins that may interact with these motifs in regulating 

AT1R transport to the cell surface. We will also discuss the relevance of transport 

mechanisms of AT1R to the anterograde trafficking of other GPCR members.

The role of the C-terminus in the trafficking and signaling of AT1R

Ang II is the major biologically active hormone produced by the renin-angiotensin system 

(RAS) and plays an important role in the maintenance of blood pressure and fluid 

homeostasis. The dysregulation of Ang II and the RAS directly contributes to a number of 

human diseases, such as hypertension, cardiac hypertrophy, congestive heart failure, stroke 

and diabetic nephropathy. The function of Ang II is mainly mediated through activating its 

cell surface receptors including AT1R and AT2R, both belong to the GPCR superfamily. 

There is only one AT1R subtype in human, whereas two AT1R subtypes, AT1aR and AT1bR 

which share 95% amino acid sequence identity, exist in rat and mouse106–108. As 

demonstrated in many studies, it is AT1R that mediates the most physiological actions of 

Ang II. Although AT2R has been suggested to counterbalance the actions of AT1R and 

genetic mutations of AT2R were associated with X-linked mental retardation109, the exact 

physiological functions of AT2R remain elusive.

AT1R couples to the Gq family G proteins and regulates a variety of signal transduction 

pathways, involving the activation of voltage-gated Ca2+ channels, phospholipases (PLC, 

PLD and PLA2), and mitogen-activated protein kinases (MAPK). In addition to G protein-

dependent signaling pathways, AT1R is also able to activate several G protein-independent 

signaling pathways, such as those mediated via β-arrestins, which were initially identified to 

mediate GPCR internalization from the plasma membrane to the endosomal compartment 

and function as negative regulators of GPCR- and G protein-mediated signaling. More 

interestingly, recent studies have revealed that some AT1R ligands can preferentially activate 

one pathway and are therefore referred to as biased agonists. For example, the peptides 

TRV120023, TRV120027 and TRV120067 are β-arrestin-biased AT1R agonists which have 

been demonstrated to have beneficial cardiovascular effects in animal studies110,111.

AT1R has three short intracellular loops and a relatively large C-terminus. The C-terminus 

of AT1R possesses an amphipathic 8th α-helix in the membrane-proximal region (Fig. 1) 

and is the most important intracellular domain in the regulation of receptor functions, 
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including G protein coupling, signaling, trafficking, phosphorylation and interaction with 

cytosolic proteins112–120 (Table 2). Based on the newly published high resolution crystal 

structures of truncated AT1R lacking the C-terminal forty residues after helix 8 in complex 

with an antagonist ZD7155121, the helix 8 of AT1R runs away from the membrane which is 

apparently different from other GPCRs in which the helix 8 is parallel to the membrane 

bilayer.

The crucial role of the C-termini in the ER export and cell surface transport has been known 

for a number of GPCRs, including AT1R15,90,91,135,136. The AT1R mutants lacking the C-

terminus were arrested in the ER as indicated by extensive co-localization with the ER 

markers, unable to transport to the cell surface. Further mutagenesis of the C-terminus 

revealed several motifs essential for AT1R exit from the ER and subsequent transport to the 

Golgi and the cell surface91,137 (Fig. 1). Interestingly, these motifs may mediate AT1R 

interaction with specific regulatory proteins involved in the cell surface transport of the 

receptor.

The C-terminal hydrophobic motifs and their interacting proteins in the cell 

surface transport of AT1R

The F(x)6LL motif and GABARAP

The F(x)6LL motif (where x can be any residue and L is leucine or isoleucine) is highly 

conserved in the membrane-proximal C-termini of the family A GPCRs91. For AT1R, F309 

and L316L317 in the C-terminus were identified to form an essential motif for the ER export 

and cell surface transport. Mutation of F309 and L316L317 individually or in combination 

abolished AT1R cell surface expression with intensive ER accumulation. Consistent with the 

loss of the ability to move to the cell surface, the mutated receptors were unable to initiate 

downstream signaling measured as the activation of the MAPK ERK1/2 in response to Ang 

II stimulation91.

