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Abstract

The inflammatory bowel diseases (IBD), which include Crohn’s disease (CD) and ulcerative 

colitis (UC), are multifactorial, chronic conditions of the gastrointestinal tract. While IBD has 

been associated with dramatic changes in the gut microbiota, changes in the gut metabolome -- the 

molecular interface between host and microbiota -- are less-well understood. To address this gap, 

we performed untargeted LC-MS metabolomic and shotgun metagenomic profiling of cross-

sectional stool samples from discovery (n=155) and validation (n=65) cohorts of CD, UC, and 

non-IBD control subjects. Metabolomic and metagenomic profiles were broadly correlated with 

fecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite 

features, we identified chemicals and chemical classes that were differentially abundant (DA) in 

IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols 

and tetrapyrroles. While >50% of DA metabolite features were uncharacterized, many could be 

assigned putative roles through metabolomic “guilt-by-association” (covariation with known 

metabolites). DA species and functions from the metagenomic profiles reflected adaptation to 

oxidative stress in the IBD gut, and were individually consistent with previous findings. 

Integrating these data, however, we identified 122 robust associations between DA species and 

well-characterized DA metabolites, indicating possible mechanistic relationships that are 

perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD 

status were highly accurate and, like the vast majority of individual trends, generalized well to the 

independent validation cohort. Our findings thus provide an improved understanding of 

perturbations of the microbiome-metabolome interface in IBD, including identification of many 

potential diagnostic and therapeutic targets.

Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the 

gastrointestinal tract that results from altered interactions between gut microbes and the 

intestinal immune system1, 2. There are two main IBD subtypes, ulcerative colitis (UC) and 

Crohn’s disease (CD), which localize in the large and small intestines, respectively, and are 

characterized by unique microbial signatures3. Previous studies have shown major shifts in 

the gut microbial composition of patients with IBD2, 4–8. Likewise, microbial composition 

can shape the environment in the colon as metabolites they produce can be involved in 

signaling, immune system modulation or have antibiotic activity9–11. It is less clear, 

however, how specific microbes and the small molecules they modulate may interact to 

cause, sustain, mitigate, or predict inflammatory conditions such as IBD.

Broadly, gut metabolite profiles are jointly derived from diet, modified human metabolites 

and microbially-derived compounds that shape the microbiota-host interactions9. For 

example, short chain fatty acids (SCFAs) such as butyrate, acetate and propionate are 

produced by gut bacteria when they break down dietary fiber. SCFAs can affect host cells by 

modulating histone deacetylase (HDAC) inhibitory activity, gene expression, cell 

proliferation, and immune response7, 12. In addition, butyrate can protect against colitis by 

regulating Treg cell production and enhancing antibacterial activity of macrophages13, 14. In 

stool from patients with IBD there is a decrease in butyrate, a SCFA that is important in 

modulating the immune system along with a decrease in butyrate-producing bacteria2, 15.
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Commensal microbes can also alter pools of available metabolites thereby modifying host-

generated signaling molecules. Untargeted serum metabolomics of germ-free versus 

conventional mice showed that a large number of serum metabolites arise due to commensal 

microbes16. For example, tryptophan metabolism is largely affected by the presence of gut 

bacteria, as microbial tryptophan decarboxylases (among other enzymes) convert tryptophan 

from the diet into tryptamine and other molecules. Microbially-derived tryptophan 

metabolites alter host physiology not only by decreasing the available tryptophan (which can 

in turn perturb serotonin production, and by extension, behavior17), but also by producing 

indole derivatives that activate the aryl hydrocarbon receptor18. There is a decrease in 

tryptophan metabolism genes in microbiome samples from patients with Crohn’s disease4. A 

mouse study recently found that animals lacking one of the IBD susceptibility genes, 

CARD9, had altered microbial metabolism of tryptophan and were more susceptible to 

colitis19.

Some previous studies have identified differences in fecal metabolites in IBD20–25. However, 

these studies have tended to rely on small cohorts or 16S rRNA amplicon-based profiles of 

the associated IBD microbiota (i.e. lacking shotgun metagenomic information). In a study of 

healthy individuals, untargeted fecal metabolomics correlated better with 16S-based 

microbiome composition than targeted metabolomics26. IBD-associated taxa were also 

highly correlated with metabotype in a study of inactive pediatric IBD. In the same study, 

healthy first-degree relatives displayed a similar microbiome and metabotype as relatives 

with inactive disease25. Both CD and UC gut microbiomes exhibit general decreases in 

taxonomic diversity relative to healthy gut microbiomes, along with Phylum-level decreases 

in Firmicutes and increases in Proteobacteria3, 25, 27. In CD specifically, proportions of the 

Clostridia family are altered: the Roseburia and Faecalibacterium genera of the 

Lachnospiracae and Ruminococcaceae families are decreased, whereas Ruminococcus 
gnavus increases5, 28, 29. Together, these findings suggest that yet-to-be characterized 

molecules in the gut metabolome, linked to inflammation and ultimately IBD, may be 

largely microbially derived or modified.

In this work, we took an unbiased approach to identify gut metabolites, microbial species, 

and microbial enzymes that were differentially abundant (DA) in IBD relative to non-IBD 

controls. To that end, we performed untargeted LC-MS metabolomic profiling and shotgun 

metagenomic sequencing of stool samples from a 153-member discovery cohort and a 65-

member validation cohort, each containing a cross-sectional sampling UC, CD, and control 

subjects. While metagenomic findings were largely in agreement with previous studies, 

metabolomic profiles revealed >2,700 DA metabolites in IBD, including 224 that were 

significantly elevated in both UC and CD. IBD-elevated metabolites were enriched for 

sphingolipids and bile acids (among other chemical classes), as well as many 

uncharacterized metabolites of potential microbial origin. Indeed, many DA metabolites 

participated in robust associations with DA microbial species and enzymes: suggestive of 

biological mechanisms relating their abundances. Finally, the vast majority of IBD 

associations from the discovery cohort replicated in the independent validation cohort, thus 

making our findings a useful resource for the study of microbiome and metabolic 

perturbations in IBD.
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Results

To characterize the gut metabolic profile and microbiome composition in IBD, we collected 

and analyzed stool samples from a cross-sectional cohort of individuals enrolled in PRISM 

(the Prospective Registry in IBD Study at MGH). This cohort included 155 subjects: 68 with 

Crohn’s disease (CD), 53 with ulcerative colitis (UC), and 34 non-IBD controls (Fig. 1A). 

Each stool sample was subjected to metagenomic sequencing followed by profiling of 

microbial community taxonomic composition and functional potential. In addition, each 

sample was analyzed by four liquid chromatography tandem mass spectrometry (LC-MS) 

methods measuring polar metabolites, lipids, free fatty acids, and bile acids, respectively. 

LC-MS metabolomic profiling was carried out using sensitive, high-resolution mass 

spectrometers in non-targeted modes, thus capturing large numbers of known and 

uncharacterized metabolites, including those of potential microbial origin.

3,829 metabolite features (43% of total) were assigned to putative molecular classes based 

on comparisons with HMDB30. 466 features (representing 346 unique compounds) were 

annotated as standards through comparison with reference data generated from an in-house 

compound library (see Supplementary Datasets 1 and 2). Shotgun metagenomic and 

metabolomic data were then analyzed 1) to identify IBD- and disease-subtype specific 

changes in subject microbial and metabolic profiles, 2) to describe associations between 

microbial and metabolite features, and 3) to assess the power of these features to classify 

IBD status and subtype across populations. Relationships discovered in the PRISM cohort 

were validated against an independent cohort of 20 CD patients, 23 UC patients and 22 

population controls from the Netherlands. These analyses are expanded below, with 

additional technical detail provided in Methods.

Broad metabolic shifts in IBD correlate with host inflammation

The major patterns of variation in the 155 Boston PRISM subjects’ measurements of >8K 

metabolite features largely separated non-IBD control versus CD subjects, indicative of 

broad metabolic differences between these two phenotypes (Fig. 1B). Such differences could 

result from a combination of sources, including the effects of disease activity in host tissues, 

the activity of an IBD-altered microbiome, and differences in subject diet and medication 

use. UC subjects’ metabolic profiles were more broadly distributed, with roughly half 

resembling non-IBD control subjects’, and the remainder more similar to CD subjects’ 

metabolomes (Supplementary Fig. 1). Similar patterns of variation among disease 

phenotypes were apparent in microbial taxonomic profiles from the subjects’ corresponding 

metagenomes (Fig. 1C; see also Supplementary Fig. 2 and Supplementary Dataset 4). 

Indeed, the first axes of ordination for the two datasets were well correlated (Spearman’s 

r=0.664, two-tailed p<10−20), consistent with strong coupling of gut metabolic profile, 

microbial community composition, and disease status.

We hypothesized that broad variation in metabolic profile across subjects, especially within 

the UC subjects, might be explained in part by subjects’ levels of active inflammation. We 

evaluated this by comparing the first axis of metabolic variation with subjects’ levels of fecal 

calprotectin (FC): a biomarker for severity of inflammation in IBD31. Across 93 subjects 

with FC measurements, the first axis of metabolic variation correlated in a reasonably strong 
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and highly statistically significant manner with FC (Spearman’s r=0.486, two-tailed p<10−6; 

Fig. 1D). This correlation was driven in part by the tendency of control subjects to have very 

low FC levels (mean=35 μg/g) and CD patients very high levels (mean=130 μg/g). However, 

the correlation remained strong and significant when evaluated on UC subjects only (n=25, 

r=0.565, two-tailed p=0.003). We observed a similar trend between FC measurements and 

the first axis of metagenomic variation (Fig. 1E), leading us to conclude 1) that our UC 

subjects vary from control-like levels of inflammation to more active inflammation, and 2) 

that this variation may contribute to UC subjects’ more heterogeneous metabolic and 

metagenomic profiles.

The first axes of metabolomic and taxonomic variation were also significantly associated 

with Shannon diversity (Supplementary Fig. 3). Consistent with previous findings, more 

inflamed, IBD-like samples (toward the right in Fig. 1C) tended to have markedly lower 

Shannon diversity (Spearman’s r=−0.572, two-tailed p<10−14, n=155). A similar, albeit 

weaker, trend was observed for metabolite profiles (r=−0.321, p<10−4, n=155), which 

exhibited less overall variation in within-sample diversity. Notably, these mutual 

associations with diversity were not sufficient to explain the strong coupling between the 

first axes of metabolomic and taxonomic variation, which remained significant after 

subtracting diversity effects using linear regression (residual correlation analysis, r=0.364, 

p<10−5, n=155; see Methods).

