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ABSTRACT A red blood cell (RBC) performs its function of adequately carrying respiratory gases in blood by its volume being
�60% of that of a sphere with the same membrane area. For this purpose, human and most other vertebrate RBCs regulate
their content of potassium (Kþ) and sodium (Naþ) ions. The focus considered here is on Kþ efflux through calcium-ion
(Ca2þ)-activated Gárdos channels. These channels open under conditions that allow Ca2þ to enter RBCs through Piezo1 me-
chanosensitive cation-permeable channels. It is postulated that the fraction of open Piezo1 channels depends on the RBC shape
as a result of the curvature-dependent Piezo1-bilayer membrane interaction. The consequences of this postulate are studied by
introducing a simple model of RBC osmotic behavior supplemented by the dependence of RBC membrane Kþ permeability on
the reduced volume (i.e., the ratio of cell volume to its maximal possible volume) of RBC discoid shapes. It is assumed that
because of its intrinsic curvature and strong interaction with the surrounding membrane, Piezo1 tends to concentrate in the
dimple regions of these shapes, and the fraction of open Piezo1 channels depends on the membrane curvature in that region.
It is shown that the properties of the described model can provide the basis for the formation of the negative feedback loop that
interrelates cell volume and its content of potassium ions. The model predicts the relation, valid for each cell in an RBC popu-
lation, between RBC volume and membrane area, thus explaining the large value of the measured membrane area versus the
volume correlation coefficient. The mechanism proposed here for RBC volume regulation is in accord with the loss of this
correlation in RBCs of Piezo1 knockout mice.
INTRODUCTION
Red blood cells (RBCs) are major blood constituents
serving primarily to transport oxygen and carbon dioxide.
Nonnucleated mammalian RBCs in particular are much
simpler than most other eukaryotic cells because they
consist essentially of a dense hemoglobin solution enclosed
by a smooth and laterally incompressible membrane. In the
course of blood circulation, RBCs are exposed to various
external forces that change their shape. In capillaries, they
resemble a parachute, whereas in the absence of constraints
or other external forces, they resemble an axially com-
pressed disc (1). An RBC can change its shape because of
the flexibility of its membrane and because of its small
(z0.6) reduced volume (i.e., volume divided by the volume
of a sphere with the same surface area) (2). Water moves
through the membrane of an RBC sufficiently fast for its
volume to be established as the result of the osmotic equilib-
rium between its internal and external solutions (3). Hemo-
globin cannot cross the RBC membrane so that the cell has a
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tendency to swell. However, because of the control of its
cytoplasmic content of potassium, sodium, and chloride
ions, its volume remains steady (4). RBC anions exchange
much faster than RBC cations and can be considered to be
in thermodynamic equilibrium with their outer counterparts.
The content of RBC potassium and sodium is established by
a pump-leak mechanism (5) based on a sodium-potassium
pump that uses cell ATP to expel sodium and take in potas-
sium, together with several channels through which potas-
sium and sodium ions leak through the membrane in the
direction of their concentration gradients (6).

Piezo channels (Piezo1 and Piezo2) are large, transmem-
brane proteins, whose subunits have more than 2500 amino
acids. They are involved in processes like touch and sound
reception acting to transform mechanical stimulation into
a transmembrane flow of cations (7,8). RBC membranes
contain only Piezo1, which plays the role in the establish-
ment of the cell volume, as indicated by the fact that its mu-
tants cause the hereditary disease, xerocytosis (dehydrated
stomatocytosis) (9). Cryoelectron microscopy structural
studies have shown that the Piezo1 channel operates in the
form of a homotrimer (10–13). The mode of action of
Piezo1 in RBCs was revealed by Cahalan et al. (14) who
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showed, by comparing the behavior of normal mouse RBCs
and RBCs of the corresponding Piezo1 knockout mice, that
openings of Piezo1 channels lead to a transient increase of
cytoplasmic Ca2þ concentration thus triggering increased
Kþ efflux by activating Ca2þ activated Kþ (Gárdos) chan-
nels (15).

The mechanism by which Piezo1 acts in the regulation of
RBC volume is not firmly established. Its curved structure
implies that it is activated by an increase in membrane ten-
sion (11), a mechanism indicated by electrophysiological
measurements (16). However, the RBC membrane me-
chanics at its physiological reduced volume of around 0.6
are governed by the bending of its bilayer part and by the
shear elasticity of its spectrin network, exhibiting a rela-
tively small stretching constant of its bonds (17). Lateral
membrane tension is thus much smaller than that under
the conditions of the electrophysiological experiment (16).
RBCs exhibit a flickering phenomenon (18), which is
further evidence for the membrane not being under high
tension. Assuming that mechanosensitive channels can
change membrane permeability in response to any kind of
mechanical stimulus, it is of interest to search for other
possible mechanisms of Piezo1 action. The curved structure
of the Piezo1 homotrimer (10–13) supports the possibility
that it could also act through its sensitivity to membrane cur-
vature. This idea is supported by the large size of Piezo1,
which is an important factor in determining the strength of
the curvature-dependent interaction of membrane inclusions
with the surrounding phospholipid membrane moiety (19).
The curvature-dependent permeability of Piezo1 is implied
by recent observations on RBCs embedded in a gel, which
was then compressed, causing them to deform (20). This
led to an increased metabolic rate and increased cation
(using cesium ions as a replacement for potassium ions)
efflux. Further indirect evidence for the curvature-based
mechanism of Piezo1 action is its inhibition by the spider
venom peptide GsMTx4, which acts by intercalating into
the lipid layers of the RBC membrane, thus affecting its
nonspecific curvature status (21).

In this work, we have developed a model of RBC volume
regulation by the Piezo1-Gárdos channel system based on
the thesis that Piezo1 channel permeability depends on
membrane curvature and thus on RBC shape. The central
idea is that Piezo1 senses the shape of the RBC discocyte,
and because it is different at different cell volumes, the frac-
tion of open Piezo1 channels depends on RBC volume. Our
main purpose here is to reveal the principle of the corre-
sponding Piezo1 operation. We therefore restrict the model
to that part of the RBC pump-leak system that involves the
homeostasis of Kþ ions. The corresponding simplified pic-
ture of the real RBC system is described in RBC Properties
Essential for Establishing its Volume. In particular, it is
shown how the fraction of open channels relates to the
RBC volume. In A Possible Mechanism for the Effect of
RBC Shape on Piezo1 Channel Permeability (i.e., the core
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section of this work), it is shown that the fraction of open
Piezo1 channels depends on the RBC reduced volume by
assuming that Piezo1 possesses open and closed conforma-
tions whose interactions with the surrounding membrane are
curvature dependent in different ways. This dependence will
be applied to discocyte shapes at different RBC reduced
volumes. A Possible Mechanism for the Effect of RBC
Shape on Piezo1 Channel Permeability will therefore
include a description of the membrane curvature character-
istics of these shapes. The proposed model will be in Model
Predictions and their Support by Existing Experimental Ev-
idence, applied to describe some observations that support
the proposed mechanism of RBC volume regulation. Its
implications will be shown to be consistent with the differ-
ences in the behavior of normal RBCs and of those of
Piezo1 knockout mice (14). It will also be shown that the
described mechanism explains why RBCs with larger mem-
brane areas (A) also have, on average, larger volumes (V)
(22–24). The Discussion includes a description of some
possible generalizations of the described mechanism.
METHODS