In addition to AT1R, mutation of the F(x)6LL motif also markedly attenuated the ER export 

and cell surface transport of α2B-AR, β2-AR, α1B-AR and M1-MR91,92,138, implicating a 

general role of this motif in the anterograde traffic of family A GPCRs. Although the exact 

molecular mechanisms underlying the function of the F(x)6LL motif remain largely 

unknown, several studies suggest that it may modulate multiple events in the anterograde 

trafficking of GPCRs. Because the membrane-proximal C-termini of these GPCRs form 

structurally an α-helix, it has been postulated that these hydrophobic motifs are involved in 

the correct folding of GPCRs. It is also possible that the F and LL residues may regulate 

different aspects of receptor trafficking in which F is likely involved in folding of the 

receptor, possibly through interaction with other hydrophobic residues in neighboring 

domains92, whereas the LL sequence may function as an independent ER export signal, 

autonomously directing receptor export from the ER. Consistent with this possibility, the di-

hydrophobic motifs, such as FF, have been demonstrated to function as ER export 

motifs139–143. Recent studies have also demonstrated that this motif may mediate receptor 

interaction with Rab1, Rab8 and a γ-aminobutyric acid receptor-associated protein 
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(GABARAP)25,57,144, all of which have been shown to regulate the cell surface transport of 

GPCRs.

GABARAP was originally identified through its binding to one subunit of the pentameric 

ionotropic γ-aminobutyric acid type A receptor (GABAAR) to regulate the plasma 

membrane transport via the microtubule tracks and to affect both the clustering and kinetic 

properties of the receptor. GABARAP was then identified as a binding partner for the C-

terminus of AT1R in a yeast two-hybrid mouse brain library screening25. The interaction 

between GABARAP and AT1R was further confirmed by several protein-protein assays 

(GST fusion protein pull-down, co-immunoprecipitation and bioluminescence resonance 

energy transfer assays). Importantly, enhanced expression of GABARAP promoted AT1R 

cell surface expression whereas depletion of GABARAP by siRNA produced an opposing 

effect, indicating that GABARAP is involved in regulation of AT1R transport to the cell 

surface. The follow-up studies demonstrated that mutation of the F(x)6LL motif abolished 

the interaction of AT1R with GABARAP127, suggesting that GABARAP may bind to the 

F(x)6LL motif in the C-terminus of AT1R. However, it remains unknown if GABARAP is 

able to interact with other GPCRs which carry the F(x)6LL motif. Nevertheless, these data 

provide insights into the function of the F(x)6LL motif and the interacting protein 

GABARAP in regulating AT1R transport.

The caveolin-binding like motif YxFxxxxFxxY and the interacting proteins caveolin and 
DRiP78

Several studies suggest that the aromatic residues in the caveolin-binding-like motif 

YxFxxxxFxxY in the C-terminus are important for the optimal expression of AT1R at the 

plasma membrane9,10,137. Mutation of the YxFxxxxFxxY motif inhibited AT1R expression 

at the plasma membrane and the receptors were largely expressed in the perinuclear region. 

Caveolin-3 was shown to directly interact with AT1R through the caveolin scaffolding 

domain10. Most convincing data indicating that caveolin participated in the maturation of 

AT1R were generated from caveolin-1 knockout mice in which AT1R transport to the cell 

surface was significantly attenuated10. It was proposed that the interaction between AT1R 

and caveolin occurs likely during the export process between the ER and the Golgi and 

caveolin acts as a molecular chaperone to enhance AT1R transport to the cell surface.

Dopamine receptor-interacting protein 78 (DRiP78) is an ER membrane-associated 

chaperone protein belonging to the DnaJ/Hsp40 class. It was initially found as a dopamine 

D1 receptor (D1R)-associated protein by binding to the C-terminal FxxxFxxxF motif. 

