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Abstract
Objective  Abnormalities in segregative and integrative properties of brain networks have been observed in multiple sclerosis 
(MS) and are related to clinical functioning. This study aims to investigate the micro-scale correlates of macro-scale network 
measures of segregation and integration in MS.
Methods  Eight MS patients underwent post-mortem in situ whole-brain diffusion tensor (DT) imaging and subsequent brain 
dissection. Macro-scale structural network topology was derived from DT data using graph theory. Clustering coefficient 
and mean white matter (WM) fiber length were measures of nodal segregation and integration. Thirty-three tissue blocks 
were collected from five cortical brain regions. Using immunohistochemistry micro-scale tissue properties were evaluated, 
including, neuronal size, neuronal density, axonal density and total cell density. Nodal network properties and tissue proper-
ties were correlated.
Results  A negative correlation between clustering coefficient and WM fiber length was found. Higher clustering coefficient 
was associated with smaller neuronal size and lower axonal density, and vice versa for fiber length. Higher whole-brain 
WM lesion load was associated with higher whole-brain clustering, shorter whole-brain fiber length, lower neuronal size 
and axonal density.
Conclusion  Structural network properties on MRI associate with neuronal size and axonal density, suggesting that macro-
scale network measures may grasp cortical neuroaxonal degeneration in MS.
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Introduction

Multiple sclerosis (MS) is a disease of the central nerv-
ous system characterized by demyelination in white matter 
(WM) and gray matter (GM), accompanied by neurodegen-
eration. Clinically, MS patients show both motor dysfunction 
and cognitive impairment. Several attempts have been made 
to understand how these symptoms arise from radiologically 
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observed brain damage. Disconnection of brain regions due 
to WM and GM damage disturbs the optimal information 
flow through the brain and hence has been proposed to be a 
substrate of clinical disability in MS [7, 16, 17]. Innovative 
computational methods originating from graph theory have 
enabled researchers to discover topological patterns of brain 
connectivity that contribute to optimal information distri-
bution through the brain in healthy subjects [1, 2, 28, 29]. 
Moreover, in disease, this approach has been used to explain 
clinical symptoms and model disease progression [1].

In MS, impaired structural network organization, espe-
cially of segregative and integrative properties, has been 
observed. Changes in these macroscopic structural network 
properties relate to WM lesion load and clinical disability 
[27], occur before functional network alterations are present 
[26], and precede clinical impairment in early MS [10]. Fur-
thermore, using machine learning, clinically isolated syn-
drome and relapsing remitting MS patients could be distin-
guished based on their structural brain network properties 
[18]. Despite the clinical relevance of structural network 
changes, their histological correlates in MS remain elusive. 
Recently it has been shown that microscopic tissue charac-
teristics (e.g. spine density) are correlates of macroscopic 
network properties (e.g. clustering coefficient) in humans, 
monkeys and mice: separate datasets with information on 
cellular and network properties of different GM regions were 
collated to investigate their relationship [23, 24, 34, 35]. 
Studying the cellular correlates of network changes within 
patients could be a first step towards a better understanding 
of network alterations in MS.

Therefore, we investigated the microscopic histological 
correlates of macroscopic network measures of segrega-
tion and integration in MS. To do so, we obtained a post-
mortem dataset consisting of in situ brain MRI and histo-
logical brain tissue characteristics from the same subjects. 
We first described the relationship between nodal measures 
of macro-scale segregation and integration (i.e. clustering 
coefficient and WM fiber length). Second, we identified 

microscopic cellular correlates (i.e. neuronal size, neuronal 
density, axonal density and total cell density) of these mac-
roscopic network measures. Finally, we examined the asso-
ciations between micro-scale tissue characteristics and the 
macro-scale measures of segregation and integration, and 
the effect of WM lesion load on these measures.

