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INTRODUCTION

Quantitative imaging in the medical field has been rapidly 
developing because of advances in computational methods 
and technologies. However, accuracy and reproducibility are 
essential for implementing quantitative imaging in clinical 
practice, and the technical parameters in imaging protocols 

CT Image Conversion among Different Reconstruction 
Kernels without a Sinogram by Using a Convolutional 
Neural Network
Sang Min Lee, MD1*, June-Goo Lee, PhD2*, Gaeun Lee, BS2, Jooae Choe, MD1, Kyung-Hyun Do, MD1, 
Namkug Kim, PhD1, 2, Joon Beom Seo, MD1

1Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 
2Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

Objective: The aim of our study was to develop and validate a convolutional neural network (CNN) architecture to convert CT 
images reconstructed with one kernel to images with different reconstruction kernels without using a sinogram.
Materials and Methods: This retrospective study was approved by the Institutional Review Board. Ten chest CT scans were 
performed and reconstructed with the B10f, B30f, B50f, and B70f kernels. The dataset was divided into six, two, and two 
examinations for training, validation, and testing, respectively. We constructed a CNN architecture consisting of six convolutional 
layers, each with a 3 x 3 kernel with 64 filter banks. Quantitative performance was evaluated using root mean square error 
(RMSE) values. To validate clinical use, image conversion was conducted on 30 additional chest CT scans reconstructed with the 
B30f and B50f kernels. The influence of image conversion on emphysema quantification was assessed with Bland–Altman plots.
Results: Our scheme rapidly generated conversion results at the rate of 0.065 s/slice. Substantial reduction in RMSE was 
observed in the converted images in comparison with the original images with different kernels (mean reduction, 65.7%; 
range, 29.5–82.2%). The mean emphysema indices for B30f, B50f, converted B30f, and converted B50f were 5.4 ± 7.2%, 
15.3 ± 7.2%, 5.9 ± 7.3%, and 16.8 ± 7.5%, respectively. The 95% limits of agreement between B30f and other kernels (B50f 
and converted B30f) ranged from -14.1% to -2.6% (mean, -8.3%) and -2.3% to 0.7% (mean, -0.8%), respectively.
Conclusion: CNN-based CT kernel conversion shows adequate performance with high accuracy and speed, indicating its potential 
clinical use.
Keywords: Multidetector computed tomography; Image reconstruction; Machine learning; Emphysema; CNN

Received April 19, 2018; accepted after revision August 7, 2018.
This study was supported funding by the Industrial Strategic technology development program (10072064, Development of Novel 
Artificial Intelligence Technologies To Assist Imaging Diagnosis of Pulmonary, Hepatic, and Cardiac Diseases and Their Integration into 
Commercial Clinical PACS Platforms) funded by the Ministry of Trade Industry and Energy (MI, Korea).
*These authors contributed equally to this work.
Corresponding author: Joon Beom Seo, MD, Department of Radiology and Research Institute of Radiology, University of Ulsan College of 
Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea. 
• Tel: (822) 3010-4400 • Fax: (822) 476-4719 • E-mail: seojb@amc.seoul.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

should be carefully determined. 
In CT, the reconstruction kernel is an important technical 

parameter, and kernel selection involves a trade-off 
between spatial resolution and image noise (1) because 
sharper kernels increase spatial resolution and image 
noise. Reconstruction kernel selection also depends on 
the structure being evaluated, e.g., while a sharp kernel is 
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appropriate for the lung, a smooth kernel is better for the 
mediastinum. Because kernel selection affects quantitative 
analysis (2-4), CT images with different reconstruction 
kernels would be necessary for various diagnostic or 
quantitative purposes.