Interestingly, either overexpression of DRiP78 or incubation with the C-terminal peptide to 

disrupt the interaction between DRiP78 and D1R induced the retention of D1R in the ER 

and slowed down receptor maturation, suggesting a strictly moderate level of endogenous 

DRiP78 available for association is important for efficient export of D1R from the ER15. In 

addition to D1R, the export trafficking of other GPCRs, including AT1R, was also regulated 

by DRiP789. In contrast to the inhibitory effect on D1 receptor, the expression of DRiP78 

enhanced the plasma membrane expression of AT1R. However, the cell surface expression 

of the AT1R mutant in which the motif YxFxxxxFxxY was mutated was not affected by 

DRiP78, suggesting a functional interaction between DRiP78 and AT1R9.
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The C-terminal charged motifs and their interacting proteins in the cell 

surface transport of AT1R

The di-basic motif KK and tubulin

There are four positively charged residues at positions 307, 308, 310 and 311 in the C-

terminal membrane-proximal region of AT1R (Fig. 1). This positive cluster was shown to be 

required for the high affinity binding of the receptor to the negatively charged lipids of the 

plasma membrane145–147, to contain a nuclear localization signal which mediates AT1R 

translocation into the nucleus148,149, and to influence the total synthesis of the receptor150.

In GST fusion protein pulldown assays to search for interacting proteins using the C-

terminus of α2B-AR as bait, tubulin was identified as an interacting protein of α2B-AR83. 

Further mutagenesis analysis of the C-terminus identified R437, R441 and R446 in the 

membrane-proximal region responsible for tubulin interaction. Subsequent studies revealed 

that tubulin also directly and strongly bound to AT1R (and α2A-AR, but not β2-AR)85 and 

the interaction domains were mapped to two consecutive Lys residues at positions 310 and 

311 in the C-terminal membrane-proximal region of AT1R and the acidic C-terminus of 

tubulin84, suggesting that the interaction of AT1R and α2B-AR with tubulin is ionic in 

nature. Importantly, mutation of these Lys residues significantly inhibited receptor transport 

to the cell surface and the receptor mutants were extensively arrested in the ER84. These data 

suggest that AT1R (as well as other GPCRs such as α2-ARs) may directly contact with the 

microtubule network to coordinate its own ER-to-cell surface traffic.

The di-acidic ExE motif and ER export

Protein export from the ER is a selective process that is exclusively mediated through 

COPII-coated transport vesicles. In order to be efficiently exported in COPII vesicles, cargo 

proteins, particularly transmembrane proteins, may specifically interact with the components 

of COPII vesicles via ER export motifs which are short, linear sequences presented in the C-

termini of cargo proteins. Of various ER export motifs identified, the di-acidic motifs have 

been found in the cytoplasmic C-termini of several membrane proteins, such as vesicular 

stomatitis virus glycoprotein (VSVG), cystic fibrosis transmembrane conductance regulator, 

and potassium channels to direct their export from the ER151–155.

The di-acidic ExD motif in the membrane-distal, nonstructural C-terminal portion of the rat 

AT2R and the ExE motif in the human AT2R were shown to play an obligatory role in 

receptor forward trafficking to the cell surface96. These motifs likely control receptor exit 

from the ER, as their mutants were accumulated in the ER. More interestingly, the export 

ability of each acidic residue in the di-acidic motifs cannot be fully substituted by other 

acidic residue, suggesting that distinct di-acidic motifs dictate optimal export trafficking of 

different AT2R. Moreover, the function of the di-acidic motifs in AT2R export is likely 

mediated through facilitating the recruitment of the cargo receptors onto the ER-derived 

COPII transport vesicles96.

Similar to AT2R, the cell surface expression of AT1R was attenuated by mutation of the 

motif ExE in the very end of the C-terminus (Fig. 1), indicating an important role of the di-
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acidic ExE motif in AT1R forward trafficking96. However, in contrast to AT1R and AT2R, 

the cell surface expression of β2-AR and α1B-AR was not altered by mutating the di-acidic 

motifs in their C-termini96. Therefore, the di-acidic motifs located in the membrane-distal C-

termini may represent the first linear motifs which selectively recruit the Ang II receptors 

onto the COPII vesicles to control their export from the ER. However, it remains to be 

determined if these di-acidic motifs are able to mediate receptor interaction with any 

components of COPII vesicles.