Methods

Subjects

Eight MS patients were included (Table 1). Of each patient, 
histological data and in situ post-mortem (PM) MRI data 
were collected with a short PM delay (for more informa-
tion see Online Resource 1). This data was collected in col-
laboration with the Netherlands Brain Bank. The study was 
approved by the institutional ethics review board. Before 
death, the MS patients or their next of kin provided writ-
ten informed consent for the use of their tissue and clinical 
information for research purposes to the Netherlands Brain 
Bank. Furthermore, an in vivo imaging dataset of eight age- 
and sex-matched healthy subjects was included to construct 
a structural connectivity atlas. This group consisted of 5 
males and 3 females with a median age of 61.5 years [range 
59–63], age and sex did not statistically differ between 
groups. Written informed consent was also obtained from 
all healthy subjects.

Post‑mortem MRI acquisition

For each MS patient, post-mortem in situ whole-brain MRI 
was acquired using a 1.5T with an 8-channel head coil (for 
more information see Online Resource 1). The protocol 
included a dual-echo T2-weighted sequence to determine 
WM lesion volumes, a 3DT1-weighted fast spoiled gradi-
ent echo (FSPGR) sequence and a 2D echo-planar diffusion 

Table 1   Demographics of 
included patients with multiple 
sclerosis

Median [min–max] is provided for age and post-mortem delay in the bottom row
M male, F female, y years, h hours

Case Sex Age (y) Post-mortem delay (h) Cause of death

1 M 51 4.0 Pneumonia
2 F 57 3.5 Euthanasia
3 M 56 5.0 Gastric perforation
4 M 53 4.0 Euthanasia
5 F 56 4.0 Pneumonia
6 F 81 2.5 Cachexia
7 M 80 4.5 Pneumonia
8 M 71 4.0 Pneumonia

5:3 [M:F] 56.5 [51–81] 4.0 [2.5–5]
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tensor imaging (DTI) (for more information see Online 
Resource 1).

Construction of a group‑based structural 
connectivity atlas in healthy subjects

A structural connectivity atlas was constructed in healthy 
subjects to overcome the potentially confounding effect of 
MS related WM lesions on tractography methods. A 3T MRI 
system (General Electrics, USA) was used to acquire 3DT1 
and diffusion weighted images (for more information see 
Online Resource 1). Diffusion-weighted images were cor-
rected for motion and eddy current distortion using FMRIB’s 
Diffusion Toolbox (FSL-FDT; part of FSL 5.0.9 https​://fsl.
fmrib​.ox.ac.uk/fsl/fslwi​ki [14]). Cortical GM was segmented 
using the automated anatomical labeling (AAL) atlas [33] 
and FIRST (part of FSL) was used to delineate deep GM, 
resulting in a total of 92 nodes. First, bedpostx was run to 
build up diffusion parameter distributions at each voxel, 
after which probabilistic tractography was conducted (prob-
trackx2, part of FSL, 5000 streamlines per voxel) to obtain 
probabilistic maps of WM connections running between all 
pairs of nodes resulting in a structural network for each sub-
ject (Fig. 1a; for more information see Online Resource 1).

Construction of individual structural connectomes 
in MS patients

The post-mortem in situ diffusion images were corrected for 
motion and eddy current distortion using FSL-FDT. Then 
the diffusion tensor was fitted and fractional anisotropy 
(FA) was computed for each voxel. Structural networks of 
individual MS patients were constructed by applying the 
healthy subject based structural connectivity atlas to their 
FA maps. To optimize registration pipelines, all WM lesions 
were manually outlined on the T2 images and lesion filling 
of 3DT1-weighted images was performed (for more infor-
mation see Online Resource 1). Subsequently, the structural 
connectivity atlas was non-linearly co-registered to lesion 
filled 3DT1-weighted images and then linearly registered 
to diffusion-weighted images for every patient [5, 6, 30]. To 
ensure the inclusion of WM only, masks of each WM con-
nection was multiplied with each patients’ lesion-filled WM 
mask derived from SIENAX. A connectivity matrix with 
mean FA values per connection was computed for every MS 
patient. To obtain a binary structural connectivity matrix per 
patient, the 20 percent [8] WM connections with the highest 
mean FA values were selected for each individual (Fig. 1B).