In the model, the RBC equilibrium state is described in terms of its

macroscopic parameters (i.e., RBC volume, RBC membrane area, osmotic

pressure, contents of cell ingredients, and membrane permeability coeffi-

cients). The interrelationships between these parameters, which are based

on the physicochemical properties of the RBC system, are sought with

the emphasis laid on the dependence of the interaction between Piezo1 pro-

tein and the surrounding membrane on membrane curvature. The resulting

equations are transcendental and are solved by the standard Newton’s

method of iteration. In the development of the model, we use some results

of previous studies. The corresponding methods will be referred to and

commented on where applicable.
RESULTS

RBC properties essential for establishing its
volume

Here, we introduce a model for establishing RBC volume by
focusing on the effect of Piezo1 on the opening of the cal-
cium-induced potassium (Gárdos) channel and on the result-
ing RBC Kþ ion and water content. The aim is to reveal just
the principle of how this process contributes to the RBC
volume regulation, so the model developed will be minimal
and will represent only a subsystem of the much more com-
plex real system, which has been for some other purposes
already described by correspondingly much more complex
mathematical models (25–27).

The RBC interior is a highly concentrated solution of
hemoglobin, and cells are situated in the environment of
blood plasma that can be treated in practice as a solution
of monovalent ions. RBC membrane is permeable to water
but not to hemoglobin so that it attains a stationary state
only when it is in osmotic (quasi-) equilibrium with the sur-
rounding solution. The physiological volume of the RBC is
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established through regulation of the content of its cations
Kþ and Naþ. The anions exchange much faster than these
cations and can be considered in the model to be in equilib-
rium with anions of the outside solution (3,28). The content
of monovalent cations is maintained in human and many
other RBCs by employing the pump-leak system in which
the Naþ/Kþ- ATPase pump actively expels three sodium
ions from the cell and takes in two potassium ions in ex-
change (4). The thus obtained higher cell concentration of
Kþ and lower concentration of Naþ, both relative to those
in the environment, causes fluxes of these two cations in
the direction of their concentration gradients. The pumping
and leaking of Kþ and Naþ eventually lead to the stationary
state of the system. In parallel, the amount of RBC water is
established by the osmotic equilibrium between the inside
and outside solutions.

Here, we supplement the basic pump-leak model by taking
into consideration the fact that part of the leakage of Kþ out
of the RBC takes place through the Gárdos channels, whose
open state is under the control of Piezo1. The model thus in-
volves, as an additional parameter, the fraction of Gárdos
channels that are open (fG). Analysis of this system will be
restricted to homeostasis of the potassium ions so that except
for their counter ions, it does not include transmembrane
movement of sodium or of any other ions or molecules.
The rate of potassium entry is taken to be equal to the rate
of potassium leak-out. The rate of the former is assumed to
be proportional to 2RATPaseA, where A is the area of the
RBC membrane, and RATPase measures how many times
per second the Naþ-KþATPases contained on a square meter
of RBC membrane extrude three sodium ions and take in two
potassium ions. Here, the contents of Naþ-Kþ ATPases and
of other RBC constituents are measured by their number.
Because of the small external potassium ion concentration,
the potassium leak-out is taken to be proportional to the prod-
uct of the membrane permeability for potassium PK (in m/s)
and cell potassium ion concentration [Kþ], the latter defined
as the cell content ofKþ per cell water content (in m�3). Spe-
cifically, the potassium permeability is taken to involve the
potassium permeability of the Gárdos channels (PK,G), multi-
plied by the fraction fG, in addition to the potassium efflux
with constant permeability (PK,0). The stationary state is
reached when the equation that equates potassium influx
and efflux is satisfied as follows:

2RATPase ¼ ðPK;0 þ fGPK;GÞ
�
Kþ�: (1)

The RBC water content is established by the osmotic equi-
librium that causes the cell volume to depend on the cell po-
tassium content. For the osmotic equilibrium, which defines
the cell water content, the RBC cytoplasm is taken to contain
some molecules and ions that cannot penetrate the membrane
(e.g., hemoglobin and 2,3-diphosphoglycerate). The total
content of these molecules will be denoted by S. The require-
ment for the osmotic equilibrium is written as follows:
Sþ 2Kþ

V
¼ pout

kBT
; (2)

where V is the volume of cell water, which, to simplify the
equations, we equate to the cell volume, thus neglecting

the volume of hemoglobin molecules. pout is the external
osmotic pressure measured in pascals. T is temperature,
and kB is the Boltzmann constant. Potassium content is
multiplied by a factor of 2 because for the sake of electrical
neutrality of the cytoplasm, the change of the content of Kþ

ions requires the corresponding change of the content of its
penetrable anionic counterions.

The system of Eqs. 1 and 2 can then be solved for its un-
knowns, RBC volume and potassium concentration. The
primary interest here concerns the effects of the fraction
of open Gárdos channels fG. We therefore define as the sys-
tem’s reference state the case in which the Gárdos channels
are closed (fG¼ 0). For this case, it is possible to obtain from
Eqs. 1 and 2 the corresponding reference volume V0 and
reference potassium concentration [Kþ]0, both depending
on the parameters RATPase and pout/kBT. In the procedure
that follows, we choose V0 and [Kþ]0 as the model parame-
ters and solve Eqs. 1 and 2 by taking in Eq. 1 2RATPase ¼
PK,0[K

þ]0 and in Eq. 2 pout/kBT ¼ (Sþ2Kþ
0 )/V0, where

Kþ
0 ¼ [Kþ]0V0 is the content of potassium ions in the refer-

ence state. For the unknowns of Eqs. 1 and 2, it is then
possible to define the ratios V/V0 and [Kþ]/[Kþ]0. For the
sake of further analysis, it is convenient to express both
volumes (V and V0) in terms of the corresponding reduced
volumes. Reduced volume is defined as the quotient be-
tween the volume and the maximal possible volume at a
given membrane area A as follows:

v ¼ 6
ffiffiffi
p

p
V
�
A3=2: (3)

It is clear that V/V0 ¼ v/v0. By eliminating the ratio
[Kþ]/[Kþ]0 from the thus redefined Eqs. 1 and 2, the
reduced volume at a given fraction fG reads as follows:

v ¼ v0
1þ hfG

1þ 1þ 1=sð ÞhfG ; (4)

with the parameters h and s being defined as follows:
h ¼ PK;G

PK;0

(5)

and

s ¼ S
: (6)
2Kþ
0

The smallest RBC volume is reached when all the Gárdos
channels are fully opened. The corresponding reduced vol-
ume (denoted as vG) is obtained from Eq. 4 by taking the
fraction fG to be 1. An example of the dependence of frac-
tion fG on the reduced volume v in the interval vG % v
% v0, obtained from Eq. 4, is depicted in Fig. 1 (full line).
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FIGURE 1 The dependence of the fraction of opened Gárdos channels

(fG) on RBC reduced volume (v). The full line represents fG(v) (obtained

from Eq. 4) by taking v0 ¼ 0.62, vG ¼ 0.52, and s¼ 0.5 (which corresponds

to [Kþ]0 ¼ 100 mmol/L); the corresponding value of parameter h is

h ¼ 0.106. The three dashed curves represent fP(v) (defined by Eq. 16),

the dependences obtained from Eqs. 20 and 21 for the values of model

parameters a ¼ 1, a ¼ 4, bpole ¼ 4.0, and the indicated values of k*.