The 68 CD subjects in the PRISM (discovery) cohort were sub-classified according to 

disease localization: L1 (ileal, n=14), L2 (colonic, n=22), L3 (ileocolonic, n=29), L1+L4 

(ileal + upper GI, n=1), and unknown (n=2). Compared to the strong separations we 

observed between CD and non-IBD subjects in the metabolomic and metagenomic data, we 

observed little to no stratification by disease localization among CD subjects 

(Supplementary Fig. 4). More formally, overall diagnosis (CD/UC/non-IBD) explained 

statistically significant fractions of the distance variation among subjects’ metabolomic and 

metagenomic profiles (permutational analysis of variance, p<10−4; Methods), while disease 

localization did not have a significant effect among CD subjects (p=0.22 and p=0.35), 

possibly due to the established nature of IBD within the PRISM cohort. As a consequence of 

this finding, we treated CD as a single diagnosis in subsequent analyses.

Metabolite enrichments in IBD versus control phenotypes

To dissect metabolic changes in IBD at greater resolution, we applied a multivariable linear 

model to each metabolic feature to test association with IBD phenotype while controlling for 

other covariates (age and medication use; Methods and Supplementary Dataset 3). Nominal 

p-values for UC- and CD-specific effects were subjected to multiple hypothesis testing 

correction using the Benjamini-Hochberg32 method with a False Discovery Rate (FDR) 

threshold of 0.05. Despite this strict filtering procedure, 2,729 metabolite features (31%) 

were significantly differentially abundant (DA) in IBD, including 200 matched against 151 

unique standards. Out of all DA metabolites, the majority (1,931; 71%) were significantly 

depleted in IBD (CD or UC) relative to non-IBD controls; 224 (8%) were significantly 

elevated in both CD and UC; 505 (19%) were specifically elevated in CD; and only 69 (3%) 

were specifically elevated in UC (a possible consequence of UC subjects’ more 
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heterogeneous metabolic profiles). The large number of individually DA metabolites is 

consistent with the broad changes in metabolite profiles of IBD subjects described above in 

the context of overview ordination (see Fig. 1B).

We performed enrichment analysis (rank-based Wilcoxon tests; Methods) to identify broad 

classes of compounds that were significantly over- or under-abundant in IBD phenotypes 

(ranking metabolite features by their CD- and UC-specific effect sizes). We defined 

metabolite classes based on HMDB annotations and focused on the 97 metabolite classes 

with at least 10 putative members in our dataset. Across these classes, we searched for 

enrichments in IBD or non-IBD controls that were statistically significant after correction 

for multiple hypothesis testing (Benjamini-Hochberg FDR q<0.05). Eight of the 97 

molecular classes were significantly over-abundant in CD, with the strongest effects 

observed among sphingolipids, carboximidic acids, and bile acids (Fig. 2A). Seven of these 

classes were additionally significantly over-abundant in UC, while phenylacetamides were 

elevated, but not to a statistically significant degree (Fig. 2B). No molecular classes were 

specifically over-abundant in UC.

IBD-enriched bile acids included cholate (q=0.003) and chenodeoxycholate (q=0.0002; Fig. 

2C). In the healthy gut, these primary bile acids aid in digestion of lipids, and are 

deconjugated by microbes to secondary bile acids. We observed complementary depletions 

for the secondary bile acids lithocholate and deoxycholate in CD, but the changes did not 

meet our threshold for FDR significance (q=0.06 and 0.13 respectively). The relative over-

abundance of primary bile acids in IBD subjects’ guts is consistent with disruption of bile 

acid transformation activities in the IBD microbiome33. Sphingolipids, another of the 

overabundant classes in IBD, play multiple roles in the healthy gut, including 1) as structural 

components of intestinal cell membranes and 2) as signaling molecules involved in cell fate 

decisions34. In addition to their presence in the membranes of human cells, sphingolipids are 

prevalent in the membranes of Bacteroidetes, and these microbially-derived sphingolipids 

modulate the invariant natural T cell population35. Previous work suggests that sphingolipid 

metabolism may be disrupted in IBD, resulting in an accumulation of specific sphingolipid 

compounds that promote an inflammatory state36–38. Two of these compounds, ceramide 

and sphingomyelin (Fig. 2D), were significantly over-abundant in both CD and UC (q<0.02 

in all comparisons).

Many more molecular classes were significantly depleted in CD and UC relative to controls 

(see Fig. 2 A and B). Triterpenoids and long-chain fatty acids (LCFAs; including 2-

hydroxymyristic acid, Fig. 2E) were the most numerous depleted classes (total n=135 and 

111), while phenylbenzodioxanes and cholesterols (including cholestenone) were the most 

consistently depleted classes (the majority of their members were individually significantly 

depleted in CD). Phenylbenzodioxanes are primarily derived from fruits, which reinforces 

that some of the detected metabolic changes are a result of variation in subjects’ diets. 

Triacylglycerols (TAGs), including C54:6 TAG (Fig. 2F), were additionally enriched in 

controls relative to CD and UC subjects. This change, coupled with the above-mentioned 

enrichments for LCFAs and cholesterols, is consistent with previously suggested 

perturbations of fatty acid metabolism in IBD39.
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While their molecular classes were not generally differentially enriched in IBD, other 

notable DA metabolites included lactate (up in IBD; Fig. 2G) and pantothenate (down in 

IBD; Fig. 2H). Lactate has been previously reported as elevated in CD and UC patients40, 

and is notable for being produced by members of the IBD gut microbiome, including 

lactobacilli, enterococci, and pediococci. Pantothenate (vitamin B5) is a precursor for 

coenzyme A, which is notable here for being involved in fatty acid metabolism. Moreover, 

pantothenate is produced by the healthy gut microbiota, and so (like lactate) its differential 

abundance in IBD subjects may indicate a perturbation of microbe-metabolite relationships 

in the gut: a topic we explore in detail in a later section. While not statistically significant in 

this cohort, the SCFAs butyrate and propionate were decreased in both UC and CD relative 

to controls (Supplementary Dataset 3).

Modules of chemically-related compounds are perturbed in IBD

To further explore biological patterns underlying the 2,729 DA metabolites, we clustered the 

DA metabolites based on the similarity of their residuals from the above-described linear 

modeling approach. Metabolites co-clustered by this method will therefore tend to co-vary 

independently of their relationship with IBD phenotype, age, and medication use. A total of 

1,403 such clusters were identified with intra-cluster Spearman correlation of 0.7 (note that 

these unsupervised clusters, listed in Supplementary Dataset 1, are distinct from the HMBD-

defined molecular classes used above during enrichment analysis). Each cluster was 

assigned a representative metabolite: the cluster centroid, or the standard metabolite closest 

to the centroid (where applicable). The 50 largest clusters accounted for 780 DA features 

(29% of total): consistent with a smaller number of biological signals explaining many DA 

metabolites.

Clusters of co-varying metabolites can arise by a variety of mechanisms, including 1) 

chemical modification of a common parent metabolite, 2) metabolites interrelated by a 

biochemical pathway, 3) metabolites co-produced by a specific microbe, and 4) metabolites 

co-contributed from a specific dietary source. Biological signals suggested by metabolite co-

variation, especially those arising from inter-conversion of metabolites, can be used to 

transfer knowledge from annotated metabolites to their unannotated partners. This “guilt-by-

association” principle also arises in gene co-expression data, where it has been applied to 

identify modules of functionally related genes41 and predict gene function assignments42. 

Following this logic, we found that co-clustered metabolites were 2.7x more similar in 

retention time, 3.0x more similar in mass/charge ratio, and 15x more likely to belong to the 

same chemical class relative to random metabolite pairs (Methods). Clusters are thus 

enriched for similar physicochemical properties, and cluster co-membership may be 

predictive of such properties.

The largest metabolite cluster enriched in IBD (and second-largest overall) contained 39 

metabolite features, all of them enriched in CD (with one additionally enriched in UC; Fig. 

3A). This cluster contained 12 putative bile acids, including matches to cholate, 

chenodeoxycholate, and their structural variants. This cluster also contained 17 unlabeled 

metabolites, which may also be related to bile acid metabolism via guilt-by-association 

logic. The largest cluster contained 62 metabolite features: all of them elevated among 
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controls (Fig. 3B). 11 features in this cluster were annotated as putative tetrapyrroles, but the 

cluster contained no validated standard metabolites, thus making it a promising target for 

further characterization. The previously described control-like and CD-like subdivisions of 

the UC population were also readily apparent in these individual clusters.

Other clusters of interest included the 3rd-largest cluster (33 members), which was 

consistently elevated among non-IBD controls, and contained a variety of triacylglycerol 

metabolites (Supplementary Fig. 5). Cluster 13 (18 members) was uniquely elevated in CD 

subjects and enriched for organonitrogen compounds, including the standards linoleoyl 

ethanolamide, palmitoylethanolamide, and N-oleoylethanolamine (Supplementary Fig. 6). 

Clusters 23 and 25 were elevated in CD and UC subjects and contained a variety of long-

chain fatty acids, including the standards arachidonic acid, adrenic acid, docosapentaenoic 

acid, and eicosatrienoic acid (Supplementary Fig. 7). Notably, the 99 clusters (7%) 

containing standards were more the exception than the rule: most clusters remain largely 

uncharacterized, allowing the potential for many previously undescribed, IBD-associated 

metabolites of microbial origin.

Species-level changes in IBD microbiome community composition

As introduced above, taxonomic profiling of subjects’ gut microbiomes showed that the 

largest source of variation corresponded with separation of non-IBD control versus CD 

phenotypes, while UC subjects were more heterogeneous (see Fig. 1B). To further dissect 

this trend, we applied the linear modeling approach introduced above to the abundances of 

195 species-level clades (from 67 genera) that were present in at least five samples at 0.1% 

relative abundance (Supplementary Dataset 5). A total of 50 species were differentially 

abundant (DA) in one or more phenotypes, of which 35 were elevated in controls relative to 

IBD (Supplementary Fig. 2). Roseburia hominis, Dorea formicigenerans, and Ruminococcus 
obeum were among the species exhibiting the strongest enrichments in non-IBD controls. 