The C-terminal helix 8 and small GTPases in the cell surface transport and 

sorting of AT1R

The helix 8 and Rab43

Consisting of more than 70 members, Rab GTPases form the largest subfamily of Ras-

related small GTPases and are master regulators to coordinate almost every step of vesicle-

mediated membrane transport, including cargo selection, vesicle formation, sorting, motility, 

tethering and fusion with the appropriate membranes. Several Rabs, including Rab4, Rab5, 

Rab7 and Rab11 have been shown to interact with the same domain in the C-terminus of 

AT1R to regulate receptor phosphorylation, internalization, recycling and lysosomal 

transport (Table 2).

As an initial approach to investigate the role of Rab GTPases in the anterograde transport of 

GPCRs, we determined the role of Rab1 in the cell surface transport of several GPCRs. 

Rab1 is the best characterized and well understood Rab GTPase, which localizes in the ER 

and the Golgi and regulates anterograde transport specifically from the ER to the Golgi and 

between the Golgi compartments. We found that transient expression of dominant-negative 

Rab1 mutants and siRNA-mediated depletion of Rab1 significantly reduced the cell surface 

expression of AT1R in HEK293 cells50, cardiac myocytes53 and vascular smooth muscle 

cells54. Consistently, inhibiting Rab1 function attenuates Ang II-mediated signaling, 

cardiomyocyte hypertrophic responses and smooth muscle cell phenotypic 

regulation50,53–55. In contrast to Rab1, Rab6 was shown to regulate the retrograde trafficking 

from the late to early Golgi cisternae and from the Golgi to the ER. Despite Rab1 and Rab6 

control opposite transport in the early secretory pathway, the expression of Rab6 mutants 

also reduced the cell surface expression of AT1R58.

Rab43 was recently identified to control the cell surface transport of several GPCRs, 

including AT1R, but had no effect on the transport of non-GPCR transmembrane proteins 

epidermal growth factor receptor and VSVG66. Similar to Rab1, Rab43 is localized to the 

ER and Golgi, but its function is poorly studied. As expression of dominant negative Rab43 

mutants and siRNA-mediated depletion of Rab43 significantly arrested AT1R in the ER and 

reduced the acquisition of complex N-linked glycosylation of AT1R, Rab43 specifically 

controls AT1R transport from the ER to the Golgi. More interestingly, Rab43 was shown to 

directly interact with AT1R and the interaction domain was mapped to the C-terminal 8th α-

helix region. These data suggest that AT1R may physically associate with components of the 

transport machinery to control its transport to the cell surface en route from the ER.
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In addition to mediating GPCR forward transport, Rab43 may also play an important role in 

separating GPCRs from other plasma membrane proteins during maturation processing. 

Although GPCRs share a common structural topology and several proteins have been 

identified to control the sorting of GPCRs at the endosomal and lysosomal compartments 

after internalization156–165, how they are sorted from other plasma proteins at the ER level 

after their synthesis and then transported via specific routes are poorly understood. The 

Rab43-binding domain identified in the AT1R C-terminus was able to effectively convert the 

Rab43-independent transport of VSVG into Rab43-dependnet transport, specifically from 

the ER to the Golgi. These data provide strong evidence indicating that Rab43 controls not 

only ER-to-Golgi transport but also the ER sorting of AT1R and possibly other GPCR 

members by virtue of its ability to directly interact with the receptors.