Svetina et al.
It is assumed that the reference reduced volume v0 is, for a
normal RBC, a little greater than the expected reduced vol-
ume, 0.6. For vG, the value taken is that which is in the range
of the reduced volumes obtained when human (29) or mouse
(14) RBCs are dehydrated by applying the Ca2þ ionophore
A23187.

At each reduced volume in the interval vG % v % v0, the
potassium concentration is expressed in terms of the model
parameters as follows:

�
Kþ� ¼ ½Kþ�0

1þ fGh
: (7)

Thus, at a given fraction of open Gárdos channels fG, the
osmotic state of the treated model RBC is characterized
through Eqs. 4 and 7 by the reduced volume v and potassium
concentration [Kþ].
FIGURE 2 RBC discocyte shape. (a) Contour of the cross section of

the RBC discoid shape at the reduced volume v ¼ 0.6 obtained exactly

by minimization of the membrane bending energy, as described in (32),

the corresponding dependences of the reduced mean membrane curvature

(h), and the difference between reduced principal curvatures (Dh) (see

text for the definitions) on the reduced distance from the axis d ¼ D/Rs

(where D is the distance from the axis). (b) The dependence of the reduced

mean principal curvature at cell poles (hpole) on the reduced volume (v).

Also shown are three examples of the corresponding discoid RBC shapes.
A possiblemechanism for the effect of RBC shape
on Piezo1 channel permeability

Here, the basic properties of the RBC discocyte shape rele-
vant for the functioning of the proposed curvature-depen-
dent mechanosensitivity of the Piezo1 channel are briefly
recapitulated. A possible mechanism for the dependence
of the average permeability of this channel on the RBC
reduced volume, v, will then be described.

For any nonspherical RBC shape, the possible principal
membrane curvatures (Ci, i ¼ 1 and 2; the reciprocals of
the membrane principal radii, Ri) lie in the finite interval be-
tween their largest and smallest values. The principal curva-
tures of discoid RBC shapes can be obtained by assuming
that the shape is a result of the minimization of the bending
154 Biophysical Journal 116, 151–164, January 8, 2019
energy of the membrane of the vesicular object (30–32). As
an example, in Fig. 2 a is shown the discoid shape
obtained at a reduced volume, v¼ 0.6, together with the cor-
responding reduced mean membrane curvature, defined as
h ¼ (c1 þ c2)/2 and one-half of the difference between
reduced principal curvatures Dh ¼ (c1 � c2)/2. Here, c1 ¼
C1Rs, c2 ¼ C2Rs (with Rs ¼ ffiffiffiffiffiffiffiffiffiffiffi

A=4p
p

, the radius of the

sphere with area A) and, correspondingly, h ¼ HRs

and Dh ¼ DHRs (with H ¼ (C1 þ C2)/2 and DH ¼ (C1 �
C2)/2). Reduced variables were introduced because the
bending energy of similar shapes does not depend on the
system’s size and because all shapes with different areas A
but the same reduced volume v are similar and characterized
by the same reduced principal curvatures. The reduced
mean curvature h is largest at the cell rim and smallest at
the cell poles (Fig. 2 a). Principal curvatures are defined
as being positive for the convex parts of the membrane
and negative for its concave parts. In the axisymmetric
RBC discocyte, the principal curvature along the meridians
(cm) is greater than that along its parallels (cp) over its whole
surface. The positive sign of Dh (Fig. 2 a) thus corresponds



Piezo1 and Regulation of Red Cell Volume
to the assignment of principal curvatures, c1, as the principal
curvature along the meridians (cm), and c2, that along the
parallels (cp). The dependence on v of the reduced mean
principal curvature at the cell poles (hpole) is given in
Fig. 2 b. Also shown are examples of the discoid RBC
shapes at the indicated reduced volumes.

The dependence of the reduced mean curvature, hpole
(Fig. 2 b), on the reduced volume v in the range of relevant
RBC reduced volumes is practically linear so that it is
possible to express it as follows:

hpole ¼ hpole;r þ bpoleðv� vrÞ; (8)

where hpole,r is the reduced mean curvature at an arbitrarily
chosen reference reduced volume vr. The value of the coef-

ficient bpole is 4.0.

The basis for the mechanosensitivity of the Piezo1
channel is assumed to be the mismatch between the prin-
cipal intrinsic curvatures of the channel and the principal
curvatures of the surrounding lipid membrane. Membrane
curvature may affect the permeability effectiveness of an
ionic channel if it involves conformational states of
different energies that exhibit different permeabilities
(33). Such a situation is described here by considering
the Piezo1 channel to have open and closed conformations
exhibiting different energies Wj (index j extending over all
conformations, either ‘‘open’’ or ‘‘closed’’). These
energies in general comprise intrinsic energy because of
interactions between different parts of molecule and be-
tween molecule and the surrounding membrane. It is
assumed that part of the latter is curvature dependent
and is denoted as Wcurv,j. The curvature-independent en-
ergy is denoted as Wint,j. For Wcurv,j, we use a phenomeno-
logical expression based on the difference between the
intrinsic principal curvatures, C1,P,j and C2,P,j, of the trans-
membrane part of the channel and the membrane principal
curvatures, C1 and C2, at its membrane position. The gen-
eral expression for the corresponding energy term in the
limit of a rigid protein surface has been derived in (34)
as follows:

Wcurv;j¼ kj

2

�
H�HP;j

�2þk�j
2

h
DH2� 2DHDHP;j cos

�
2uj

�
þ DH2

P;j

i
; (9)

where HP,j ¼ (C1,P,j þ C2,P,j)/2 is the mean principal intrinsic
curvature of the Piezo1 transmembrane part, and DHP,j ¼

(C1,P,j � C2,P,j)/2 is a measure of the difference between
the two intrinsic principal curvatures of the channel.
kj and kj* are independent interaction constants. The angle
uj defines the mutual orientation of the coordinate systems
of the intrinsic principal curvatures of the protein and the
principal curvatures of the membrane.