The fact that these and many other species were significantly depleted in IBD relative to 

controls is consistent with the general trend toward loss of species diversity in the IBD 

microbiome2, 3, 27 and with specific previous taxonomic enrichment studies4, 5, 43, 44. 

Unclassified Roseburia species were significantly elevated in both CD and UC subjects, 

while Bifidobacterium breve and Clostridium symbiosum were uniquely DA and enriched in 

UC. Twelve species were uniquely DA and enriched in CD, including Ruminococcus 
gnavus, Escherichia coli, and Clostridium clostridioforme. Many of these species-specific 

enrichments and depletions were in line with previous studies as cited here and discussed in 

the Introduction.

Putative mechanistic associations between IBD-linked microbes and metabolites

The multi’omic nature of this dataset enables identification of microbial features and 

metabolites that 1) are mutually differentially abundant in IBD and 2) which covary 

independently of their mutual covariation with disease. Such relationships are consistent 

with a mechanism relating the abundance of the species and metabolite which is then 

perturbed during IBD pathogenesis. For example, a positive association between a 

metabolite and species could indicate that the metabolite promotes the growth of that 

species, or that the species produces that metabolite. To identify such relationships, we 
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performed large-scale association discovery between differentially abundant (DA) 

metabolites and species, focusing on representative DA metabolites and species from the 

clustering approach described above (notably, most species clustered alone by this 

approach). More importantly, we performed association discovery on metabolite and species 

residual abundances from the above-described linear modeling approach, which will tend to 

de-emphasize associations driven purely by mutual association with disease status. This 

revealed a total of 15,679 FDR-significant (q<0.05) associations between representative DA 

metabolites and species. Among these was a positive association between lactic acid and 

Pediococcus acidilactici (Spearman’s r=0.23): one of the expected microbe-metabolite 

relationships alluded to above (see Fig. 2G). To further enrich for putatively mechanistic 

relationships that are perturbed in disease, we specifically focused on the subset of 

associations that were nominally significant (p<0.05) and in the same direction when 

considering raw metabolite and species abundances from non-IBD controls only (we refer to 

these associations as “confirmed in controls”).

This filtered dataset encompassed 2,279 associations between DA metabolites and species 

(Supplementary Fig. 8), including 122 associations involving standards and characterized 

species (Fig. 4A). Associations covered 901 metabolite clusters representing 1,878 DA 

metabolites. 46 of 50 DA species were represented in at least one association. However, of 

the large number of possible associations between these metabolites and species, only 6% 

were statistically significant and confirmed in controls. This implies that, although many 

metabolites are associated with one or more species, they tend not to associate 

mechanistically with most species (and vice versa). The largest group of associations were 

positive associations between metabolites and species that were both elevated in controls 

(1,398 associations; 61% of all significant associations). These associations were 

representative of a general pattern of “concordance” with disease, resulting (for example) 

when a species produces a protective metabolite. Discordant associations (e.g. negative 

associations between metabolites and species that both increased in disease) accounted for 

only ~2% of total associations. In these cases, while the species and metabolite may be 

mechanistically linked, the mechanism does not appear to directly aggravate IBD 

pathogenesis.

The CD-associated compounds eicosatrienoic (ETA) and docosapentaenoic (DPA) acid were 

involved in negative associations with control-associated species and positive associations 

with IBD-associated species. ETA and DPA are polyunsaturated long-chain fatty acids 

(PUFAs), and are examples of omega-3 and omega-6 fatty acids, respectively. ETA and DPA 

are important constituents of eukaryotic cell membranes, and their elevation in the IBD-

afflicted gut may be explained by higher rates of host cell death/turnover or reduced 

absorption from diet. In addition to roles in immune and inflammatory signaling, PUFAs 

possess bactericidal activity by virtue of their hydrophobic nature and potential to disrupt 

bacterial cell membranes45. This activity is particularly consistent with the negative 

correlations involving ETA (e.g. with Eubacterium ventriosum; Fig. 4B), several of which 

had a “mutually exclusive” character (i.e. when ETA was present, the corresponding species 

tended to be absent, and vice versa). Conversely, DPA associated positively with IBD-

associated species, most notably Ruminococcus gnavus (Fig. 4C). This suggests that DPA 
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encourages the growth of these species, possibly through disrupting the growth of health-

associated species.

Caprylic acid, also known as octanoic acid, is a medium-chain fatty acid (MCFA) with 

antibacterial and antiviral properties46. Caprylic acid was enriched in non-IBD controls in 

our dataset, consistent with previously observed patterns of MCFA depletion in IBD22. Like 

short-chain fatty acids (SCFAs), MCFAs may occur in the gut as a breakdown product from 

anaerobic fermentation of fiber, though dietary contributions are perhaps more abundant. 

Consistent with this idea, caprylic acid was (weakly) positively correlated with a number of 

health-associated gut anaerobes, including Alistipes shahii, A. putredinis, and A. finegoldii. 
On the other hand, caprylic acid was significantly negatively associated with the abundance 

of Ruminococcus gnavus. Such a negative relationship would be consistent with possible 

uptake and metabolism of caprylic acid by R. gnavus (in which case, as the species’ 

abundance increases, more caprylic acid is used up). Alternatively, and more consistent with 

its aforementioned antibacterial properties, caprylic acid may have an inhibitory effect on 

growth of R. gnavus.

To experimentally validate the potential for IBD-associated metabolites to exert growth 

effects on an IBD-associated species, we cultured R. gnavus in the presence of eight 

molecules with which it was observed to associate in the preceding analysis (see Methods). 

Among four predicted negative associations, caprylic acid did indeed inhibit the growth of 

R. gnavus at high concentrations, as hypothesized above (Supplementary Fig. 9). Among 

four predicted positive associations, taurine and docosapentaenoic acid were confirmed to 

enhance growth, while phytosphingosine exhibited a paradoxical inhibitory effect. Given the 

many factors that could impact the results of growth assays (e.g. strain specificity and 

molecular concentrations) and the potential for mechanisms of association beyond direct 

effects on growth (e.g. production as byproduct), these results provide promising initial 

support for the usefulness of our multi’omic association framework in focusing downstream 

experiments.

IBD-associated changes in microbial function and their metabolic associations

To understand the functional consequences of microbial community changes in IBD, we first 

functionally profiled gene families in all metagenomes using HUMAnN2, and then summed 

their abundances according to Enzyme Commission (EC) number annotations (see Methods 

and Supplementary Dataset 6). We applied the above-described linear modeling approach to 

this enzyme abundance data, revealing 568 enzymes that were differentially abundant (DA; 

FDR-corrected q<0.05) in CD, UC, or both (Supplementary Fig. 10 and Supplementary 

Dataset 7). However, examining species-level functional attribution data, it was clear that 

many of these DA enzymes could be explained by a single IBD-associated species 

dominating contributions of the enzyme to the community. More specifically, when defining 

“dominating” as “explaining >50% of enzyme copies in >50% of samples,” then E. coli 
alone dominated 220 DA enzymes, owing in part to that species’ strong enrichment in IBD 

and exceptionally thorough functional annotations. While some enzymes in this category 

may indeed have mechanistic connections to IBD, others may simply expand (or shrink) in 
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copy number alongside their source genomes (whose abundance is changing for reasons 

unrelated to encoding of that particular enzyme).

246 DA enzymes were not dominated by any single species, suggesting that their enrichment 

in controls (or IBD) was better explained by a community-level shift in functional potential, 

and therefore of greater mechanistic significance. For example, magnesium-importing 

ATPase (EC 3.6.3.2) was enriched in both CD and UC subjects relative to controls (Fig. 5A). 

Magnesium deficiency has been described as a known side-effect of IBD47: one which could 

be explained in part by sequestration of the ion by the IBD-associated microbiome. 

Ethanolamine ammonia-lyase (EC 4.3.1.7) was similarly enriched in the IBD gut (Fig. 5B). 

This enzyme is involved in the production of glycerophospholipids, one of the most 

significantly enriched classes of metabolite in CD and UC subjects (see Fig. 2A). A final 

example of an IBD-enriched enzyme was glutathione-disulfide reductase (“GR”; EC 1.8.1.7; 

Fig. 5C). GR catalyzes the production of glutathione: a compound involved in resistance to 

oxidative stresses. Oxidative stress is a hallmark of inflammation in the IBD-afflicted gut48, 

thus giving species encoding GR a selective advantage in that environment.

Additional examples of DA enzymes were reflective of transitions from a more obligate 

anaerobic to facultative anaerobic microbiome in IBD. For example, pyruvate synthase (EC 

1.2.7.1), an anaerobic enzyme that catalyzes pyruvate/acetyl-CoA interconversion, was 

enriched in controls and completely undetected in a subpopulation of CD patients (Fig. 5D). 

Enzymes involved in the synthesis of cobalamin (vitamin B12) were also enriched in 

controls, including precorrin-2 dehydrogenase (EC 1.3.1.76; Fig. 5E). While vitamin B12 (a 

tetrapyrrole-containing structure) is too large to be captured by the LC-MS methods used 

here, its derivatives and associated compounds may be among the putative tetrapyrroles that 

were enriched in the largest cluster of IBD-depleted metabolite features (see Fig. 3B).

To more formally evaluate potential mechanistic links between DA enzymes and 

metabolites, we repeated the clustering and association procedures described above in the 

context of metabolite-species associations. Metabolite-enzyme associations followed many 

of the same patterns observed for species and enzymes: association density was low (3%), 

suggesting that most metabolites associated with only a few enzymes (and vice-versa), and 

the vast majority of interactions (95%) were concordant with IBD pathogenesis 

(Supplementary Fig. 11). Several associations occurred between standard metabolites and 

the enzymes discussed above. For example, magnesium-importing ATPase was strongly 

negatively associated with 2-hydroxymyristic acid (a control-enriched compound; 

Spearman’s r=−0.492; Fig. 5F). Conversely, precorrin-2 dehydrogenase was positively 

associated with caproic acid (another control-enriched compound; r=0.507). While such 

relationships are consistent with compounds acting as enzyme substrates and products 

(respectively), this does not appear to be the case for these specific enzyme:compound pairs, 

suggesting that other factors likely mediate their associations (e.g. encoding by/interaction 

with subsets of IBD-associated species).