Although raw CT data are required to reconstruct CT 
images with different kernels, the data are usually not 
stored owing to their large file sizes and space limitations. 
On the other hand, multiple reconstructions with different 
kernels for all cases will increase the number of images that 
are generated, transmitted, and stored. These limitations 
in CT reconstruction have led to concerns regarding the 
comparability of quantitative results among different 
reconstruction kernels (2), and this problem is particularly 
evident in retrospective or longitudinal studies that cannot 
control technical parameters. Therefore, attempts to develop 
post-processing techniques that permit interconversion 
among CT images obtained with different kernels have 
been made (5-8). Gallardo-Estrella et al. (9) demonstrated 
that normalization of CT data reconstructed with different 
kernels reduces variation in emphysema quantification. 
However, the emphysema index (EI), which is derived from 
CT data reconstructed using the reference kernel (Siemens 
b31f), was altered after normalization, implying that 
the normalized EI does not exactly correspond to the EI 
obtained in original CT.

Kim et al. (10) recently demonstrated that convolutional 
neural networks (CNNs) can be taught differences between 
high- and low-resolution images (residual images) and 
that CNNs can be used to accurately and rapidly convert 
low-resolution images to high-resolution images. We 
hypothesized that this is also applicable for interconverting 
CT images obtained using different kernels because CT 
images between different kernels share most information. 
As EI is an established and widely accepted predictor for 
survival and acute exacerbation (11, 12) as well as disease 
status in patients with chronic obstructive lung disease 
(13), it was selected as a performance measure after kernel 
conversion in our study. Thus, the purpose of this study 
was to develop and validate a CNN architecture to convert 
CT images reconstructed with one kernel to images with 
different reconstruction kernels without using a sinogram.

Materials and Methods

This retrospective study was approved by the Institutional 
Review Board, which waived the requirement for informed 

consent from patients (approval number: 2017-0951).

Datasets
The first dataset included CT images from 10 patients (five 

men and five women; mean age, 63.0 ± 8.6 years), obtained 
using Somatom Definition Edge (Siemens Healthineers, 
Forchheim, Germany) in May 2016. This dataset was initially 
used for developing an optimal protocol for quantification 
in patients with chronic obstructive pulmonary disease. 
CT images were reconstructed using the B10f, B30f, B50f, 
and B70f kernels, from smooth to sharp, according to the 
Siemens naming convention. This dataset was used to 
develop a kernel conversion algorithm and to evaluate its 
performance (referred to as Dataset 1). 

The second dataset consisted of 300 CT scans obtained 
using Somatom Definition Edge from April to June 2017. 
The second dataset included two series of CT images 
reconstructed with the B30f and B50f kernels for the 
mediastinum and lung, respectively. We randomly selected 
20 examinations for training another CNN model with an 
architecture identical to that of the model in Dataset 1. To 
validate this model for clinical quantitative use, we used 
EI, and 30 chest CT scans among the remaining CT images 
in Dataset 2 that showed emphysema on visual assessment 
were selected by a chest radiologist.

Development of CNN Architecture
The proposed CNN architecture is shown in Figure 1 and 

consists of six convolutional layers with a 3 x 3 kernel size. 
Each layer, except the last one, has 64 filter banks that 
enabled the extraction of 64 distinctive feature maps. To 
maintain original resolution throughout the network, we 
excluded a pooling layer in the CNN structure. A rectified 
linear unit was used as an activation function at the end 
of each convolutional layer. As we applied the concept 
of residuals, the proposed CNN was trained to learn the 
difference between the target and input images. 

Data preprocessing involved deconstruction of three-
dimensional CT volumes to multiple two-dimensional images. 
We used the original matrix size of 512 x 512 for both input 
and output images. For each distinct reconstruction kernel 
pair, we also generated a residual image by subtracting the 
target image from the input image.

The prepared image database was fed into the deep 
learning processing server with the Linux operating system 
(Ubuntu 14.04; Canonical, London, England) along with the 
Caffe deep learning framework (http://caffe.berkeleyvision.



297

CT Image Conversion among Kernels Using CNN

https://doi.org/10.3348/kjr.2018.0249kjronline.org

org; Berkeley Vision and Learning Center, Berkeley, CA, USA) 
and CUDA 8.0/cuDNN 5.1 dependencies (Nvidia Corporation, 
Santa Clara, CA, USA) for graphics processing unit 
acceleration. The computing server had the Intel Xeon E5-
2600 processor (Intel, Santa Clara, CA, USA), 64-GB RAM, 
and an Nvidia Titan X and two GeForce GTX 1080 graphics 
processing units.