ARF1/Sar1 family GTPases

Sar1 and six ARF GTPases belong to the same subfamily of Ras-like GTPases and are well 

characterized to play crucial roles in the formation and budding of different transport 

vesicles. In particular, Sar1 GTPase recruits the Sec23/24 and Sec13/31 complexes onto the 

ER membrane, leading to the formation of the COPII-coated vesicles. ARF1 is able to 

recruit different sets of coat proteins to form distinct transport vesicles that control protein 

transport at different intracellular organelles. In the early secretory pathway, ARF1 recruits a 

complex of cytosolic proteins, collectively known as coatomers, leading to the formation of 

COPI vesicles which mediate protein transport from the Golgi to the ER or from the ER-

Golgi intermediate complex (ERGIC) to the Golgi and intra-Golgi traffic. In the post-Golgi 

transport, ARF1 interacts with adaptor proteins and Golgi-localized, γ-adaptin ear domain 

homology, ADP ribosylation factor-binding proteins (GGAs), both of which recruit clathrin 

onto the TGN, forming the clathrin-coated vesicles that mediate post-Golgi transport 

between the TGN, the plasma membrane and the endosomal compartment.

The role of Sar1 GTPase in the cell surface transport of GPCRs has been determined by 

transient expression of a GTP-restricted Sar1 mutant (Sar1H79G)76,77, which functions as a 

dominant negative mutant to block the release of the COPII vesicles from the ER membrane. 

Expression of Sar1H79G significantly attenuated the cell surface expression of AT1R76 and 

the receptors were extensively co-localized with GM130, a cis-Golgi marker which has been 

demonstrated to translocate from the cis-Golgi to ER exit sites in the presence of Sar1H79G. 

These data suggest that AT1R is able to export from the ER to ER exit sites in the cells 

expressing Sar1H79G. It is interesting to note that expression of Sar1H79G blocked the cell 

surface transport of several other GPCRs, but differentially regulates ER export of different 

GPCRs76,77.

The role of ARF1 in the cell surface transport of GPCRs including AT1R has also been 

studied2. Although the expression of GDP- and GTP-bound ARF1 mutants markedly 

reduced the cell surface transport of AT1R, they arrested the receptors in distinct 

intracellular compartments. Whereas expression of the GDP-bound mutant ARF1T31N 

arrested AT1R in the ER, the GTP-bound mutant ARF1Q71L induced an accumulation of 

the receptors in the post-ER compartments2. These data indicate that expression of different 

ARF1 mutants blocks the export of the cargo receptors from different subcellular 
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compartments, consistent with multiple functions of ARF1 in the formation of different 

transport vesicles from distinct compartments. Altogether, the Ras-like small GTPases Rab1, 

Rab6, Rab43, Sar1 and ARF1 control the anterograde trafficking of AT1R, each may 

regulate the transport at distinct steps (e.g. recruitment onto COPII vesicles, ER export, ER-

Golgi transport or Golgi-plasma membrane transport) (Fig. 2).

Other AT1R-interacting proteins involved in the cell surface transport

The C-terminal interaction with CD74

CD74 is a type II transmembrane protein and acts as a chaperone for the trafficking of the 

major histocompatibility complex class II molecules. By using the yeast two-hybrid 

approach to screen a human kidney cDNA library, Szaszák et al. identified CD74 as an 

interacting protein for the AT1R C-terminus12. The interaction between AT1R and CD74 

was verified by co-immunoprecipitation and co-localization assays. The CD74-binding site 

was mapped to the C-terminal membrane proximal region of AT1R. Interestingly, CD74 

overexpression markedly reduced the cell surface expression of ATR and induced receptor 

accumulation in the ER and targeting to the proteasomal degradation pathway. These data 

suggest that, in contrast to other interacting proteins which promote the cell surface 

expression of AT1R, CD74 is likely a negative regulator of AT1R trafficking along the 

biosynthesis pathway.

AT1R interaction with chaperon proteins

In addition to DRiP78 as discussed above, several other chaperone proteins, including 

calnexin, Hsp70 and calreticulin, have also been shown to interact with AT1R and their 

interactions with the no-glycosylated AT1R mutant were stronger than with wild type 

AT1R166. Similarly, several ER-export deficient, misfolded GPCR mutants exhibited strong 

interactions with chaperone proteins167–169. These data suggest that ER chaperones may 

have a duel function in regulating GPCRs, not only promoting proper folding of the 

immature receptors but also preventing the export of terminally misfolded receptors from the 

ER to the Golgi.