The dependence on the curvature of interaction between
the channel and surrounding membrane can cause the chan-
nels at sufficiently large values of the interaction constants
to concentrate in membrane regions in which their intrinsic
curvatures are best matched with the membrane curvature.
The lateral distribution thus obtained is the result of two
tendencies: 1) to decrease the system’s energy by moving
channels into regions with the lowest channel-membrane
energy and 2) to increase the entropy by making the distri-
bution as homogeneous as possible (35). The resulting
normalized areal number density of open and closed chan-
nels njð~riÞ (channel density in the following) as a function
of the membrane position ~ri (defined with respect to an
arbitrarily chosen reference point) can be approximated by
the Boltzmann factor for sufficiently small channel densities
(36) as follows:

njð~riÞ ¼ NP

e�ðWint;jþWcurv;jÞ=kBTP
j

e�Wint;j=kBT R e�Wcurv;j=kBTdA
; (10)

where NP is the number of RBC’s Piezo1 molecules. The
total channel density is then as follows:
nð~riÞ ¼
X
j

njð~riÞ: (11)

Piezo1 is a homotrimer. Because of the size of each
subunit, it is plausible to assume that they can, indepen-
dently of one another, exist in conformations correspond-
ing to either an open or a closed channel. In such a case,
Piezo1 could take up four different structures, two
axisymmetric, with all subunits being in either a closed
or an open conformation, and two nonaxisymmetric,
with either one or two of them in an open conformation,
for example. In the case of an axisymmetric conformation,
it is possible to use a simplified version of Eq. 9 by taking
DHP,j ¼ 0. In the following, to avoid nonessential
complexity, we will take the option that we are dealing
with only two axisymmetric conformational states that
correspond to an open and a closed channel (j ¼ open
or closed), respectively. Because we shall also keep to
model constants that represent different structural ele-
ments of the system only qualitatively, it will be taken
that kopen ¼ kclosed ¼ k�open ¼ k�closed ¼ k. The strength
of the channel-membrane interaction can then be repre-
sented by just a single nondimensional constant (g),
defined here in a nondimensional form as follows:

g ¼ k

2kBTR
2

s

; (12)

with the unit of length Rs being defined as the radius of a
sphere corresponding to the average area of the membranes

in an RBC population ðAÞ. The lateral distribution of chan-
nels (Eq. 11) can then be written as follows:

nð~riÞ ¼ NP

e�ggopenðh;DhÞ þ ke�ggclosedðh;DhÞR
e�ggopenðh;DhÞdAþ k

R
e�ggclosedðh;DhÞdA

; (13)
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where the effect of the curvature-independent energies is
condensed to the constant k, defined as follows:

k ¼ e
�
Wint;closed �Wint;open

kBT (14)

and �
h

	2
Dh2
gjðh;DhÞ ¼ ffiffiffi
a

p � hP;j þ
a

; (15)

where hP,j ¼ RsHP,j and a ¼ A/A.
The intrinsic curvature of Piezo1 is strongly negative
(10–13) and, presumably, its interaction with the membrane
is very strong. As a consequence, the corresponding con-
stant HP,j would cause them to accumulate in the regions
of the RBC discocyte poles (dimples). Examples of the
lateral distribution of the channel on the RBC membrane
at v¼ 0.6 are given in Fig. 3 for some values of the constants
hP,open, hP,closed, k, and g.

The permeability of the channel under discussion is pro-
portional to the fraction of all the Piezo1 channels that are
open (fP) (i.e., to the integral of the lateral density of just
open channels) and is as follows:

fP ¼ 1

NPA

Z
nopendA: (16)

This fraction is expected to differ at different reduced vol-
umes. To avoid integration over the lateral distribution of the
channel (see Eqs. 10 and 13), we assume that Piezo1 chan-
nels accumulate so closely to the pole regions of a discocyte
that their interaction with the membrane can be approxi-
mated by taking its value at the poles. Recalling that Piezo1
FIGURE 3 RBC membrane areal number density of Piezo1 relative to

the mean areal number density ðn ¼ NP=AÞ at a reduced distance d from

the axis for an RBC shape at v ¼ 0.6, calculated as described in Bo�zi�c

et al. (35) for hP,open ¼ �1.2, hP,closed ¼ �1.6, k ¼ 10 and g ¼ 1, 3 or

10 (from a wide to a narrow distribution).
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is rotationally symmetric, Eq. 16 can be expressed as
follows:

fP ¼ 1

1þ ke
�a



hpoleffiffi

a
p � hP

�; (17)

with the newly introduced constants
a ¼ 2g
�
hP;open � hP;closed

�
; (18)

representing both the strength of the Piezo1-membrane

interaction and the way its intrinsic curvatures differ in the
open and closed conformations, and

hP ¼ hP;open þ hP;closed
2

; (19)

representing the average of the intrinsic curvatures of the

open and closed conformations of Piezo1.

The reduced mean curvature hpole, which is the variable in
Eq. 17, depends on the RBC reduced volume (Eq. 8), which
means that the fraction of open Piezo1 channels changes as
this volume changes. By inserting in Eq. 17 the right side of
Eq. 8 for hpole, and taking, for the reference reduced volume,
its hypothetical value, for which hpole,r ¼ hP (i.e., vr ¼ vP),
we obtain the equation for the dependence of the fraction
of open channels (fP) on the RBC reduced volume (v) as
follows:

fP ¼ 1

1þ ke

�a

"
hP

 
1ffiffiffi
a

p � 1

!
þ bpole

v� vPffiffiffi
a

p
#

¼ 1

1þ k�e
�abpole

vffiffiffi
a

p
;

(20)

where

k� ¼ ke

�a

"
hP

 
1ffiffiffi
a

p � 1

!
� bpole

vPffiffiffi
a

p
#
: (21)

It is seen that the function fP(v) depends on just two inde-
pendent parameters, a and k*. Some examples of the corre-
sponding dependencies fP(v) are given for a ¼ 1 and a ¼ 4
and the indicated values of k* in Fig. 1. On increasing the
value of the parameter a, the dependences fP(v) become
steeper (data not shown).
Model predictions and their support by existing
experimental evidence

The essence of the described regulation of RBC volume is
that Piezo1 senses mechanically the cell shape that is



FIGURE 4 The correlation between RBC membrane area and cell vol-

ume. (a) Results of simultaneous determinations of RBC membrane area

and cell volume extracted from Fig. 5 of (22) are shown. This figure also

contains the regression line (full line) and the line of constant sphericity

index (dashed line). The latter is equivalent to the line of constant reduced

volume. (b) The dependence of the reduced volume v divided by its

average (v, defined by taking in Eq. 3 V ¼ V and A ¼ A) on the relative

membrane area a, obtained by solving Eq. 4 with fG defined by Eq. 20.

Calculations are presented for the model parameters used for Fig. 1.