We divided Dataset 1 into six, two, and two cases 
for training, validation, and testing, respectively. The 
six training image sets included 1990 images, and the 
validation set contained 679 images. Operational parameters 
for training are presented in Table 1.

Dataset 1 contains twelve distinctive conversion pairs 
and we developed 12 CNN models, corresponding to each 
of the 12 pairs, to obtain images with the desired CT 
reconstruction kernels from the given image(s). For Dataset 
2, separate CNN models were prepared using the [B30f → 
B50f] and [B50f → B30f] kernels.

Testing CNN Architecture
Two image sets (Test 1 and Test 2) from Dataset 1 that 

included 631 CT images were used to test the performance 
of the proposed CNN. We calculated the root mean 
square error (RMSE) values for each conversion pair as a 
quantitative measurement using the following formula:

RMSE = 

Where, yg is the voxel value of the CT volume generated 
using the proposed CNN and ygt is the voxel value of the 
target CT volume.

In Dataset 2, we quantified the EI on CT images 
reconstructed with B30f, B50f, converted B30f, and 
converted B50f using a commercial software (Aview, Coreline 
Soft, Seoul, Korea) as well as RMSE. The quantified EIs on 
B50f and converted B30f images were compared with the EI 
from B30f images, because quantification of EI on CT images 
acquired using B30f is a widely acceptable approach (14).

CT Acquisition 
CT images were acquired at full inspiration in the supine 

position without contrast enhancement, and the acquisition 
protocol was as follows: 120 kVp; 100–200 mAs; 1-mm slice 
thickness; 1-mm intervals; and collimation of 0.75 mm. 

B10f B70fConv 1 Conv 5Conv 2 Conv 6Relu 1 Relu 5Relu 2

Fig. 1. Architecture of CNN. Proposed CNN architecture consists of six convolutional layers, each with 3 x 3 kernel with 64 filter banks. 
To maintain original resolution throughout network, we excluded pooling layer in CNN structure and used original matrix size of 512 x 512 
for both input and output images. Rectified linear unit was used as activation function at end of each convolutional layer. As we applied 
concept of residuals, proposed CNN was trained to learn difference between target and input images, and final image was obtained by 
adding residual image (output) to input. CNN = convolutional neural network 

Table 1. Operational Parameters for Training Proposed 
Convolutional Neural Network-Based Model

Operational Parameters Values or Names
Number of iteration (epoch) 300
Mini-batch sample size 5
Loss function Sum of squares
Optimization method ADAM (4)
Learning rate 0.0001

ADAM = adaptive moment estimation
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Statistical Analysis
All values are expressed as mean ± standard deviation. 

For continuous variables, the normality of distribution was 
assessed using the Kolmogorov-Smirnov test. In Dataset 2, 
Bland-Altman plots were used to assess differences between 
EI with B30f and that with other reconstruction kernels (15). 
EI comparisons among different kernels were performed 
using the Wilcoxon signed-rank test. All statistical analyses 
were performed using MedCalc, v.17.8 (MedCalc Software, 
Mariakerke, Belgium). P values of < 0.05 were considered 
significant.

Results

Performance in Dataset 1 
Performance test results of the proposed CNNs for each 

conversion pair in the two image sets are shown in Tables 
2 and 3, respectively. The mean reduction in RMSE for the 
converted images was 64.4 ± 16.1% (range, 29.5–79.4%) in 
Test 1 and 67.0 ± 16.1% (range, 31.5–82.2%) in Test 2. In 
pooled data for Tests 1 and 2, the converted images showed 
a substantial reduction in RMSE values (mean reduction, 
65.7 ± 15.8%) for all conversion pairs except images 
converted from B10f to B70f in Test 1, where the decrease 

Table 2. RMSE Values of Subtracted CT Volumes in Test 1
Conversion Pairs (Input, Target Image) Original (HU) Converted (HU) Differences (%)