Most IBD trends replicate in an independent validation cohort

We evaluated the generality of the differentially abundant (DA) metabolite features and 

microbial species identified above in an independent cohort of 20 CD, 23 UC, and 22 non-
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IBD control subjects from the Netherlands (see Methods). Of 2,456 metabolite features that 

were DA in CD (up or down) in the PRISM cohort, 2,300 (94%) trended in the same 

direction in the Netherlands cohorts, of which 959 (39%) were also FDR-significant 

(Supplementary Fig. 12). Of 1,049 metabolite features that were DA in UC (most of which 

were also DA in CD), 865 (82%) trended in the same direction, of which 117 (11%) were 

FDR-significant. Similar patterns were observed for DA microbial species: 36 of 38 species 

that were DA in CD among Boston PRISM subjects trended in the sample direction among 

Netherlands subjects, with 13 achieving statistical significance. All 15 UC-significant 

species from the Boston PRISM subjects trended in the same direction among Netherlands 

subjects, with 3 achieved statistical significance. Hence, the majority of IBD-associated 

changes identified in the PRISM cohort generalized in sign to the Netherlands cohorts. 

Statistical significance was not as consistently replicated, which we can attribute in part to 

loss of power in the Netherlands cohorts from smaller sample size (total n=65 versus 155 for 

PRISM).

Multi’omic signatures differentiate IBD subtypes across cohorts

To evaluate if differences in metabolite or microbial composition could be used to classify 

subjects according to IBD phenotype, we trained random forest (RF) classifiers on subjects’ 

metabolic and microbial species profiles (separately and combined). Classification 

performance was evaluated within the PRISM cohort (using five-fold cross-validation) and 

between cohorts by training on the entire PRISM cohort and validating on the independent 

Netherlands cohort. In both of these approaches, classifiers are trained on one set of samples 

and then tested on another (non-overlapping) set, meaning that testing performance does not 

benefit from potential overfitting of classifiers to their training data.

All classifiers performed considerably better than random in the task of distinguishing IBD 

and non-IBD controls, with AUC values ranging from 0.86 to 0.92 (AUC values close to 1.0 

indicate that a classifier attained a high sensitivity at a very low false positive rate, while a 

value of 0.5 is expected at random; Fig. 6A and Supplementary Fig. 13). Cross-validation 

results (AUC 0.90–0.92) were only marginally better than independent validation results 

(AUC 0.86–0.89), indicating that the PRISM-trained classifier generalized well to the 

Netherlands cohort, which is consistent with the feature-level concordance described above. 

Classifiers trained on metabolite features versus microbial species performed similarly, 

despite the metabolite feature space being considerably larger (1,000s vs. 10s of features). 

The integration of metabolite and microbial species data did not produce a marked 

improvement in classification accuracy relative to metabolite features alone, which is 

consistent with a high degree of shared information between the gut’s microbial and 

metabolomic profiles.

Predicting IBD subtype (summarized simply as CD and UC) was comparatively more 

challenging. Within the PRISM cohort, metabolites, species, and their combination predicted 

UC, CD, or non-IBD control labels correctly 64–65% of the time: less successful than case/

control predictions, but still considerably greater than random (i.e. 33% correct; Fig. 5B). 

The most common source of classification error was labeling UC subjects as non-IBD or 

CD. This is not surprising, given that the distribution of UC subjects overlapped with the 
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(largely distinct) CD and non-IBD populations (see Fig. 1B). Comparatively, Non-IBD 

subjects were rarely classified into one of the two IBD subtypes, while CD subjects were 

sometimes erroneously classified as UC. More distinction among the input data types was 

observed when applying the PRISM-trained IBD subtype classifier to the Netherlands 

cohorts (Fig. 5C). While the metabolite-incorporating classifiers performed reasonably well 

(77% correct classification), the species-based classifier performed considerably worse (48% 

correct classification), largely due to marked misclassification of CD subjects as UC. This 

suggests that, although many IBD-varying species trended similarly in the Netherlands 

cohort, subtype-informative details of their abundance distributions (as learned from the 

PRISM cohort) were less conserved.

Discussion

This study represents one of the first efforts to discover and validate IBD-associated changes 

in the human gut metabolome and microbiome in an integrated multi’omic framework. 

Many of the individually differentially abundant species and metabolic classes identified and 

validated here (e.g. bile acids and sphingolipids) are in agreement with previous findings, 

while others (e.g. dicarboxylic acids) are, to the best of our knowledge, unique to this study. 

More generally, we observed that metabolites and metabolite classes were frequently 

depleted in IBD patients relative to non-IBD controls. This pattern is suggestive of a loss of 

“metabolic diversity” among IBD subjects that is analogous to the loss of taxonomic 

(ecological) diversity observed in the IBD microbiome. This diversity is likely to be 

inclusive of a large number of previously undescribed, microbially-derived metabolites that 

were unclassified or putatively classified in our comparisons with reference databases.

The ability of untargeted metabolomics approaches to quantify vast numbers of 

uncharacterized metabolites is both a strength and limitation relative to targeted 

approaches26. While uncharacterized metabolites no doubt encompass previously 

undescribed microbe- and disease-associated molecules of biological interest, they also 

include non-biological adducts and fragments of sample molecules, and are generally more 

challenging to interpret. We approached these challenges using a combination of methods: 

1) experimentally validating metabolites against a standard compound library (a precise but 

resource-intensive process), 2) approximate annotation of metabolites to broad chemical 

classes, and 3) clustering of metabolites according to residual covariation across samples. 

Covariation-based clusters were found to be enriched for metabolites of similar 

physicochemical properties: a form of “guilt-by-association” that complements existing 

network-based approaches49 to metabolite characterization. The covariation-based approach 

suggested potential roles for many unlabeled metabolites that clustered with known 

standards (as in Fig. 3A). On the other hand, the process also revealed clusters of wholly 

uncharacterized, IBD-associated metabolites (as in Fig. 3B). Such clusters may represent 

microbial metabolites with pro- or anti-inflammatory effects, and are prime candidates for 

additional experimental characterization.

Computational methods also provide a guide to downstream experimental validation and 

characterization of mechanisms relating the IBD microbiome and metabolome (including 

identification of microbiome-derived metabolites). By prioritizing associations between 
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microbial species and enzymes that associate with metabolites independently of disease 

status, we enrich for potential mechanistic associations that may become perturbed in IBD. 

Many details of these associations remain to be determined. For example, a positive 

association between a microbial taxon and metabolite could be explained by 1) the 

metabolite representing a preferred carbon source that promotes the species’ growth, 2) the 

metabolite occurring as a by-product of the species’ metabolism, or 3) the metabolite 

selectively inhibiting the growth of other species (or otherwise interacting ecologically). 

These options can be disentangled computationally by analysis of genome and metagenome 

annotations, when available, as well as experimentally by growing microbial species in the 

presence of their associated metabolites and/or profiling their metabolic output in 

monoculture. Naturally, further in vivo experiments (e.g. in mouse models of IBD) will be 

required to confirm that validated microbe-metabolite associations play a causal role in IBD 

pathogenesis. Such efforts are laborious, and hence the computationally derived subset of 

putative associations uncovered here will be a critical aid, as will further bioinformatic 

prioritization based on meta’omic profiling.

The vast majority of IBD-associated species and metabolites discovered in the PRISM 

cohort agreed in directionality with an independent validation cohort. Statistical significance 

was not as consistently replicated, in part due to power limitations of the smaller validation 

study (hence, further replication in a larger cohort could be warranted in the future). At the 

same time, integrating individual microbial and metabolomic signals was sufficient to build 

accurate classifiers for case/control status that generalized to new subjects. Surprisingly, 

combining signals of both types (microbes and metabolites) did not boost classification 

performance markedly. This result is suggestive of tight coupling of the IBD gut 

metabolome and microbiome, which may result from a combination of 1) both profiles 

changing in response to disease, 2) an altered microbiome perturbing the metabolome, or 3) 

an altered metabolome perturbing the microbiome (with potential feedback therein). 

Mechanisms underlying this coupling will be naturally expanded through experimental 

validation of targeted microbe-metabolite associations, as described above.

Predicting IBD subtype (UC vs. CD) proved challenging, though this result was not 

surprising in light of other findings from the study. While CD patients did not stratify 

strongly by disease localization (see Supplementary Fig. 4), CD patients as a whole 

separated well from non-IBD controls (see Fig. 1). The same could not be said for UC 

patients, which were dispersed into inflamed/CD-like and non-inflamed/control-like 

subpopulations, consistent with previous reports of high variability among UC 

microbiomes25. Many features that were individually differentially abundant in UC were 

also differentially abundant in CD, while the converse was not true. This is typical of the UC 

microbiome in general, and it suggests that IBD-linked perturbations may be divided into at 

least two modules: 1) perturbations that are associated with inflammation in general, and 2) 

perturbations that are specific to CD. The first module underlies the general association 

between multi’omic profiles and inflammation status (as measured here by fecal calprotectin 

level), and provides a basis for classifying case/control status. The second module can also 

aid in classifying case/control status, in that it is informative for CD subtype specifically. 

However, the absence of a strong UC-specific signal, coupled with heterogeneity among the 

UC subpopulation, hindered the predictability of UC status. That being said, a small number 
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of molecules, including ethyl 9-hexadecenoate (see Fig. 2F), were individually differentially 

abundant in UC, and make promising targets for further study.

A number of future directions are possible for expanding this work to improve our 

understanding of metagenomic and metabolomic perturbations in IBD. To better 

differentiate UC, for example, it is possible that the metabolomic methods employed here 

missed classes of molecules that specifically vary with UC status. Alternatively, the stool 

metabolome may be imperfect for capturing UC-specific signals. In such cases, profiles of 

serum metabolites might augment serum antibodies50 as diagnostic biomarkers for IBD/UC, 

while remaining less-invasive than biopsy but still associable with the microbiome. While 

this study employed cross-sectional sampling of a larger number of subjects, dense 

longitudinal sampling of a subset of individuals would further aid in the dissection of 

putative microbe-metabolite associations (by intrinsically controlling for within-specific 

properties), and would further illuminate whether the observed population substructure was 

stable over time, or correlated with changes in metabolomic or microbiome composition. 