Computation of macro‑scale network topology

Using the structural connectivity matrix of each subject, 
macro-scale network topology was computed for each of 

the 92 regions using the Brain Connectivity Toolbox [22] 
and in-house developed Matlab scripts (Matlab version 13a, 
Mathworks, Natick, MA, USA). To measure segregation, we 
computed the clustering coefficient (Fig. 1b, upper panel). 
For integration, we used the average fiber length of all 
WM connections of a node (Fig. 1b, lower panel; for more 
information see Online Resource 1). The average WM fiber 
length per node was computed for every MS subject based 
on their individual connectivity matrix (for more informa-
tion see Online Resource 1). Whole-brain measures of the 
clustering coefficient and fiber length were calculated by 
averaging the values of all nodes for each patient.

Tissue selection and cellular micro‑scale measures

To quantify micro-scale regional features, five cortical brain 
regions were excised according to a standardized protocol 
[25]. The superior frontal gyrus (N = 8), inferior frontal 
gyrus (N = 6), cingulate gyrus (N = 7), inferior parietal lob-
ule (N = 7) and superior temporal gyrus (N = 7) were excised, 
adding up to a total of 33 tissue blocks across all patients 
(Fig. 1c; for more information see Online Resource 1). From 
now on these will be referred to as regions of interest (ROIs). 
Tissue blocks were formalin fixed and embedded in paraffin 
and tissue sections were cut at 10 µm. Four different micro-
scale measures were assessed: (1) neuronal density (i.e. 
neuronal count per mm2), (2) neuronal size in µm2 (i.e. total 
area stained for neurons divided by the neuronal number, per 
mm2), (3) axonal density in relative optical density (ROD) 
and (4) total cell density (i.e. the sum of the number of astro-
cytes, neurons and oligodendrocytes in number per mm2; 
Fig. 1d). Myelin density was obtained to identify whether it 
was related to the above mentioned micro-scale measures.

Staining procedure

Immunohistochemistry was performed to stain for neurons, 
axons, astrocytes and myelin (for more information see 
Online Resource 1). Antigen retrieval was performed prior 
to staining using a citrate buffer (pH 6) for all stainings, 
except for the olig2 staining where Tris–EDTA (pH 9) was 
used as a pre-treatment. Sections were blocked with normal 
goat serum and after incubation with the primary antibod-
ies sections were rinsed and incubated with biotin labeled 
secondary antibodies (1:500 DAKO, Glostrup, Denmark) 
then they were rinsed again and incubated with streptavi-
din-biotin-peroxidase complexes (1:200; Vectastain; Vector 
Laboratories Inc., Burlingame, CA, USA). Only during the 
olig2 staining Envision horseradish peroxidase complexes 
(DAKO, Glostrup, Denmark) was used instead of a regular 
biotinylated secondary antibodies and streptavidin-biotin-
peroxidase complexes. Finally, sections were rinsed and 
3,3′-diaminobenzidine tetrahydrochloride dihydrate (DAB; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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DAKO, Glostrup, Denmark) precipitate was generated in 
reaction with peroxidase.

Acquisition and quantification of cellular 
micro‑scale measures

Images of were acquired using a Leica DM/RBE photomi-
croscope (Leica, Heidelberg, Germany). A 4 × 4 mm2 grid 
was overlaid on an entirely imaged Nissl stained section and 
by means of random systematic sampling grid frames con-
taining six layered cortex were selected as quantification 
sites for every tissue block. These sites were the same for 

all micro-scale measures quantified in consecutive sections 
per tissue block. Neuronal density, size and astrocyte density 
were quantified using MCID segmentation scripts (MCID 
Image Analysis Software Solutions for Life Sciences, UK), 
while the number of oligodendrocytes was quantified using 
ImageJ software. Axonal density was quantified using the 
relative optical density (ROD). ROD is a method that meas-
ures the amount of stained structures based on the optical 
staining density by converting an image to grayscale and 
correcting for the background intensity [19]. Finally, the 
extent of cortical (de)myelination was also quantified using 
the ROD.