From smooth to sharp kernel 
B10f, B30f 16.31 ± 2.04 6.00 ± 0.91 -63.2 ± 2.9
B10f, B50f 58.53 ± 11.02 33.08 ± 8.71 -44.1 ± 5.2
B10f, B70f 119.48 ± 28.10 84.18 ± 25.54 -30.5 ± 5.4
B30f, B50f 44.57 ± 9.64 18.29 ± 4.34 -59.1 ± 1.8
B30f, B70f 107.47 ± 27.29 52.95 ± 15.35 -51.1 ± 2.0
B50f, B70f 66.03 ± 18.32 22.82 ± 6.63 -65.5 ± 1.9

From sharp to smooth kernel
B30f, B10f 16.31 ± 2.04 4.05 ± 0.36 -75.0 ± 1.7
B50f, B10f 58.53 ± 11.02 12.91 ± 2.65 -77.9 ± 1.8
B50f, B30f 44.57 ± 9.64 10.72 ± 2.37 -75.8 ± 2.1
B70f, B10f 119.48 ± 28.10 24.89 ± 6.55 -79.1 ± 2.4
B70f, B30f 107.47 ± 27.29 22.14 ± 5.98 -79.2 ± 2.6
B70f, B50f 66.03 ± 18.32 16.95 ± 5.03 -74.2 ± 2.4

Data are presented as mean ± SD (HU). Original: RMSE by subtracting between input and target images. Converted: RMSE by subtracting 
converted images from target images. Differences: 100 x (converted RMSE - original RMSE) / original RMSE. HU = Hounsfield unit, RMSE = 
root mean square error, SD = standard deviation

Table 3. RMSE Values of Subtracted CT Volumes in Test 2
Conversion Pairs (Input, Target Image) Original Converted Differences (%)

From smooth to sharp kernel 
B10f, B30f 15.02 ± 0.87 5.17 ± 0.45 -65.6 ± 2.3
B10f, B50f 53.50 ± 5.08 28.84 ± 4.52 -46.4 ± 4.0
B10f, B70f 109.50 ± 14.07 74.97 ± 13.46 -31.9 ± 4.0
B30f, B50f 40.68 ± 4.65 15.72 ± 2.15 -61.4 ± 1.5
B30f, B70f 98.50 ± 13.94 45.49 ± 7.47 -53.9 ± 1.5
B50f, B70f 60.63 ± 9.56 18.77 ± 2.70 -69.0 ± 0.7

From sharp to smooth kernel
B30f, B10f 15.02 ± 0.87 3.44 ± 0.18 -77.1 ± 0.8
B50f, B10f 53.50 ± 5.08 10.85 ± 1.16 -79.7 ± 1.1
B50f, B30f 40.68 ± 4.65 8.81 ± 1.10 -78.3 ± 1.3
B70f, B10f 109.50 ± 14.07 19.92 ± 2.15 -81.7 ± 1.3
B70f, B30f 98.50 ± 13.94 17.55 ± 1.56 -82.0 ± 1.5
B70f, B50f 60.63 ± 9.56 13.63 ± 1.63 -77.3 ± 1.3

Data are presented as mean ± SD (HU). Original: RMSE by subtracting between input and target images. Converted: RMSE by subtracting 
converted images from target images. Differences: 100 x (converted RMSE - original RMSE) / original RMSE
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Fig. 2. Comparisons of original and converted CT images using CNN. Input image, ground-truth image, and converted image are 
presented on upper panel, and difference images are located on bottom panel. In difference image, green indicates zero, blue represents 
negative values, and red indicates positive values. 
A. Pronounced differences between B10f and B30f images mostly disappeared after applying proposed conversion scheme (RMSE from 16.95 HU 
to 3.12 HU). B. Similar results were observed in kernel conversion from B10f to B70f (RMSE from 149.06 HU to 99.21 HU). However, speckled 
error regions remained owing to difficulties in kernel conversion from B10f to B70f and high signal-to-noise ratio in B70f. HU = Hounsfield unit, 
RMSE = root mean square error
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in RMSE values was much lower at 29.5% compared with 
those in the original images.