This would, critically, also help disentangle causality—which metabolite shifts precede 

microbial or host phenotypes, and vice versa—as well as provide a potential predictive target 

for interception of disease activity. However, even without these additional studies, the 

multi’omic screens and associations uncovered here provide many actionable hypotheses 

regarding the role of specific known and yet-to-be characterized metabolites and their 

microbial partners in IBD pathogenesis. While many of these changes likely result from 

physiological changes on the host-side, the subset that can be confirmed to result from 

microbial activity will provide promising targets for microbiome-based IBD diagnostics and 

therapies.

Methods

We performed untargeted metabolomic and metagenomic profiling on two IBD cohorts 

containing subjects with Crohn’s disease (CD), ulcerative colitis (UC), and non-IBD 

controls. One cohort consisted of patients seen at the Massachusetts General Hospital 

(Boston, MA), and formed the basis of most analyses. A second (more heterogeneous) group 

of subjects from the Netherlands was used to validate findings. Microbial species, microbial 

enzymes, and >8K metabolites were tested for differential abundance (DA) in IBD. DA 

metabolites were clustered to identify groups of functionally related compounds that were 

similarly perturbed in IBD. DA metabolites and microbial features were compared via 

multi’omic correlation to identify putative mechanistic associations. Finally, all features 

were applied to build and validate multi’omic classifiers for IBD status and subtype.

PRISM cohort description and sample handling

The Prospective Registry in IBD Study at MGH (PRISM) is a referral center-based, 

prospective cohort of IBD patients. 161 adult patients (>18 y.o.) enrolled in PRISM and 

diagnosed with CD, UC, and non-IBD (control) conditions were selected for this study, with 

diagnoses based on standard endoscopic, radiographic, and histologic criteria. PRISM 

research protocols were reviewed and approved by the Partners Human Research Committee 

(#2004-P-001067), and all experiments adhered to the regulations of this review board. 
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PRISM subject stool samples were collected at the MGH gastroenterology clinic and stored 

at −80°C prior to DNA extraction.

Approval for human subjects research

Human subjects research in the discovery (PRISM) cohort was reviewed and approved by 

the Partners Human Research Committee (#2004-P-001067), and all experiments adhered to 

the regulations of this review board. Human subjects research in the validation cohorts 

(LLDeep and NLIBD) was approved by the University Medical Center Groningen review 

board (ref. M12.113965 and IRB number 2008.338, respectively). All study procedures were 

performed in compliance with all relevant ethical regulations for the validation cohorts. Each 

participant signed an informed consent form prior to participation for PRISM and both 

validation cohorts.

Validation cohort description and sample handling

The validation cohort consisted of 65 subjects enrolled in two distinct studies from the 

Netherlands. 22 control subjects were enrolled in the LifeLines-DEEP general population 

study51. 43 subjects with IBD were enrolled in a study at the Department of 

Gastroenterology and Hepatology at University Medical Center Groningen (UMCG). 

Subjects enrolled in both studies collected stool via the same protocol: a single stool sample 

was collected at home and then frozen within 15 min in a conventional freezer. A research 

nurse visited all participants at home to collect home-frozen stool samples, which were then 

transported and stored at −80°C. The stool samples were kept frozen prior to DNA 

extraction or metabolomic profiling as described below.

DNA extraction and metagenomic sequencing

Metagenomic data generation and processing were performed at the Broad Institute 

(Cambridge, MA, USA). Stool DNA extractions were carried out using the QIAamp DNA 

Stool Mini Kit (QIAGEN, Inc.). Whole genome shotgun (WGS) libraries were prepared by 

quantifying metagenomic DNA samples by Quant-iT PicoGreen dsDNA Assay (Life 

Technologies) and normalized to a concentration of 50 pg/μL. Illumina sequencing libraries 

were prepared from 100–250 pg of DNA using the Nextera XT DNA Library Preparation kit 

(Illumina) according to the manufacturer’s recommended protocol, with reaction volumes 

scaled accordingly. Batches of 24, 48, or 96 libraries were pooled by transferring equal 

volumes of each library using a Labcyte Echo 550 liquid handler. Insert sizes and 

concentrations for each pooled library were determined using an Agilent Bioanalyzer DNA 

1000 kit (Agilent Technologies). Metagenomic libraries were sequenced on the Illumina 

HiSeq 2500 platform, targeting ~2.5 Gb of sequence per sample with 101 bp, paired-end 

reads.

Read-level quality control and metagenomic profiling

Raw sequencing reads were quality-controlled using KneadData v0.5.1 (available via http://

huttenhower.sph.harvard.edu/kneaddata). Briefly, this involved trimming low-quality bases 

from the 3’ end of reads with Trimmomatic52 and then discarding trimmed reads <60 nt in 
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length. Host (human) reads were identified and removed by mapping against the human 

genome (hg19 build) with bowtie253.

Quality-filtered metagenomes were taxonomically profiled using MetaPhlAn2 v2.2.054 with 

default parameters. Only species-level relative abundance data were considered in this study. 

Species that failed to exceed 0.1% relative abundance in at least 5 samples were excluded. 

Functional profiling was performed using HUMAnN2 v0.9.4 in UniRef90 mode (available 

via http://huttenhower.sph.harvard.edu/humann2)55. HUMAnN2 initially maps 

metagenomic reads to the pangenomes of species identified during taxonomic profiling 

(using bowtie2). Coding sequences in these pangenomes have been pre-annotated to their 

respective UniRef90 families56. Reads that did not align to a pangenome are mapped to 

UniRef90 by translated search with DIAMOND57. Hits to UniRef90-annotated sequences 

are weighted by alignment quality, sequence length, and sequence coverage. Gene-level 

outputs are produced in reads per kilobase (RPK) units and stratified according to known/

unclassified community contributions. Per-sample gene abundances are sum-normalized to 

parts (copies) per million units. Gene abundances can be regrouped to other functional 

annotation systems based on annotations from UniProt58. For this study, gene abundances 

were regrouped (summed) according to Enzyme Commission (EC) number.

Metabolite profiling from stool samples

Subjects’ gut metabolomic profiles were measured from stool samples using a combination 

of four liquid chromatography tandem mass spectrometry (LC-MS) methods that measure 

complementary metabolite classes. These range from polar metabolites (e.g. organic acids), 

lipids (e.g. triglycerides), free fatty acids, and bile acids. In each method, the MS data were 

acquired using sensitive, high-resolution mass spectrometers (Q Exactive, Thermo 

Scientific) that enabled non-targeted measurement of 1) metabolites of known identity and 

2) heretofore unidentified metabolites (e.g. microbe-derived) in the same run.

Stool samples (weight range 50.5167.8 mg) were homogenized in 4 μL of water per 

milligram stool sample weight using a bead mill (TissueLyser II; Qiagen) and the aqueous 

homogenates were aliquoted for metabolite profiling analyses. Four separate liquid 

chromatography tandem mass spectrometry (LCMS) methods were used to measure polar 

metabolites and lipids in each sample. Methods 1, 2 and 3 below were conducted using two 

LCMS systems comprised of Nexera X2 UHPLC systems (Shimadzu Scientific Instruments; 
Marlborough, MA) and Q Exactive hybrid quadrupole orbitrap mass spectrometers (Thermo 

Fisher Scientific; Waltham, MA) and method 4 was conducted using a Nexera X2 UHPLC 

(Shimadzu Scientific Instruments; Marlborough, MA) coupled to an Exactive Plus orbitrap 

MS (Thermo Fisher Scientific; Waltham, MA).

Method 1: positive ion mode MS analyses of polar metabolites (feature prefix: 
HILIC-pos).—LCMS samples were prepared from stool homogenates (10 μL) via protein 

precipitation with the addition of nine volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/

formic acid containing stable isotopelabeled internal standards (valined8, Isotec; and 

phenylalanined8, Cambridge Isotope Laboratories; Andover, MA). The samples are 

centrifuged (10 min, 9,000 x g, 4°C), and the supernatants were injected directly onto a 150 
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× 2 mm Atlantis HILIC column (Waters; Milford, MA). The column was eluted 

isocratically at a flow rate of 250 μL/min with 5% mobile phase A (10 mM ammonium 

formate and 0.1% formic acid in water) for 1 minute followed by a linear gradient to 40% 

mobile phase B (acetonitrile with 0.1% formic acid) over 10 minutes. MS analyses were 

carried out using electrospray ionization in the positive ion mode using full scan analysis 

over m/z 70800 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS settings 

were: ion spray voltage, 3.5 kV; capillary temperature, 350°C; probe heater temperature, 

300 °C; sheath gas, 40; auxiliary gas, 15; and Slens RF level 40.

Method 2: negative ion mode MS analysis of polar metabolites (feature prefix: 
HILIC-neg).—LCMS samples were prepared from stool homogenates (30 μL) via protein 

precipitation with the addition of four volumes of 80% methanol containing inosine15N4, 

thymined4 and glycocholated4 internal standards (Cambridge Isotope Laboratories; 
Andover, MA). The samples were centrifuged (10 min, 9,000 x g, 4°C) and the supernatants 

were injected directly onto a 150 × 2.0 mm Luna NH2 column (Phenomenex; Torrance, 

CA). The column was eluted at a flow rate of 400 μL/min with initial conditions of 10% 

mobile phase A (20 mM ammonium acetate and 20 mM ammonium hydroxide in water) and 

90% mobile phase B (10 mM ammonium hydroxide in 75:25 v/v acetonitrile/methanol) 

followed by a 10 min linear gradient to 100% mobile phase A. MS analyses were carried out 

using electrospray ionization in the negative ion mode using full scan analysis over m/z 60‐

750 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS settings were: ion 

spray voltage, 3.0 kV; capillary temperature, 350°C; probe heater temperature, 325 °C; 
sheath gas, 55; auxiliary gas, 10; and Slens RF level 40.

Method 3: negative ion mode analysis of metabolites of intermediate polarity 
(e.g. bile acids and free fatty acids; feature prefix: C18-neg).—Stool homogenates 

(30 μL) were extracted using 90 μL of methanol containing PGE2d4 as an internal standard 

(Cayman Chemical Co.; Ann Arbor, MI) and centrifuged (10 min, 9,000 x g, 4°C). The 

supernatants (10 μL) were injected onto a 150 × 2 mm ACQUITY T3 column (Waters; 
Milford, MA). The column was eluted isocratically at a flow rate of 400 μL/min with 25% 

mobile phase A (0.1% formic acid in water) for 1 minute followed by a linear gradient to 

100% mobile phase B (acetonitrile with 0.1% formic acid) over 11 minutes. MS analyses 

were carried out using electrospray ionization in the negative ion mode using full scan 

analysis over m/z 200550 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS 

settings were: ion spray voltage, 3.5 kV; capillary temperature, 320°C; probe heater 

temperature, 300 °C; sheath gas, 45; auxiliary gas, 10; and Slens RF level 60.