AT1R interaction with RACK1

Receptor for activated C kinase 1 (RACK1) was identified to interact with the C-terminus 

and the first intracellular loop of the β isoform of thromboxane A2 receptor (TBβ) in yeast 

two-hybrid and GST fusion protein pulldown assays67. The fact that overexpression of 

RACK1 and its depletion by siRNA produced opposing effects on the cell surface expression 

of TBβ indicates an important role played by RACK1 in the cell surface traffic of TBβ. In 

addition to TBβ, the cell surface expression of CXCR4 and AT1R was also attenuated by 

siRNA-mediated knockdown of RACK1 and AT1R physically associated with AT1R as 

measured in coimmunoprecipitation assays67. As siRNA-mediated knockdown of RACK1 

arrested the receptors in the ER, RACK1 is most likely involved in the ER-to-Golgi 

transport.
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Concluding remarks

Over the past decade great progress has been made in elucidating molecular mechanisms 

underlying the anterograde transport of newly synthesized GPCRs en route from the ER 

through the Golgi body. It is increasingly apparent that, similar to the endocytic pathways, 

the cell surface transport of GPCRs is a complicate, highly coordinated process. In 

particular, multiple regulatory proteins have been identified to control receptor trafficking 

via direct interaction with the receptors at specific domains and these protein-protein 

interactions may lead to the formation of specialized transport machineries that drive the 

forward traffic of the receptors. However, the relationship between these interacting proteins 

and how they cooperate to ensure normal receptor export from the ER to the cell surface of 

GPCRs in general or AT1R in particular need further investigation. It is possible that 

multiple routes exist to mediate receptor cell surface transport, either from the ER to the 

Golgi or from the Golgi to the plasma membrane, and each route requires a group of distinct 

regulatory proteins. Since the abnormal plasma membrane expression, mistrafficking, and 

dysfunction of many GPCRs, including AT1R, are clearly implicated in the pathogenesis of 

a variety of human diseases, including neurological disorders, cardiovascular diseases, and 

cancer107, to further explore the regulatory mechanism of anterograde transport of GPCRs 

may provide an important foundation for developing new therapeutic means in treating 

human diseases involving abnormal trafficking and signaling of the receptors.
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Synopsis:

As compared with internalization and recycling, anterograde cell surface transport of 

nascent GPCRs en route from the endoplasmic reticulum through the Golgi apparatus 

remains poorly understood. Here, we will review the current understanding of the cell 

surface trafficking of the GPCR superfamily and use AT1R as an example to discuss 

emerging roles of receptor-interacting proteins and specific motifs.
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Fig. 1. Specific motifs identified in the C-terminus of AT1R involved in anterograde cell surface 
trafficking.
TM, transmembrane domain.

Zhang and Wu Page 21

Traffic. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Regulatory proteins involved in the ER-Golgi-plasma membrane (PM) transport of AT1R.
See text for detail.
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Table 1.

Some of the regulatory proteins involved in the anterograde cell surface transport of GPCRs