(c) The dependence of the relative membrane area ðA=AÞ on relative

volume ðV=VÞ, obtained by Eq. 22. The dashed line is the line with constant
reduced volume. The full line that matches it (red) is obtained for the

parameters of Fig. 1 with k*¼ 105. The deviating full line (blue) is obtained

for a ¼ 20 and k* ¼ 1022.
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characterized by the cell’s reduced volume. The regulated
variables are thus the latter property and the fraction of
open Gárdos channels. They affect each other by the require-
ments of RBC osmotic equilibrium and by the stationary
establishment of the cell content of potassium ions. At a
higher fraction of open Piezo1 channels (fP), it is reasonable
to expect that more Ca2þ ions are entering the cells which, on
average, must also cause an increase of the fraction of open
Gárdos channels (fG). By assuming fG ¼ fP, it is possible to
solve Eq. 4 by inserting for fG the right side of Eq. 20. The ob-
tained solution is represented in Fig. 1 by the crossing of the
two respective f(v) dependences. The system’s behavior de-
pends on numerous parameters: the reduced volume v0 and
the concentration [Kþ]0 that define the reference state of
the RBC, the ratio s (Eq. 6), the ratio h (Eq. 5) (or, alterna-
tively, vG), and the parameters of Piezo1, a and k*, the latter
representing constants k and hP (the latter represented in Eqs.
20 and 21 by vP). An attempt ismade to assign to these param-
eters values at which the model behaves well in accord with
the real RBC. However, the model is a gross simplification of
the real system, and the main focus will therefore be on
testing its predictions, which are more general than param-
eter-based fitting of the corresponding experimental data.

The crucial model prediction is the relation between RBC
membrane area and volume, which is the result of the regu-
lation of the cell’s reduced volume (v). The latter is obtained
by solving Eq. 4. For a given membrane area, the corre-
sponding cell volume can be obtained from the value of
the reduced volume (Eq. 3). The cell volume, multiplied
by potassium concentration and obtained by Eq. 7, then
yields also the cell potassium content. Because of the
described regulation, the relations between RBC membrane
area, volume, and potassium content must be equally valid
in each cell of the RBC population. The validity of the
model can thus be tested by studying the consequences of
these relations and comparing them with the experimental
evidence based on measuring different RBC variables on
single cells of large, presumably homogeneous cell popula-
tions. It will be assumed that all RBCs of a given subject
have the same values of the model parameters.

Single-cell simultaneous determinations of RBC surface
area and volume in an RBC population showed that there
is a strong correlation between its volume and membrane
area with a correlation coefficient rA,V �0.97 (22) or
�0.96 (24). Similarly, Waugh et al. (23) showed that there
was little change in surface/volume ratio with RBC age.
The fact that the value of rA,V is so close to unity by itself
suggests that there is a relation between A and V that is the
same in all cells in a population. For testing the model, the
data of Canham and Burton (22), who measured RBC vol-
umes and areas simultaneously, are particularly instructive.
In the corresponding scatter plot (Fig. 4 a), they showed
quite a close match between the regression line through
the measured points and the line of constant sphericity index,
which defines the deviation of the shape from that of the
sphere and is equivalent to the line of a constant reduced vol-
ume (shown by the dashed curve). These observations can be
considered as the direct result of the described Piezo1-based
mechanism of RBC volume regulation. By solving Eq. 4
with fG equal to fP (Eq. 20), the dependence of the reduced
Biophysical Journal 116, 151–164, January 8, 2019 157



FIGURE 5 The width of the distribution of hemolyzing osmotic pressure

of the wild-type (WT) mouse RBCs and of RBCs of Piezo1 knockout mice

(Vav1-P1cKO) in the absence and in the presence of the Ca2þ ionophore

A23187. In this figure, we reproduce the corresponding osmotic fragility

curves and the adjoined table of relative medium tonicities, that is, the

tonicities when 50% of cells are lysed (C50) as presented in Fig. 3 D of

Cahalan et al. (14). In the newly added column in the adjoining table are

given the coefficients of variation of the RBC distribution with respect to

the hemolyzing osmotic pressure, defined as CVh ¼ sh=C50. The SD sh
is obtained from the indicated slopes of the osmotic fragility curves

(dashed lines) that are equal to 1=
ffiffiffiffiffiffi
2p

p
sh for the normal (Gaussian) distri-

butions (shown only for cases without A23187).
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volume (v) relative to its average ðvÞ on the relative area
a ða ¼ A=AÞ can be obtained. In Fig. 4 b, this dependence
for the parameter values defined in Fig. 1 is shown. In gen-
eral, the slopes of these dependences are negative. Their
steepness depends on the parameter a and is larger at larger
values of the latter (data not shown). The relative volume
ðV=VÞ can then be calculated as follows:

V

V
¼ v að Þ

v
a3=2: (22)

Fig. 4 c represents the theoretical counterpart of Fig. 4 a
thus obtained. It can be seen that at a ¼ 4 (red curve), the
dependence of the relative membrane area a on the relative
volume ðV=VÞ obtained from Eq. 22 practically does not
deviate from the curve of constant reduced volume (dashed
curve). With a much larger value of a (a ¼ 20; blue curve),
there is such a deviation, and it corresponds to the observed
deviation of the regression line in Fig. 4 a from the curve
of constant reduced volume (22). The large value of the
parameter a supports the idea that the system works on
the basis of the accumulation of Piezo1 at the discocyte
poles (see Fig. 3).

The strong correlation between A and V is reflected in the
fact that the variation of the cell’s reduced volume in the
RBC population is much narrower than the variations of
their membrane area and cell volume (Appendix A). This
is, for example, evidenced by the characteristic dependence
of the fraction of hemolyzed RBCs on the external
osmotic pressure (osmotic fragility curve). Hemolysis oc-
curs because there is a corresponding increase of cell water
at lowering external osmotic pressure; this is due to the
requirement of osmotic equilibrium between a cell’s interior
and its exterior. Eventually, the cell becomes spherical, and
its membrane becomes strained, leading to the formation of
a pore and consequent release of cell hemoglobin. The
osmotic pressure at which a given RBC lyses ðpout;hÞ is pro-
portional to the ratio between its volume and the volume of
a sphere with the same membrane area and, thus directly
to the cell’s reduced volume (Eq. 3). In model presented
here, the hemolyzing osmotic pressure (pout,h) is propor-
tional to the product of the reduced volume and the osmotic
pressure of the normal outside solution (pout), that is,

pout;h ¼ vpout: (23)

In the light of Eq. 23, the coefficient of variation of the
hemolyzing osmotic pressure (CVh) is the same as that of
the RBC reduced volume (CVv) (Appendix A).