Method 4: polar and nonpolar lipids (feature prefix: C8-pos).—Lipids were 

extracted from stool homogenates (10 μL) using 190 μL of isopropanol containing 1‐

dodecanoyl2tridecanoylsnglycero3phosphocholine as an internal standard (Avanti Polar 

Lipids; Alabaster, AL). After centrifugation (10 min, 9,000 x g, ambient temperature), 

supernatants (10 μL) were injected directly onto a 100 × 2.1 mm ACQUITY BEH C8 

column (1.7 μm; Waters; Milford, MA). The column was eluted at a flow rate of 450 

μL/min isocratically for 1 minute at 80% mobile phase A (95:5:0.1 vol/vol/vol 10 mM 

ammonium acetate/methanol/acetic acid), followed by a linear gradient to 80% mobilephase 
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B (99.9:0.1 vol/vol methanol/acetic acid) over 2 minutes, a linear gradient to 100% mobile 

phase B over 7 minutes, and then 3 minutes at 100% mobilephase B. MS analyses were 

carried out using electrospray ionization in the positive ion mode using full scan analysis 

over m/z 2001100 at 70,000 resolution and 3 Hz data acquisition rate. Additional MS 

settings were: ion spray voltage, 3.0 kV; capillary temperature, 300°C; probe heater 

temperature, 300 °C; sheath gas, 50; auxiliary gas, 15; and Slens RF level 60.

Post-processing.—We used Genedata Expressionist (program: “Refiner MS”; software 

version=“9.0”) to process raw LC-M data for chemical noise removal, to detect 

chromatographic peaks and isotope clusters, align retention times between samples, and 

assign putative metabolite identities via database look up. Detailed parameter settings are 

provided as Supplementary Dataset 8. Across samples, the combination of the four LC-MS 

methods generated 8,869 clustered features, characterized by chromatographic retention 

time and exact mass to <5 ppm accuracy. Note that these clustered features, referred to as 

“metabolites” or “metabolite features” elsewhere in the text, are presumed to represent a 

single molecular species. Broader clusters of metabolite features, presumed to represent 

families of related molecular species, were also constructed using the results of linear 

regression analysis (and are described later). Within each sample and LC-MS method, 

feature intensities were sum-normalized to parts per million (PPM) units.

A subset of 466 metabolites were identified more precisely using reference data generated 

from an in-house compound library. 3,829 metabolite features were linked to putative 

identifiers based on accurate m/z matching against the Human Metabolome Database 

(HMDB). Analyses of putatively matched features in the text focus on their molecular 

classes, rather than their identities. More specifically, we assigned HMDB subclasses to 

these features as a form of broad chemical classification. Subclasses assigned to >100 

features (e.g. “fatty acyls”) were further broken down according HMDB’s “direct parent” 

annotations.

Profile-level quality control

Prior to downstream analysis, metagenomic and metabolomic samples were subjected to 

profile-level quality control. First, we isolated the set of subjects with complete profiles of 

both types. All 65 Netherlands subjects passed this filter, while 6 of 161 PRISM subjects 

were missing one of the two profiles (e.g. due to a failed sequencing run), and were excluded 

from subsequent analysis. Next, for both profile types, we considered the median Bray-

Curtis distance of each PRISM sample to other samples in the PRISM cohort (the same 

distances form the basis of the ordinations in Fig. 1). If this distance was unusually large 

(defined as “above the upper inner fence of all values”), the sample was considered an 

outlier. All PRISM metagenomic and metabolomic profiles passed this filter. Repeating this 

procedure within-phenotype (CD, UC, Non-IBD control), we identified one potential control 

outlier among the PRISM metagenomic profiles, and a different control outlier plus one UC 

outlier among the PRISM metabolomic profiles. Because these profiles were representative 

of the human gut microbiome as a whole (if not their specific phenotype) they were retained 

for further analyses.
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Statistical analyses

We carried out ordination analyses (Fig. 1; Supplementary Fig. 3 and Supplementary Fig. 4) 

using classical multidimensional scaling (CMDS) on matrices of between-sample diversity 

scores (Bray-Curtis distance). We used the Shannon index to quantify within-sample 

diversity. Metabolomic diversity scores considered all measured metabolites (sum-

normalized first within method, and then within-sample), while taxonomic diversity scores 

focused on species-level relative abundances. To control for within-sample diversity when 

comparing ordination axes, we generated best-fit lines between axis values and dataset-

specific diversity measures, saved the resulting residual values, and then compared dataset-

specific residuals by Spearman correlation. Other comparisons involving between-sample 

diversity and sample metadata were made using permutational analysis of variance 

(PERMANOVA) as implemented in the adonis function from R’s vegan package (using 104 

permutations). Specifically, we computed the influence of diagnosis (CD/UC/non-IBD) 

across all subjects’ metabolomic and metagenomic distances, and the influence of disease 

localization across CD subjects’ metabolomic and metagenomic profiles. These analyses did 

not consider additional covariates.

We used linear models implemented in Python’s statsmodels package to identify microbial 

species, enzymes, and metabolite features that were differentially abundant in IBD (http://

www.statsmodels.org). Each data type was analyzed separately in each cohort. Relative 

abundance values were log-transformed to variance-stabilize the data. Zero values were 

additively smoothed by half the smallest non-zero measurement on a per-sample basis. For 

both cohorts, we modeled the transformed abundance of each feature as a function of IBD 

phenotype (modeled as a categorical variable with “non-IBD control” as the reference state), 

with age as a continuous covariate in both cohorts, and four medications (antibiotics, 

immunosuppressants, mesalamine, and steroids) as binary covariates in the PRISM cohort. 

Effect sizes take the form of model t-statistics (CD vs. non-IBD control and UC vs. non-IBD 

control) with associated two-tailed p-values. Nominal p-values were adjusted for multiple 

hypothesis testing with a target False Discovery Rate (FDR)59 of 0.05. A feature 

(metabolite, species, or enzyme) was considered “Differentially Abundant (DA)” in IBD if it 

passed this filter in either the CD- or UC-centered comparisons. Residual abundance values 

from the linear models were retained for use in subsequent analyses.

We identified molecular classes (as defined above) that were significantly enriched or 

depleted in IBD using rank-based enrichment analysis. Specifically, each metabolite was 

ranked according to its above-described t-statistics for CD- or UC-focused comparisons. For 

each class of molecule, we then evaluated if its members were enriched at the top or bottom 

of the list by performing a Wilcoxon rank-sum comparison of t-values in the class versus 

those outside the class. Only classes with at least 10 putative members were evaluated. 

Enrichment p-values were corrected for multiple hypothesis testing as described above.

Unsupervised clustering

We performed clustering of DA features using a custom approach. Features were clustered 

on their residual abundance values from the above-described linear modeling approach. This 

procedure enriches for covariation between features that is independent of mutual 
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covariation with disease status (or other subject metadata, such as age or medication use). 

Features were ranked according to the significance of their association with IBD (the smaller 

of the two p-values from the CD- and UC-centered comparisons). The highest-ranked 

feature was seeded into an initial cluster. Each subsequent feature was then compared to 

each extant cluster: if the feature had a mean similarity to the cluster’s members exceeding a 

threshold, the feature was added to that cluster. (For all clustering analyses, we applied 

Spearman correlation as a similarity measure with a threshold of r=0.7.) If the feature was 

not added to a cluster in this way, it was used to seed a new cluster. After considering all 

features, clusters were renumbered according to their size (such that cluster 1 had the most 

members, etc.). Each cluster was characterized by a representative member. For metabolite 

clusters containing standards, this representative was the standard closest to the cluster 

centroid; the true centroid was used for clusters without standards. Similarly, characterized 

(vs. “unclassified”) species-level taxonomic features were preferred as representative 

features in microbial species clusters.

To evaluate “guilt-by-association” principles across the metabolite clusters, we compared 

pairs of metabolites present in the same cluster to all pairs of metabolites present in clusters 

with two or more members (i.e. ignoring singleton clusters). To compare retention times, we 

evaluated the median difference in retention time for co-clustered vs. all metabolite pairs 

(1.4 vs 3.8 min, a 2.7-fold reduction). The same procedure was used to compare mass/charge 

ratios (59 vs. 174 amu, a 3.0-fold reduction). To compare chemical class, we restricted the 

analysis to annotated metabolites present in clusters with at least two annotated members. 

18.8% of co-clustered metabolites were annotated to the same class, compared with 1.2% of 

all metabolites: a 15-fold enrichment for similarity.

Random forest classification

We performed Random Forest (RF) classification using the implementation of this method 

in Python’s scikit-learn package (http://scikit-learn.org/). We considered separate RF 

classifiers for predicting 1) IBD/control status and 2) CD/UC/control status. We trained RF 

classifiers on the PRISM cohort using 1) five-fold cross-validation and 2) treating the entire 

cohort as a training set for independent validation against the Netherlands cohort. In each 

case, subject labels were randomly balanced prior to training and 100 trees were considered 

(other scikit-learn defaults were left unchanged). Features were not filtered in any way prior 

to RF training (i.e. the classifier could sample from any of the measured metabolites and/or 

species). Feature importance scores were retained for downstream analysis.

Growth effects of metabolites on Ruminococcus gnavus

We grew R. gnavus ATCC 29149 in BHI medium (37 g/L) containing: 5% sterile-filtered 

fetal bovine serum (Sigma-Aldrich), 1% vitamin K1-hemin solution (BD Biosciene), 1% 

trace mineral supplement (ATCC), 1% vitamin supplement (ATCC), 1 g/L D-(+)-cellobiose 

(Sigma-Aldrich), 1 g/L D-(+)-maltose (Sigma-Aldrich), 1 g/L D-(+)-fructose (Sigma-

Aldrich) and 0.5 g/L L-cysteine (Sigma-Aldrich). Growth occurred under anaerobic 

conditions (atmosphere 5% H2, 20% CO2, 75% N2) in a soft-sided vinyl chamber (Coy 

Laboratory Products, Michigan, USA). We sterilized the media using a Corning filter unit 

(0.22 μm pore diameter). All metabolite standards (Sigma-Aldrich) were brought to 100 mM 
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in DMSO (Sigma-Aldrich, D2438) prior to dilution for dose assays. Overnight bacterial 

cultures were diluted 100-fold in appropriate media and 40 μL were dispensed per well in 

384-well plates (low evaporation lid, Costar 3680) containing metabolites or DMSO control. 