Our model demonstrated good conversion ability from 
smooth to sharp kernels, with a mean RMSE reduction of 
51.9% in Test 1 and 54.6% in Test 2, and from sharp to 
smooth kernels, with a mean RMSE reduction of 77.0% in 
Test 1 and 79.4% in Test 2.

Among the kernel conversion pairs used, B30f to B10f in 
Test 2 yielded the lowest RMSE (3.44 ± 0.18 Hounsfield unit 
[HU]), whereas B10f to B70f in Test 1 showed the highest 
RMSE (84.18 ± 25.5 HU). RMSE values tended to increase 
during conversion from smooth to sharp kernels and 
between much different kernels (Fig. 2). For all conversion 
pairs, RMSE values were lower in Test 2 than in Test 1. This 
CNN could rapidly generate conversion results at a rate 
of 0.065 s/slice and took approximately 20 seconds for 
converting one entire volume.

Performance in Dataset 2
The reduction in RMSE was -59.6 ± 5.5% between (B30f, 

B50f) and (converted B50f, B50f) and -78.7 ± 1.8% 
between (B50f, B30f) and (converted B30f, B30f). 

The mean EIs from B30f, B50f, converted B30f, and 
converted B50f images were 5.4 ± 7.2%, 15.3 ± 7.2%, 5.9 ± 
7.3%, and 16.8 ± 7.5%, respectively (Fig. 3). Kolmogorov-
Smirnov test revealed that the EI distributions in B30f and 
converted B30f images were not normal (p = 0.003 and p = 
0.012, respectively), whereas those in B50f and converted 
B50f images were normal (p = 0.059 and p = 0.090, 
respectively). Comparisons between B30f and other kernels, 
namely B50f, converted B30f, and converted B50f, showed 
significant differences (p < 0.001, p = 0.001, and p < 0.001, 
respectively).

Bland-Altman plots showed that the 95% limits of 
agreement between B30f and other kernels (B50f and 
converted B30f) ranged from -14.1% to -2.6% (mean, -8.3%) 
and from -2.3% to 0.7% (mean, -0.8%), respectively (Fig. 4). 

Fig. 3. Influence of kernels on EI. 
EI was calculated from CT images reconstructed using different kernels in 72-year-old male [(A): B30f]. Results for EI were 9.9% in B30f kernel 
image (B), 20.2% in B50f kernel image (C), and 12.1% in converted B30f kernel image (D). EI = emphysema index
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Discussion

In our study, we described a new CNN method to 
convert CT images from different kernels and demonstrated 
an adequate model performance during clinical use 
by comparing EI quantifications between original and 
converted images. 

The necessity of CT image conversion among different 
reconstruction kernels has remained consistent, because 
controlling the protocols used for image acquisition is not 
always possible. Several studies have attempted to develop 
a convenient and universal method for image conversion 
among different reconstruction kernels. Schaller et al. (1) 
introduced a method to simulate smoother kernels by using 
a Gaussian filter to approximate the ratio between smooth 
and sharp kernels. Ohkubo et al. (8) reported an advanced 
filtering method to create CT images with different kernels. 
However, these studies did not evaluate the suitability of 
the converted images for quantification, and these methods 
require additional CT scans for calculating conversion 
parameters such as the point-spread function. Gallardo-
Estrella et al. (9) demonstrated that normalization of CT 
data reconstructed using different kernels reduced variation 
during emphysema quantification. They used energy 
coefficients, which were obtained by analyzing the energy 
in different frequency bands in scans with the reference 
kernel. Although the method did not require additional 
CT, it is difficult to directly predict normalized EI even in 

reference images.
 Our proposed CNN-based method of kernel conversion 

has several advantages over the other published methods 
described above (5, 8, 9). First, our model generated 
converted CT images from any reconstruction kernel using 
an identical architecture. We presented data from 12 pairs 
of kernel conversions using the same CNN model and 
showed that changing the input data according to a desired 
kernel alone was sufficient for obtaining target images, 
making our proposed CNN-based model easily adaptable 
and expandable. The method used here could feasibly be 
adapted to other CT applications such as noise reduction in 
low-dose CT and vendor-based differences in images (16).