Fig. 1   Overview of the study workflow. a Displays the methodologi-
cal pipeline to compute connectomes in investigated subjects. The 
gray background surrounding the upper panels indicates the pipeline 
in healthy subjects. Upper left picture displays the 92 parcellated gray 
matter regions that were used to build the connectome. The upper 
middle picture shows an example of a tract between the left and right 
superior frontal gyrus. The color scale indicates the presence of vox-
els in this tract across the eight healthy subjects. Yellow indicates 
presence of the tract in a voxel in eight out of eight subjects while 
red indicates presence of a tract in a voxel in one out of eight sub-
jects. The right upper picture shows the thresholded and binarized 
white matter tract, only containing voxels that were present in six out 
of eight subjects. This step was performed for all 92 × 91 white mat-
ter connections resulting in a white matter tract atlas, displayed in a 
simplified manner in the lower left panel. The white matter tract atlas 

was registered to subject space and then co-registered to the native 
diffusion-weighted (DW) image, as shown in the lower middle and 
left panels. b Clustering coefficient and fiber length are schematically 
displayed in a glass brain in the upper and lower left panels, respec-
tively. Fiber length is depicted here as the Euclidian distance for illus-
tration purposes, note that it was measured as the actual fiber length. 
The left panel of B shows the 20% density thresholded connectivity 
matrix of 1 subject with multiple sclerosis based on the mean FA 
underneath the white matter connections. c Shows an example of a 
1  cm thick coronal brain slice from which brain regions of interest 
(ROIs) tissue blocks were dissected. ROIs are indicated in the lower 
panel glass brain in b. d The histological staining of neurons, axons, 
astrocytes and oligodendrocytes. The sum of the number of astro-
cytes, oligodendrocytes and neurons was used as the total cell density
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Statistical analysis

Statistical analyses were performed using Matlab and 
SPSS (version 22.0, IBM, Chicago, IL, USA). Spearman’s 
rank correlation coefficient was used to evaluate the cor-
relations between (a) macro-scale network properties, (b) 
regional macro-scale network properties with their corre-
sponding micro-scale histological features and (c) whole 
brain WM lesion volume and regional GM demyelina-
tion with macroscopic and microscopic measures. In the 
above-described correlation data points were interdepend-
ent since different data points (i.e. different brain regions) 
were used from the same subjects. Therefore, we also 
performed this analysis with averaged macroscopic and 
microscopic characteristics of the every ROI per patient. 
To evaluate the possible effect of age, we performed a 
partial correlation including age as a covariate. P values 
were considered significant at p < 0.050 and two-tailed 
testing was performed. In addition to these non-paramet-
ric statistics, we performed permutation testing (for more 
information see Online Resource 1) to further objectify 
the significance of the correlations between micro-scale 
and macro-scale measures. Furthermore, with respect 
to the connection density threshold for each individual 
connectome (20% in our main analyses), reproducibility 
of all results was tested across different density thresh-
olds (namely 20%, 25% and 30%). Finally, we quantified 
whether the observed correlations were region specific or 
merely a global property of the network, and therefore, 

true for all regions through random resampling (for more 
information see Online Resource 1).

Results

Macro‑scale features of segregation and integration 
in MS

Clustering coefficient was negatively correlated with fiber 
length across all 92 nodes of the connectome (N = 92; 
rho = − 0.45; p < 0.001; Fig. 2a–c). To assess whether the 
ROIs had similar properties on the macro-scale compared to 
all other nodes in the connectome, we performed the same 
correlation for this subset of regions. Again, a negative 
association was present within ROIs when correlating their 
clustering coefficient and fiber length (N = 33; rho = − 0.57; 
p = 0.001; Fig. 2d).

Macro‑scale network characteristics are reflected 
by cellular micro‑scale features in MS patients

We found significant correlations between both clustering 
coefficient and fiber length with neuronal size and axonal 
density were found (Fig. 3a–d). In particular, higher macro-
scale regional clustering coefficient was correlated with 
smaller neuronal size (N = 33; rho = − 0.451; p = 0.008; 
Fig.  3a) and lower micro-scale axonal density (N = 32; 
rho = − 0.403; p = 0.022; Fig. 3b), while longer average fiber 