The plates were shaken to ensure homogeneity and bacterial growth was monitored 

anaerobically (absorbance at 600 nm) in a microplate reader (PowerWave HT Microplate 

Spectrophotometer, BioTek) for 24 hours at 37°C without shaking. Values recorded for 

DMSO controls and metabolite-treated triplicates were averaged.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors are grateful to the members of the PRISM, LLDeep, and NLIBD cohorts for participating in the study 
and providing sample material. We thank Tiffany Poon for project management and coordination of data generation, 
Theresa Reimels for editorial assistance and Ashley Garner for providing helpful feedback on the manuscript. The 
Dutch research team was funded by: IN-CONTROL CVON (CVON2012–03 to AZ and JF); the MLDS Dutch 
Digestive Foundation (D16–14 to RKW and AZ); the Netherlands Organization for Scientific Research (NWO-
VIDI 864.13.013 to JF, NWO-VIDI 016.Vidi.178.056 to AZ, NWOOW-VIDI 016.136.308 to RKW); a Spinoza 
Prize (SPI 92–266 to CW); and the European Research Council (ERC-Starting #715772 to AZ and ERC-Advanced 
2012–322698 to CW). The Boston Research team was funded by: the National Science Foundation (NSF CAREER 
DBI-1053486 and NSF EAGER MCB-1453942 to CH); The National Institutes of Health (R01HG00596 to CH, 
U54DK102557 to CH and RJX, R01DK92405 to RJX, R24DK110499 to CH), the Crohn’s and Colitis Foundation 
of America to RJX and CH, and the Center for Microbiome Informatics and Therapeutics (6933665 PO # 
5710004058 to RJX). ABH is a Merck Fellow of the Helen Hay Whitney Foundation.

References

1. Wlodarska M, Kostic AD & Xavier RJ An integrative view of microbiome-host interactions in 
inflammatory bowel diseases. Cell Host Microbe 17, 577–591 (2015). [PubMed: 25974300] 

2. Imhann F et al. Interplay of host genetics and gut microbiota underlying the onset and clinical 
presentation of inflammatory bowel disease. Gut (2016).

3. Huttenhower C, Kostic AD & Xavier RJ Inflammatory bowel disease as a model for translating the 
microbiome. Immunity 40, 843–854 (2014). [PubMed: 24950204] 

4. Morgan XC et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and 
treatment. Genome Biol. 13, R79 (2012). [PubMed: 23013615] 

5. Gevers D et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 
15, 382–392 (2014). [PubMed: 24629344] 

6. Haberman Y et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and 
microbiome signature. J. Clin. Invest. 124, 3617–3633 (2014). [PubMed: 25003194] 

7. Lane ER, Zisman TL & Suskind DL The microbiota in inflammatory bowel disease: current and 
therapeutic insights. J. Inflamm. Res. 10, 63–73 (2017). [PubMed: 28652796] 

8. Blander JM, Longman RS, Iliev ID, Sonnenberg GF & Artis D Regulation of inflammation by 
microbiota interactions with the host. Nat. Immunol. 18, 851–860 (2017). [PubMed: 28722709] 

9. Dorrestein PC, Mazmanian SK & Knight R Finding the missing links among metabolites, microbes, 
and the host. Immunity 40, 824–832 (2014). [PubMed: 24950202] 

10. McHardy IH et al. Integrative analysis of the microbiome and metabolome of the human intestinal 
mucosal surface reveals exquisite inter-relationships. Microbiome 1, 17 (2013). [PubMed: 
24450808] 

11. Wu GD Diet, the gut microbiome and the metabolome in IBD. Nestle Nutr. Inst. Workshop Ser. 79, 
73–82 (2014). [PubMed: 25227296] 

12. Kim S, Kim J-H, Park BO & Kwak YS Perspectives on the therapeutic potential of short-chain 
fatty acid receptors. BMB Rep. 47, 173–178 (2014). [PubMed: 24499669] 

Franzosa et al. Page 22

Nat Microbiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Smith PM et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell 
homeostasis. Science 341, 569–573 (2013). [PubMed: 23828891] 

14. Fernando MR, Saxena A, Reyes J-L & McKay DM Butyrate enhances antibacterial effects while 
suppressing other features of alternative activation in IL-4-induced macrophages. Am. J. Physiol. 
Gastrointest. Liver Physiol. 310, G822–831 (2016).

15. Marchesi JR et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel 
disease. J. Proteome Res. 6, 546–551 (2007). [PubMed: 17269711] 

16. Wikoff WR et al. Metabolomics analysis reveals large effects of gut microflora on mammalian 
blood metabolites. Proc. Natl. Acad. Sci. U. S. A. 106, 3698–3703 (2009). [PubMed: 19234110] 

17. Williams BB et al. Discovery and characterization of gut microbiota decarboxylases that can 
produce the neurotransmitter tryptamine. Cell Host Microbe 16, 495–503 (2014). [PubMed: 
25263219] 

18. Zelante T et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and 
balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013). [PubMed: 
23973224] 

19. Lamas B et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into 
aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016). [PubMed: 27158904] 

20. Le Gall G et al. Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota 
in ulcerative colitis and irritable bowel syndrome. J. Proteome Res. 10, 4208–4218 (2011). 
[PubMed: 21761941] 

21. Bjerrum JT et al. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s 
disease and healthy individuals. Metabolomics 11, 122–133 (2015). [PubMed: 25598765] 

22. De Preter V et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating 
compounds in IBD. Gut 64, 447–458 (2015). [PubMed: 24811995] 

23. Jansson J et al. Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One 4, 
e6386 (2009). [PubMed: 19636438] 

24. Kolho K-L, Pessia A, Jaakkola T, de Vos WM & Velagapudi V Faecal and Serum Metabolomics in 
Paediatric Inflammatory Bowel Disease. J. Crohns. Colitis 11, 321–334 (2017). [PubMed: 
27609529] 

25. Jacobs JP et al. A Disease-Associated Microbial and Metabolomics State in Relatives of Pediatric 
Inflammatory Bowel Disease Patients. Cell Mol Gastroenterol Hepatol 2, 750–766 (2016). 
[PubMed: 28174747] 

26. Melnik AV et al. Coupling Targeted and Untargeted Mass Spectrometry for Metabolome-
Microbiome-Wide Association Studies of Human Fecal Samples. Anal. Chem. 89, 7549–7559 
(2017). [PubMed: 28628333] 

27. Sokol H & Seksik P The intestinal microbiota in inflammatory bowel diseases: time to connect 
with the host. Curr. Opin. Gastroenterol. 26, 327–331 (2010). [PubMed: 20445446] 

28. Joossens M et al. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their 
unaffected relatives. Gut 60, 631–637 (2011). [PubMed: 21209126] 

29. Sokol H et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel 
Dis. 15, 1183–1189 (2009). [PubMed: 19235886] 

30. Wishart DS et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–526 
(2007). [PubMed: 17202168] 

31. Mosli MH et al. C-Reactive Protein, Fecal Calprotectin, and Stool Lactoferrin for Detection of 
Endoscopic Activity in Symptomatic Inflammatory Bowel Disease Patients: A Systematic Review 
and Meta-Analysis. Am. J. Gastroenterol. 110, 802–819; quiz 820 (2015). [PubMed: 25964225] 

32. Benjamini Y & Hochberg Y Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. J R Stat Soc Series B Stat Methodol, 289–300 (1995).

33. Duboc H et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in 
inflammatory bowel diseases. Gut 62, 531–539 (2013). [PubMed: 22993202] 

34. Abdel Hadi L, Di Vito C & Riboni L Fostering Inflammatory Bowel Disease: Sphingolipid 
Strategies to Join Forces. Mediators Inflamm. 2016, 3827684 (2016). [PubMed: 26880864] 

Franzosa et al. Page 23

Nat Microbiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. An D et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural 
killer T cells. Cell 156, 123–133 (2014). [PubMed: 24439373] 

36. Braun A et al. Alterations of phospholipid concentration and species composition of the intestinal 
mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm. Bowel Dis. 15, 1705–1720 
(2009). [PubMed: 19504612] 

37. Qi Y et al. PPARα-dependent exacerbation of experimental colitis by the hypolipidemic drug 
fenofibrate. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G564–573 (2014).

38. Fischbeck A et al. Sphingomyelin induces cathepsin D-mediated apoptosis in intestinal epithelial 
cells and increases inflammation in DSS colitis. Gut 60, 55–65 (2011). [PubMed: 21076125] 

39. Heimerl S et al. Alterations in intestinal fatty acid metabolism in inflammatory bowel disease. 
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1762, 341–350 (2006). 
[PubMed: 16439103] 

40. Hove H & Mortensen PB Influence of intestinal inflammation (IBD) and small and large bowel 
length on fecal short-chain fatty acids and lactate. Dig. Dis. Sci. 40, 1372–1380 (1995). [PubMed: 
7781463] 

41. Stuart JM, Segal E, Koller D & Kim SK A gene-coexpression network for global discovery of 
conserved genetic modules. Science 302, 249–255 (2003). [PubMed: 12934013] 

42. Wolfe CJ, Kohane IS & Butte AJ Systematic survey reveals general applicability of” guilt-by-
association” within gene coexpression networks. BMC Bioinformatics 6, 227 (2005). [PubMed: 
16162296] 

43. Frank DN et al. Molecular-phylogenetic characterization of microbial community imbalances in 
human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104, 13780–13785 (2007). 
[PubMed: 17699621] 

44. Lewis JD et al. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut 
Microbiome in Pediatric Crohn’s Disease. Cell Host Microbe 18, 489–500 (2015). [PubMed: 
26468751] 

45. Desbois AP & Smith VJ Antibacterial free fatty acids: activities, mechanisms of action and 
biotechnological potential. Appl. Microbiol. Biotechnol. 85, 1629–1642 (2010). [PubMed: 
19956944] 

46. German JB & Dillard CJ Saturated fats: a perspective from lactation and milk composition. Lipids 
45, 915–923 (2010). [PubMed: 20652757] 

47. Galland L Magnesium and inflammatory bowel disease. Magnesium 7, 78–83 (1988). [PubMed: 
3294519] 

48. Lih-Brody L et al. Increased oxidative stress and decreased antioxidant defenses in mucosa of 
inflammatory bowel disease. Dig. Dis. Sci. 41, 2078–2086 (1996). [PubMed: 8888724] 

49. Yang JY et al. Molecular networking as a dereplication strategy. J Nat Prod 76, 1686–1699 (2013). 
[PubMed: 24025162] 

50. Jaskowski TD, Litwin CM & Hill HR Analysis of serum antibodies in patients suspected of having 
inflammatory bowel disease. Clin. Vaccine Immunol. 13, 655–660 (2006). [PubMed: 16760323] 

51. Tigchelaar EF et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study 
in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 
(2015).