From measured osmotic fragility curves, it is possible to
estimate CVh by determining its maximal slope, which, by
assuming that the distribution is normal (Gaussian), is pro-
portional to 1=

ffiffiffiffiffiffi
2p

p
sh, where sh is the corresponding SD

(expressed here in units of relative tonicity). In the last
column of the adjoined table in Fig. 5 are given the thus ob-
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tained coefficients of variation for wild-type mouse RBCs
and for RBCs of Piezo1 knockout mice in the absence and
presence of the Ca2þ ionophore A23187 reported in
Fig. 3D of (14). In Fig. 5, the maximal slopes of the osmotic
fragility curves of wild-type mouse RBCs and of RBCs of
Piezo1 knockout mice are also added to the copied version
of Fig. 3 D of (14). It is seen clearly that Piezo1 knockout
RBCs hemolyze over a relatively much wider range of
external osmotic pressure. From the analogy between this
behavior and the dependence of CVv on rA;V of human
RBCs presented in Fig. 7 (Appendix A), it can be concluded
that there is a correlation between RBC volume and its
membrane area in the wild-type mouse RBC, whereas the
correlation coefficient rA;V is much smaller in the case of
RBCs of Piezo1 knockout mice in which CVh is about three
times larger. Wider intervals of hemolyzing osmotic pres-
sure can also be observed in both treated RBC populations
that have been exposed to the Ca2þ ionophore A23187 for
30 min. From the results of Cueff et al. (37), who have
shown that after 30 min of exposure to the Ca2þ ionophore,
the osmotic fragility curve does not differ appreciably from
that observed 10 min after it was added, it can be deduced
that this behavior is due to the Kþ loss through the
Piezo1-induced opening of Gárdos channels. It can be
seen that the shift of the medium lytic osmotic pressure on
the addition of Ca2þ ionophore A23187 is closely similar
for both normal cells and cells of the Piezo1 knockout
mice (Fig. 5). This is consistent with our assumption
made about the closeness of the reduced volumes v and v0
in Fig. 1 but also indicates that the observed shift of the os-
motic fragility curve of the Piezo1 knockout mice to higher
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osmotic pressures is the result of processes not included in
the treated model.

In this section, it is seen that the model introduced to inter-
pret the role of Piezo1 in the regulation of RBC volume pro-
vides a possible mechanism for the strong correlation
between RBC volume and its membrane area. According to
Eq. 23, comparison of the coefficient of variation of reduced
volumes of human RBCs, CVv ¼ 0.06 (Appendix A), with
those from the experiment extracted value, CVh ¼ 0.054
(38), is clear indication that it is this correlation that is
responsible for the observed large steepness of the osmotic
fragility curves in normal RBCs. The observed smaller steep-
ness of the osmotic fragility curve in the case of an absent
Piezo1 channel (Fig. 5) is therefore consistent with the pro-
posed action of the Piezo1-Gárdos channel system. Further
confirmation of the relevance of the model predictions is pro-
vided by the fact that the decrease of membrane area/volume
correlation in the case of the application of the ionophore
A23187 is approximately the same as in the absence of
the Piezo1 channel (adjoined table in Fig. 5). With open Gár-
dos channels, the fraction fG is unity in all cells of the RBC
population, which means that the correlation between RBC
volume and its membrane area is significantly reduced.
DISCUSSION

RBCs possess a much simpler composition and structure
than other eukaryotic cells and can therefore serve as a
convenient system on which to study how cell functioning
relates to the molecular and supramolecular properties of
its constituents. The model developed in this work is aimed
at explaining the contribution of the mechanosensitive pro-
tein Piezo1 to the regulation of RBC volume. It brings
together several previous studies on RBC osmotic properties
(3,39), the shape behavior of vesicles and RBCs (32), the
curvature dependence of the lateral distribution of mem-
brane inclusions (34–36,40) and consequent curvature-
dependent mechanosensitivity (33), and on the relationships
between the variability parameters of RBC properties
(41–43). We first comment on the model’s principal constit-
uents, then discuss its outcomes and limitations, finally
suggesting its possible extensions and proposing some
experimental verifications.
FIGURE 6 A schematic presentation of the negative feedback loop

through which RBC volume is regulated by its shape.
The model content

The treated model of RBC volume regulation supplements
the otherwise well-established pump-leak mechanism of
balancing the influx and efflux of potassium and sodium
ions (5) by incorporating the mechanosensitivity aspects
of the cationic channel Piezo1 in it. RBC potassium efflux
takes place via several separate pathways (6) for which it
may be assumed to have different physiological roles. Given
this premise, it is shown in this work that at least one of
these leaks, specifically of the Gárdos channel whose Kþ
permeability is under the control of the mechanosensitive
ion channel Piezo1, takes part in a negative feedback loop
involving RBC volume and shape. In this loop, the increase
of total membrane curvature (integral of mean membrane
curvature over the membrane area) would cause a diminu-
tion of Kþ efflux, the increased Kþ efflux would cause a
decrease in RBC volume, and the increased RBC volume
would cause a decrease in total membrane curvature
(Fig. 6). In general, the Piezo1-Gárdos channel system can
be considered as a complement to the mechanism for the
cell volume regulation that operates at the level of passive
cation membrane permeability. The involvement of Piezo1
in RBC regulatory circuits was recently also recognized
by Kuchel et al. (20).

At the center of this analysis are the membrane curvatures
of the disk shape that is also the resting shape of a normal
RBC when placed in a motionless physiological solution.
When in the interval of reduced volumes between v ¼
0.58 and v ¼ 0.63, the discoid shape is also the minimal
bending energy shape of simple closed objects such as phos-
pholipid vesicles (32). In RBC, discocyte-stomatocyte or
discocyte-dumbbell shape transformations would require
an increase of the energy of its membrane skeleton (17).
Therefore, it is expected that the corresponding interval of
stable discoid shapes is even wider. In the different stages
of blood circulation, RBCs are forced to attain shapes other
than discoid. Reduced volumes of the resting cell (i.e.,
around 0.6) are advantageous in this respect because the
bending energies of many other types of shapes are not
very much larger than that of the discocyte at this reduced
volume (44). Our study points to the possibility that the
RBC discoid shape can also play a physiological role of be-
ing involved in the fine regulation of the RBC volume. For
this role to be played, it is an important fact that RBCs spend
more than 50% of their time in veins, where the hydrody-
namic conditions favor the establishment of their resting
discocyte shape. For the proposed mechanism of RBC vol-
ume regulation to be efficient, it is important that during the
time when an RBC is deformed, there is no significant diffu-
sion of Piezo1 molecules so that their equilibrium lateral
distribution would not change significantly. For a typical
laterally free mobile membrane protein, the diffusion coef-
ficient in a lipid membrane is �5 mm2/s (45). Piezo1 mole-
cules localized around the discocyte poles, would thus, in
the absence of their curvature-dependent interaction, attain
Biophysical Journal 116, 151–164, January 8, 2019 159
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a uniform lateral distribution estimated from the ratio be-
tween the spreading area (one-half of the area of the RBC
membrane) and their diffusion constant in approximately
10 s, which is less than about a minute that RBC is
deformed. However, in the crowded surroundings of the
RBC membrane with more than 104 proteins per 1 mm2,
the diffusion coefficient could be about five times smaller
(Fig. 4 of (45)) and therefore five times larger this time.
The treated curvature-dependent Piezo1-lipid membrane
interaction suggests that a piece of membrane containing a
Piezo1 molecule could be depressed into the spectrin
network, causing the Piezo1 diffusion coefficient in the
RBC membrane to be even much smaller and thus allowing
Piezo1 lateral distribution to remain practically undisturbed
during the period of RBC deformation.