Regulatory proteins GPCRs References

14-3-3 CaSR 1

ARF1 α2B-AR, β2-AR, AT1R, CXCR4, M3-MR, PAR-2 2,3

ARF3 α2B-AR 2

ARF4 Rhodopsin 4,5

ARF5 α2B-AR 2

ARF6 α2B-AR, V1aR, V2R, M2-MR 2,6

ATIP1/ATBP50 AT2R 7,8

Caveolin AT1R 9,10

CD4 CCR5 11

CD74 AT1R 12

CLIC4 H3R 13

CNIH4 β2-AR, CCR5 14

DRiP78 D1R, M2-MR, AT1R, CCR5 9,15,16

Filamin-2 α2C-AR 17

Filamin A D2R 18

gC1q-R α1B-AR 19

GEC1 KOR, EP3R 20,21

GGAs α2B-AR 22,23

Golgin-160 β1-AR 24

GABARAP AT1R 25

Homer 1 mGluR1a, mGluR5 26,27

HSJ1b Rhodopsin 28

Kif5B 5-HT1AR 29

M10 VN2R 30

MRAP/MRAP2 MCR 31

Neurofilament-M D1R 32

NinaA Rhodopsin 33

ODR-4 ODR-10, U131, STR112, STR113, 34–36

P11 5-HT1BR 37

P23/P24A PAR-2, MOR, P2Y4R 38

PAPLA1 Rhodopsin 39

PI3K C2A DOR 40

Pontin α2C-AR 41

PRAF2 GABABR 42

Protachykinin DOR 43

Protein 4.1G A1AR, PTHR, mGluR1a 44–46

Protein 4.1N D2R, D3R 47
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Regulatory proteins GPCRs References

PTEN DOR 48

Rab1 α1A-AR, α1B-AR, β1-AR, β2-AR, AT1R, AT2R, hCaR 49–57

Rab2 α2B-AR 58

Rab6 β2-AR, AT1R, rhodopsin 58–60

Rab8 α2B-AR, β2-AR, rhodopsin 61–63

Rab26 α2A-AR, α2B-AR 64,65

Rab43 α1B-AR, α2A-AR, α2B-AR, α2C-AR, β2-AR, AT1R 66

RACK1 TPβ, AT1R, β2-AR 67

RAMPs CRLR, CaSR 68,69

RanBP2 Opsin 70

Rap1A α2C-AR 71

RGGTA β2-AR 72

RTPs/REEPs OR, T2R, α2C-AR 73–75

Sar1 α2B-AR, β2-AR, AT1R, hCaR, LPA1 76–78

Skb1Hs SSTR1 79

Syntenin-1 GPR37 80

Tamalin mGluR1a 81

Tctex-1 Rhodopsin 82

Tubulin α2A-AR, α2B-AR, AT 1R 83–85

Usp4 A2AR 86

Yif1B 5-HT1AR 29,87

Regulatory proteins: ARF, ADP-ribosylation factor; ATIP1/ATBP50, AT2R-interacting protein 1/AT2R binding protein of 50 kDa; CD74, antigens-
associated invariant chain; CLIC4, chloride intracellular channel protein 4; CNIH4, protein cornichon homolog 4; DRiP78, dopamine receptor-
interacting protein 78; gC1q-R, receptor for globular “Heads” of c1q; GEC1, glandular epithelial cell 1; GGAs, Golgi-localized, γ-adaptin ear 
domain homology, ADP ribosylation factor-binding proteins; ARF1-binding proteins; GABARAP, γ-aminobutyric acid receptor-associated protein; 
Kif5B, kinesin family 5B; MRAP, melanocortin 2 receptor accessory protein; PAPLA1, phosphatidic acid phospholipase A1; PI3K C2A, class II 
phosphoinositide 3-kinase α; PRAF2, prenylated Rab acceptor family 2; PTEN, phosphatase and tensin homolog; RACK1, receptor for activated 
C-kinase 1; RAMPs, receptor activity-modifying proteins;

RanBP2, Ran binding protein 2; RGGTA, Rab geranylgeranyltransferase α subunit; RTPs/REEPs, receptor transporting proteins/receptor 
expression enhancing proteins; Skb1Hs, human sequence of Shk1 kinase-binding protein; Usp4, ubiquitin specific protease 4, Yif1B, Yip1 
interacting factor homolog B.