52. Bolger AM, Lohse M & Usadel B Trimmomatic: a flexible trimmer for Illumina sequence data. 
Bioinformatics 30, 2114–2120 (2014). [PubMed: 24695404] 

53. Langmead B & Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 
(2012). [PubMed: 22388286] 

54. Segata N et al. Metagenomic microbial community profiling using unique clade-specific marker 
genes. Nat. Methods 9, 811–814 (2012). [PubMed: 22688413] 

55. Franzosa E et al. Functionally profiling metagenomes and metatranscriptomes at species-level 
resolution. Nature Methods (In Proof).

56. Suzek BE et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence 
similarity searches. Bioinformatics 31, 926–932 (2015). [PubMed: 25398609] 

Franzosa et al. Page 24

Nat Microbiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



57. Buchfink B, Xie C & Huson DH Fast and sensitive protein alignment using DIAMOND. Nat. 
Methods 12, 59–60 (2015). [PubMed: 25402007] 

58. Apweiler R et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, D115–119 
(2004). [PubMed: 14681372] 

59. Benjamini Y & Hochberg Y Controlling the False Discovery Rate: A Practical and Powerful 
Approach to Multiple Testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

Franzosa et al. Page 25

Nat Microbiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. IBD is associated with broad changes in subjects’ gut multi’omic profiles.
(A) We collected and profiled stool metagenomic and metabolomic data from two IBD 

cohorts: a 155-member discovery cohort (PRISM) and a 65-member validation cohort 

(NLIBD/LLDeep). (B) Principal coordinates analysis (PCoA) of PRISM cohort subjects 

based on gut metabolomic profiles (Bray-Curtis distance). (C) The same subjects ordinated 

on Bray-Curtis distances between gut metagenomic species profiles. (D, E) Subject fecal 

calprotectin (FC) levels (μg/g) plotted against the first PCoA axes from panels B and C, 

respectively. Note that FC measurements were not available for all subjects.
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Figure 2. Metabolic enrichments in IBD versus control phenotypes.
We applied Wilcoxon rank-sum tests to metabolites’ individual differential abundance trends 

(t-statistics from the linear models) to identify classes of molecules that were broadly 

enriched in IBD. Focusing on classes of molecules with at least 10 putative members (see 

the “n=“ column), (A) eight were significantly (FDR q<0.05) positively enriched in CD, 

meaning that their members tended to be more abundant in CD, and 17 classes were 

significantly negatively enriched, meaning that their members tended to be more abundant in 

controls (nominal p-values were two-tailed). (B) A subset of these trends were similarly 

significant in comparisons between UC and controls, with the remainder (gray) tending to 

trend in the same direction as CD vs. control comparisons. The dotted line indicates the 

significance threshold for an individual metabolic feature [abs(t)>2.61]. Panels C through H 
highlight examples of individually differentially abundant standards measured across 68 CD, 

53 UC, and 34 non-IBD control subjects. Metabolites highlighted in panels C, D, E, and F 

are representatives of broader classes analyzed in A and B. Abundances are in units of parts 

per million (PPM) after separately sum-normalizing within each LC-MS method; values are 

square-root scaled for visualization. Boxplot “boxes” indicate the first, second, and third 

quartiles of the data. Boxplot “whiskers” indicate the inner fences of the data, with points 

outside the inner fences plotted as outliers.
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Figure 3. Clusters of chemically related, IBD-perturbed metabolites revealed by abundance 
covariation.
We clustered differentially abundant (DA) metabolites after regressing out the effects of 

diagnosis, subject age, and medication use (Methods). A small number of (large) clusters 

explained many of the DA metabolites. (A) The second-largest cluster contained 39 

metabolite features, all of them significantly elevated among CD patients (and one in UC 

patients as well). This cluster was enriched for putative bile acids and derivatives. Multiple 

variants of the standards cholate (light green triangles) and chenodeoxycholate (dark green 

triangles) occur in this cluster. (B) The largest cluster contained 62 metabolite features, all of 

them significantly elevated in non-IBD controls. This cluster was enriched for putative 

tetrapyrroles and derivatives. The 155 samples (columns) are ordered the same way in both 

panels according to Bray-Curtis similarity (and phenotype) of overall metabolic profile (as 

established in Supplementary Fig. 1). Note the control-like versus CD-like substructure 

among UC subjects.
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Figure 4. Potentially mechanistic associations between IBD-linked microbes and metabolites.
(A) Covariation between microbes and small molecules DA in IBD, specifically those 

linking FDR-significant, confirmed-in-controls metagenomic species and metabolites 

matched against standards (Spearman correlation with two-tailed nominal p-values). When 

multiple metabolomic features matched the same standard, the feature with the highest mean 

absolute correlation was selected for plotting. Starred (*) metabolites indicate a match to a 

standard with isomeric forms that could not be differentiated. The standard L-1,2,3,4-

Tetrahydro-beta-carboline-3-carboxylic acid is listed as “cyclomethyltryptophan.” (B), (C), 

and (D) highlight examples of individual correlations across 68 CD, 53 UC, and 34 non-IBD 

control subjects (see text). Metabolites and species in these examples are colored in panel A. 

Values plotted are raw measurements (not residuals) normalized to parts per million (PPM) 

units and then log10-transformed. Values <1 PPM (including 0s) were set to 1 PPM for 

plotting; corresponding points are shown without fill and jittered (all other points have solid 

fill).
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Figure 5. IBD-associated changes in microbial function and their metabolic associations.
(A) - (E) highlight examples of metagenomically contributed enzymes that were 

differentially abundant in IBD, annotated by their taxonomic contributors (A - C are 

enriched in IBD; D and E are depleted). In each case, the enzyme was contributed by a 

mixture of species across the cohort, and not dominated by a single species. Each set of 

stacked bars represents one of the 155 PRISM metagenomes (arrayed on horizontal axes). 

Community enzyme abundance (log10-transformed parts per million) is represented by the 

top of each stack of bars; contributions from major species are linearly scaled within the 

total bar height. Samples are first sorted according to the dominant contributor to a function 

and then grouped by phenotype (sample ordering differs between panels). (F) and (G) 

illustrate correlations between community-total enzyme abundance and IBD-associated 

metabolites across 68 CD, 53 UC, and 34 non-IBD control subjects. Values plotted are raw 

measurements (not residuals) normalized to parts per million (PPM) units and then log10-

transformed. Values <1 PPM (including 0s) were set to 1 PPM for plotting; corresponding 

points are shown without fill and jittered (all other points have solid fill). The given r values 

indicate Spearman correlation.
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Figure 6. Predicting IBD status and subtype from gut microbiome multi’omic features.
We trained random forest classifiers on metabolites, microbial species, and their 

combination to identify IBD patients and IBD subtypes. Training/testing was carried out 

within the PRISM cohort using five-fold cross-validation, in addition to models trained on 

the full PRISM cohort and then tested (validated) on the independent Netherlands cohorts. 

(A) ROC curves depict trade-offs between classifiers’ true positive rates (TPRs) and false 

positive rates (FPRs) as classification stringency varies. The area under the curve (AUC) 

statistic is a summary measure of classifier performance: AUC values close to 1 indicate that 

a high TPR was achieved with low FPR (ideal performance), while AUC values close to 0.5 

indicate random performance. (B) “Confusion matrix” evaluations of IBD subtype classifiers 

within the Boston PRISM cohort. The number in row i and column j indicates how many 

samples were labeled as subtype i but assigned to subtype j. A perfect subtype classifier 

(100% accuracy) would have 0 counts for all non-diagonal entries (i.e. no misclassified 

samples). Matrix cells are shaded within-row in proportion to their value (red for CD, orange 

for UC, and blue for non-IBD control). (C) Confusion matrix evaluations of IBD subtype 

classifiers trained on the Boston PRISM cohort and tested on the independent Netherlands 

cohorts. Accuracy values in B and C indicate the fraction of correctly classified instances; 

error values reflect the standard error of a proportion.

Franzosa et al. Page 31

Nat Microbiol. Author manuscript; available in PMC 2019 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Broad metabolic shifts in IBD correlate with host inflammation
	Metabolite enrichments in IBD versus control phenotypes
	Modules of chemically-related compounds are perturbed in IBD
	Species-level changes in IBD microbiome community composition
	Putative mechanistic associations between IBD-linked microbes and metabolites
	IBD-associated changes in microbial function and their metabolic associations
	Most IBD trends replicate in an independent validation cohort
	Multi’omic signatures differentiate IBD subtypes across cohorts

	Discussion
	Methods
	PRISM cohort description and sample handling
	Approval for human subjects research
	Validation cohort description and sample handling
	DNA extraction and metagenomic sequencing
	Read-level quality control and metagenomic profiling
	Metabolite profiling from stool samples
	Method 1: positive ion mode MS analyses of polar metabolites (feature prefix: HILIC-pos).
	Method 2: negative ion mode MS analysis of polar metabolites (feature prefix: HILIC-neg).
	Method 3: negative ion mode analysis of metabolites of intermediate polarity (e.g. bile acids and free fatty acids; feature prefix: C18-neg).
	Method 4: polar and nonpolar lipids (feature prefix: C8-pos).
	Post-processing.

	Profile-level quality control
	Statistical analyses
	Unsupervised clustering
	Random forest classification
	Growth effects of metabolites on Ruminococcus gnavus

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