The crucial ingredient of the model is the membrane-cur-
vature-based mechanism by which the RBC discoid shape
affects Piezo1 permeability. Mechanosensitive channels
are, in general, membrane-embedded proteins that respond
to changes of the mechanical state of the membrane (46).
Piezo1 has been shown to respond to changes of membrane
lateral tension (16). In principle, the feedback system shown
in Fig. 6 could also be based on the dependence of the RBC
membrane tension on the reduced volume. However, in
RBC discoid shapes, the relevant lateral tensions are small.
At changing the reduced volume from v ¼ 0.7 to 0.5, the
lateral tension due to membrane bending energy would,
with the bending constant of the RBC membrane kc ¼
2� 10�19 J (47), increase by�0.02 mJ/m2, while the contri-
bution due to the accompanying deformation of the mem-
brane skeleton can be neglected (17). In this work, it was
inferred that the conformation of Piezo1 may depend on
membrane curvature due to its interaction with the sur-
rounding bilayer membrane, thus responding mainly to
applied torques exerted by the surrounding membrane.
Effects of membrane curvature have now been firmly estab-
lished to be a ubiquitous biological mechanism (48) by
the discovery of many curvature-sensing and curvature-
forming proteins. A nonuniform lateral distribution of
mobile membrane-embedded proteins as the consequence
of curvature-dependent-protein-membrane interaction has
been demonstrated experimentally (49). It was shown that
a general phenomenological expression for such an interac-
tion, represented by Eq. 9, can be employed as an appro-
priate basis for a corresponding theoretical analysis (36).
The model outcomes

The scope of this work was to define the least complex sys-
tem needed to describe the mechanism of Piezo1-based
regulation of RBC volume. Thus for example, the Piezo1-
based feedback system for the regulation of RBC volume
was treated as not being coupled to the rest of the related
RBC processes. The model presented therefore cannot pro-
vide detailed simulation of the RBC behavior but is rather
160 Biophysical Journal 116, 151–164, January 8, 2019
intended to reveal the principle of Piezo1 operation. In
view of this, we will emphasize primarily model outcomes
that describe correctly the qualitative features of RBC
behavior in the following discussion.

The model elucidates the existence of fine regulation of
the RBC volume and defines its location within the complex
RBC biochemical circuitry to be at the level of the passive
leak of its potassium ions. The gross feature of this regula-
tion is that the Naþ-Kþ pump drags into the cell more
potassium than is finally needed, and then, by way of the
feedback loop presented in Fig. 6, a cell attains the physio-
logically optimal value of its volume by regulating the frac-
tion of Piezo1 channels that are open (fraction fP, Eq. 20).
Structural modifications of the normal RBC Piezo1 may
lead to a changed value of the fraction fG and to consequent
xerocytosis. In known examples of the latter, RBCs are de-
hydrated (50), which is consistent with the fact that in the
normal RBC, the fraction fP has a low value and that in
Piezo1 mutations, there is, for example, a lowering of the
constant k* (Eq. 21) with consequent increase of fraction
fP (see Fig. 1). The model also offers a possible interpreta-
tion of RBC dehydration in the case of sickle cell disease
(51). When cells in their deoxygenated state sickle, they
lose their ability to maintain their inhomogeneous Piezo1
lateral distribution, and the loop presented in Fig. 6 is thus
broken. On average, Piezo1 channels are in this way opened
for longer and consequently leak more potassium so that
cells achieve smaller stationary volumes.

A significant result of the model is that it provides an
explanation for the strong correlation between RBC mem-
brane area and volume. Membrane area and RBC volume
are related because the effect of RBC shape on potassium
efflux through the Piezo1-controlled Gárdos channel in-
volves the reduced volume that itself depends on both these
cell variables. The values of both these RBC variables have
been shown to be widely distributed around their average
values (with their variation coefficients �0.12–0.13) but to
be strongly correlated, in that cells with larger membrane
areas have larger volumes on average (22–24). The general
consequence of such strict (i.e., valid for each cell of
an RBC population) relations between cell variables are
the relations between the parameters that define their
population variability (variation coefficients and cor-
relation coefficients) as demonstrated here by Eq. A2 (Ap-
pendix A). That there is a strict relation between RBC
properties involving the content of its cations and mem-
brane area was previously implied from the analysis of rela-
tions between the corresponding variability parameters
(38,41–43). However, its background was not clear.

By regulating the reduced cell volume, RBCs measure
their volume and membrane area simultaneously and, in
this sense, differ from many other eukaryotic cells, which
regulate independently both their volume and the area of
the plasma membrane exposed to the environment (52).
The reason for RBCs having their reduced volume as a
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regulated variable appears to be of physiological signifi-
cance. It can be anticipated that for an optimal response to
the requirements of hydrodynamic stresses, there is also
an optimal reduced volume. More specifically, during their
lifetime, the amounts of an RBC’s membrane and hemoglo-
bin decrease because of the release of microvesicles (53).
On releasing a spherical vesicle, a cell loses relatively less
volume than membrane area thus becoming more and
more swollen and thus less suited for its rheological func-
tion throughout its lifetime of �120 days. Because of the
Piezo1-Gárdos channel system of regulating RBC monova-
lent cation content, this does not happen. This system can
thus be considered as a self-repairing mechanism for keep-
ing RBCs fit for their function throughout their life.
Model limitations

Electrophysiological experiments have revealed the process
of inactivation, indicating that Piezo1 exhibits at least one
more conformational state in addition to closed and open
conformations (54). This suggests that the two-state model
is an oversimplification. However, it has since been shown
that the inactivation can be removed (55), meaning that
the inactivation process is an amendment to the basic two-
state system, serving to regulate the Gárdos potassium efflux
in a more subtle manner. But the two-state model of the ac-
tion of Piezo1 channel is also a simplification because it is
an oligomeric homotrimer and has therefore four different
structures in assuming that each subunit has two different
conformations. Two of these structures in which all three
subunits are in the same conformation are rotationally sym-
metric with the order of three, whereas the other two struc-
tures in which the conformation of one of the subunits is
different from that of the other two have no rotational sym-
metry. In the model presented here, it has been assumed for
the sake of simplicity that the relevant structures are those
exhibiting rotational symmetry, one corresponding to the
closed and the other to the open Piezo1 conformation.
This may not be the best representation of the system
because it has been shown in a recent study using the Piezo1
agonist Yoda1 (56) that the channel assumes an open
conformation when Yoda1 binds to only one subunit. It ap-
pears that a more complete model of Piezo1 activity will
have to involve Piezo1 conformations with no rotational
symmetry as well. In the context of this work, it has to be
indicated that when the Piezo1 structure is not rotationally
symmetric, the Piezo1-bilayer membrane interaction must
be described by using the complete Eq. 9. However, it is
not expected that the corresponding, more accurate treat-
ment would lead to a qualitatively different prediction con-
cerning the behavior of the Piezo1 action.