Second, our model uses the original CT resolution (512 x 
512) throughout the conversion process with an end-to-
end way. Many other CNN-based studies used pre-trained 
networks originally trained using data from ImageNet, and 
it was necessary to reduce the image size to 256 x 256 
and lower 12-bit HU values to 8-bit red, green, and blue 
values. However, we aimed to use the original size of CT 
images and the complete range of attenuation values (HU). 
To achieve these goals, we devised a simpler CNN model 
and decomposed the three-dimensional scans into two-
dimensional slices to compensate for limitations owing 
to small dataset size. This scheme was performed in the 
end-to-end manner and required no additional calculation 
of parameters. This can enhance the robustness of the 
proposed scheme.

Fig. 4. Bland-Altman plots showing association between B30f and other kernels (B50f and converted B30f).
A, B. Graphs showing differences between B30f and other kernels (B50f and converted B30f). X-axis represents EI in B30f, and Y-axis represents 
differences in EI between B30f and other kernels. (A) B30f and B50f and (B) B30f and converted B30f. 95% limits of agreements ranged from 
-14.1% to -2.6% (mean, -8.3%) and from -2.3% to 0.7% (mean, -0.8%), respectively. SD = standard deviation
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Third, we incorporated residual learning in the model, 
i.e., for converting B10f to B70f images, B10f images are 
input to a specific CNN model and residual images are 
generated as the output. The final image is obtained by 
adding residual images to the input. This scheme improved 
performance and reduced the training time of our CNN 
models because the training time and RMSE values for 
conversion from B10f to B70f were 4.5 hours and 75.0 HU, 
respectively, with 300 iterations. However, without residual 
learning, the performance was > 3 times lower (RMSE, 250.7 
HU), and we could not achieve comparable results even 
with a 10-fold increase in training time. These observations 
attest to the effectiveness of residual learning in the 
proposed method.

Interestingly, there were differences in the RMSE along 
the z direction (Fig. 5). We found a trend of an increase 
from the upper to lower thorax. This might be caused by 
several reasons. First, the upper part is more stable than the 
lower part from breathing. Second, the spatial variability of 
abdominal organs could make the training the CNN models 
more difficult. 

Kernel conversion from B50f to B30f showed considerably 
reduced agreement for EI quantification. Gallardo-Estrella 
et al. (9) revealed that bias and limits of agreement 
decreased from 7.7% (2.4%, 12.9%) to 0.3% (-1.0%, 1.5%) 
after normalization of B45f to B31f. Although we reported 

slightly wider agreement values compared with Gallardo-
Estrella et al. (9), we believe that this could be attributed 
to differences in the study population and reconstruction 
kernel used between two studies. In addition to the 
advantages mentioned above, we believe that our method 
would substantially improve along with advances in deep 
learning techniques.

Nonetheless, our study has several limitations. First, only 
a small sample was included in our study. As each image 
was used for CNN development, validation, and testing, we 
believe that the sample was sufficient in this regard. In 
EI measurement, our study population did not represent 
the entire spectrum of patients with varying degrees of 
emphysema, owing to the rarity of patients with severe 
emphysema. However, Bland-Altman plots demonstrated 
that measurement differences showed no association with 
the extent of emphysema. Next, CT quantification was 
performed using only one CT protocol and CT scanner type. 
Therefore, an external validation under different conditions 
is necessary to test the wide applicability of our CNN model.

In conclusion, CT kernel conversion based on CNNs 
showed adequate performance with high accuracy and speed 
and offered potential for clinical applications. 

Conflicts of Interest
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Fig. 5. Changes in RMSE along z axis.
A, B. Graphs showing differences in RMSE between original image and converted images along z axis in Test 1 and Test 2. There was trend of 
increase from upper to lower thorax.
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