GPCRs: A1AR, A1 adenosine receptor; A2AR, A2 adenosine receptor; AR, adrenergic receptor; AT1R, angiotensin II type 1 receptor; AT2R, 
angiotensin II type 2 receptor; CaSR, calcium-sensing receptor CCR5, C-C chemokine receptor 5; CRLR, calcitonin receptor-like receptor; 
CXCR4, C-X-C chemokine receptor 4; DOR, δ-opioid receptor; D1R, dopamine D1 receptor; D2R, dopamine D2 receptor; D3R, dopamine D3 
receptor; EP3R, prostaglandin EP3 receptor; GABABR, metabotropic γ-aminobutyric acid B receptor; H3R, histamine H3 receptor; hCaR, human 
calcium-sensing receptor; 5-HT1AR, 5-hydroxytryptamine receptor 1A; 5-HT1BR, 5-hydroxytryptamine receptor 1B; KOR, k-opioid receptor; 

LPA1, lysophosphatidic acid receptor 1; MCR, melanocortin receptor; mGluR, metabotropic glutamate receptor; MOR, μ-opioid receptor; MR, 
muscarinic receptor; OR, olfactory receptor; P2Y4R, pyrimidinergic receptor P2Y; PAR, protease-activated receptor; PTHR, parathyroid hormone 

receptor; SSTR, somatostatin receptor; STR, seven TM receptor; T2R, type 2 taste receptor; TPβ, thromboxane A2 receptor β isoform; V1aR, 
vasopressin 1a receptor; V2R, vasopressin 2 receptor; VN2R, vomeronasal 2 pheromone receptor.
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Table 2.

The interacting proteins of the C-terminus of AT1R

Interacting proteins Interaction sites Function References

β-Arrestin 332–338aa Internalization, signaling 122

ARAP1 319–359aa Recycling 123

ATRAP 339–359aa Internalization 124

Ca2+/CaM 307–320aa Desensitization 125

Caveolin YxFxxxxFxxY ER-Golgi transport 9,10

CD74 Membrane proximal region ER retention, degradation 12

DRiP78 YxFxxxxFxxY ER-Golgi transport 9

eNOS 306–325 aa Signaling 126

GABARAP
Membrane proximal region
F(x)6LL ER-Golgi transport 25,127

GASP 296–359aa Lysosomal sorting 128

GLP 319–359aa Signaling 129

G protein Membrane proximal region Signaling 118,130

Jak2 YIPP Signaling 114

PLCγ1 YIPP Signaling 131

Rab4 Last 10aa Recycling, phosphorylation 132

Rab5 Last 10aa Internalization 133

Rab7 Last 10aa Lysosome transport 132

Rab11 Last 10aa Recycling 132

Rab43 Helix 8 ER-Golgi transport, sorting 66

SHP-1 and 2 YIPP Signaling 134

Tubulin KK ER-Golgi transport 84

ARAP1, AT1R-associated protein 1; ATRAP, AT1R-associated protein; CaM, calmodulin; eNOS, endothelial nitric oxide synthase; GABARAP, γ-
aminobutyric acid receptor-associated protein; GASP, GPCR-associated sorting protein; GLP, GDP/GTP exchange-like protein; PLC, 
phospholipase C; SHP, Src homology domain 2-containing protein tyrosine phosphatase.

Traffic. Author manuscript; available in PMC 2020 February 01.


	Abstract
	Anterograde transport of GPCRs
	The role of the C-terminus in the trafficking and signaling of AT1R
	The C-terminal hydrophobic motifs and their interacting proteins in the cell surface transport of AT1R
	The F(x)6LL motif and GABARAP
	The caveolin-binding like motif YxFxxxxFxxY and the interacting proteins caveolin and DRiP78

	The C-terminal charged motifs and their interacting proteins in the cell surface transport of AT1R
	The di-basic motif KK and tubulin
	The di-acidic ExE motif and ER export

	The C-terminal helix 8 and small GTPases in the cell surface transport and sorting of AT1R
	The helix 8 and Rab43
	ARF1/Sar1 family GTPases

	Other AT1R-interacting proteins involved in the cell surface transport
	The C-terminal interaction with CD74
	AT1R interaction with chaperon proteins
	AT1R interaction with RACK1

	Concluding remarks
	References
	Fig. 1.
	Fig. 2.
	Table 1.
	Table 2.