The prediction concerning the strict relation between
RBC membrane area and volume, obtained by the described
model, is correct only approximately because as simulta-
neous measurement of RBC volume and membrane area
show (Fig. 4 a), there is a considerable scatter around the
regression line giving rise to a correlation coefficient
rA,V ¼ 0.97 (i.e., not exactly unity). This scatter can be
ascribed to RBC variability with respect to the cell’s hemo-
globin content as was earlier deduced from the analysis of
relations between variations of RBC properties (41). In
this respect, the simple model described here is a simplifica-
tion in which it was taken that the parameter s (Eq. 6), which
also involves the cell content of hemoglobin, is the same for
all cells. The individual RBCs in a population may actually
differ in the amount of any of the parameters involved in
Eqs. 4 and 7. For example, the parameter h, which is the
ratio between the permeability of the Gárdos channel and
the permeability of other potassium channels (Eq. 5), is pro-
portional to the ratio between their areal densities, which
may not be the same in all cells of the RBC population.
However, a study of the origin of these residual variabilities
is outside the scope of this work.
Possible model extensions

Besides defining the limits between known and unknown
properties of the studied system, the intention of the treated
model is to guide further experimental and theoretical
research. Several straightforward generalizations of the
simple model are possible to include, for example, in the
modeling of RBC osmotic behavior, the volume of hemo-
globin molecules, and their buffering capacity (3). Another
matter is that the coupling between potassium and sodium
fluxes should certainly be included to obtain, for example,
the observed shift of the osmotic fragility curve in the
case of Piezo1 knockdown mice (14). A subject of interest
is whether the measured A-V correlation coefficient can be
related in a quantitative manner to the variability of hemo-
globin content in a population of RBCs and to the density
changes during cell aging (57).

Extensions of the model presented here may also lead to
qualitatively new consequences of the action of Piezo1, and
we conclude this subsection by indicating two such possibil-
ities. In the model, it was taken that the inclusions redis-
tribute because of their interaction with the surrounding
membrane for a given fixed membrane shape. However, in
general, the effect is mutual. Because of the curvature-
dependent interaction of Piezo1 molecules with the sur-
rounding membrane, the RBC shape may also change.
The consequent interplay between cell shape and the lateral
distribution of membrane inclusions can be analyzed by
minimizing the sum of the membrane bending energy and
the free energy of the inclusions (35). Preliminary estimates
of this effect have shown that when the intrinsic curvature of
Piezo1 (Hm) is more negative than the membrane curvature
at the RBC poles (Hpole), the Piezo1-induced shape change
decreases the pole-to-pole distance, whereas when it is less
negative, it increases it. Within the applied two-state model,
the transition from the state of the system in which all
Biophysical Journal 116, 151–164, January 8, 2019 161



FIGURE 7 The dependence of the coefficient of variation for the reduced

volume ðCVvÞ on the correlation coefficient between RBC volume and

membrane area ðrA;VÞ obtained from Eq. A2 by taking CVV ¼ 0.13 and

CVA ¼ 0.12 (42).
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Piezo1 channels are in a closed conformation to the state in
which they are all open may thus involve a considerable
RBC shape transformation.

In the model, it was assumed that Piezo1 channel confor-
mations are in thermodynamic equilibrium. This assump-
tion can be valid when there is sufficient time for the
system to equilibrate, as is certainly the case in experiments
that last for hours (20). Over short times, the behavior of
Piezo1 and Gárdos channels of the RBC system could be
different. A possible scenario for the nonstationary behavior
of the treated system is that when Piezo1 channels are
closed and RBC volume is below its basic stationary value,
more potassium ions enter the cell than leak out, causing the
volume to increase. Above a certain volume, the energy of
opened Piezo1 channels would become lower than the en-
ergy of the closed Piezo1 channels, causing them to switch
into their open conformation in a collective manner. The
subsequent increase of opened Gárdos channels would
enhance the potassium leak and cause RBC volume to
decrease until the system’s energy corresponding to closed
channels became smaller again. The cycle would then
repeat.
CONCLUSIONS

It can be concluded that there are several possible ways as to
how RBC volume can be regulated on the basis of the
dependence of Piezo1 cation permeability on membrane
curvature. Their common feature is the dependence of the
Piezo1 cationic permeability on the RBC discocyte shape
for which a novel physiological function has been estab-
lished. Here, we have elaborated the idea with its general
consequences by analyzing the behavior of a hypothetical
simplified RBC. Further work will thus be needed to reveal
the corresponding behavior of real RBCs. At this stage, veri-
fication of the developed concepts would benefit most from
experimental determination of the distribution of Piezo1
channels over the RBC membrane but also by determination
of the Piezo1 RBC membrane lateral diffusion coefficient
and cell population distributions of membrane areal density
of different RBC membrane proteins, in particular its pumps
and channels.
APPENDIX A: VARIABILITY OF RBC REDUCED
VOLUME EXPRESSED IN TERMS OF THE
VARIABILITY PARAMETERS OF RBC VOLUME
AND MEMBRANE AREA

Any strict relation between the parameters that define the state of an indi-

vidual RBC, such as the dependence of the reduced RBC volume on its

membrane area and volume (Eq. 3), is reflected in the relationship between

the corresponding variations of these parameters in cell populations

(41–43). RBCs are distributed with respect to both their areas and their

volume. Individually, these distributions are well characterized by the

corresponding coefficients of variations, which are the ratio between the

corresponding SD and the variable’s average value (i.e., CVA ¼ sA=A
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and CVV ¼ sV=V). The coefficient of variation of the reduced RBC vol-

ume, which depends on both variables A and V, is then defined by the joint

distribution function with respect to the involved variables, which takes into

account the fact that they may be correlated. The relations between the

parameters of different distributions are particularly simple when the joint

distribution function is Gaussian and the dependence of a given variable

(v in our case) on the other ones (A and V in our case) is linear (41). By

expressing the reduced volume in terms of the linear expansion around

its average value v ¼ 6
ffiffiffi
p

p
V=A
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the coefficient of variation for the reduced volume then reads as follows:

CV2
v ¼ CV2

V � 3CVVCVArA;V þ
9

4
CV2

A; (A2)

where rA;V is the correlation coefficient between RBC volume and its

membrane area. Fig. 7 shows that CVv depends strongly on how RBC vol-

ume and membrane area are correlated. The negative sign of the middle

term in the right-hand side of Eq. A2 results in the fact that the coefficient

of variation for the reduced volume may be smaller than each of the

coefficients of variation of the RBC volume and membrane area. By

taking CVV ¼ 0.13, CVA ¼ 0.12, and rA;V ¼ 0.97 (42), we get

CVv ¼ 0.06 from Eq. A2.
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