Fig. 2   Anti-correlation between macroscopic clustering coefficient 
and fiber length. a Shows the mean clustering coefficient of all 92 
parcellated gray matter regions across the eight subjects. Light green 
and large dots represent high clustering coefficients. Dark green and 
small dots represent low clustering coefficients. b Shows the mean 
fiber length of all 92 parcellated gray matter regions across the eight 

subjects. Light green and large dots represent long fiber lengths. 
Dark green and small dots represent short fiber lengths. c Shows the 
anti-correlation between macroscopic clustering coefficient and fiber 
length displayed in a, b. d Anti-correlation between macroscopic 
clustering coefficient and fiber length of the 33 ROIs
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Fig. 3   Macroscopic clustering coefficient and fiber length correlate 
with microscopic cellular features. a Correlation between clustering 
coefficient and neuronal size. b Correlation between clustering coef-
ficient and axonal density. c Correlation between fiber length and 
neuronal size. d Correlation between fiber length and axonal density. 
e Correlation between clustering coefficient and neuronal size. Their 
values of different ROIs are averaged for every person. f Correlation 
between clustering coefficient and axonal density. Their values of 

different ROIs are averaged for every person. g Correlation between 
fiber length and neuronal size. Their values of the ROIs are averaged 
for every person. h Correlation between fiber length and axonal den-
sity. Their values of different ROIs are averaged for every person. The 
scatterplot dots are ROIs and their color indicates to which subject 
they belong in a–d. In e–h the macro-scale and micro-scale informa-
tion on ROIs was averaged and the color of the dots indicate to which 
subject to averaged ROIs belong



218	 Journal of Neurology (2019) 266:212–222

1 3

length was correlated with a larger neuronal size (N = 33; 
rho = 0.458; p = 0.007; Fig. 3c) and higher axonal density 
(N = 32; rho = 0.409; p = 0.020; Fig.  3d). These results 
remained significant after permutation testing. In addition, 
similar results were obtained after replication with density 
levels of 25% and 30% (data not shown). No significant 
effect of age was detected regarding correlations between 
clustering coefficient and neuronal size and between fiber 
length and axon density (N = 33; rho = − 0.357; p = 0.048 
and N = 32; rho = 0.402; p = 0.025, respectively). After cor-
rection for age, correlations between clustering coefficient 
and axon density and between fiber length and neuronal size 
were no longer statistically significant (N = 32; rho = 0.316; 
p = 0.084 and N = 33; rho = 0.311; p = 0.089, respectively).

The analysis was repeated with averaged macro-
scopic and microscopic characteristics of the every ROI 
per patient (Fig.  3e–h). A significant correlation was 
still found between clustering coefficient and neuronal 

size (N = 8; rho = − 0.738; p = 0.037; Fig. 3e), cluster-
ing coefficient and axonal density (N = 8; rho = − 0.755; 
p = 0.031; Fig. 3f) and fiber length and axonal density 
(N = 8; rho = 0.898; p = 0.002; Fig. 3h). The correlation 
between fiber length and neuronal size was not signifi-
cant (N = 8; rho = 0.571; p = 0.139; Fig. 3g). Table 2 dis-
plays network characteristics per patient: an overview of 
the mean and range of macro-scale network measures for 
all 92 GM regions and for the ROIs per subject. It also 
includes the mean range of micro-scale measures of ROIs 
and anatomical regions that were dissected per patient. 
Note that macro-scale network characteristics of ROIs 
cover a small range of possible within subject macro-scale 
measures, although across subjects a large range of mac-
roscopic measures is covered. In addition, the range of 
micro-scale measures covered by the different ROIs within 
every subject is small, ensuring the validity of our results 
when averaging data points within subjects.

Table 2   Macroscopic, microscopic and lesion load measures per patient

The median is shown followed by ranges between brackets of fiber length, clustering coefficient, axonal density and neuronal size are presented 
for the ROIs, per person; the median and ranges are also shown for fiber length and clustering coefficient for the 92 Gy matter regions
ROIs regions of interest, ROD relative optical density, mL milliliter, mm millimeter, CG cingulate gyrus, SFG superior frontal gyrus, STG supe-
rior temporal gyrus, IFG inferior frontal gyrus, IPL inferior parietal gyrus

Patient ID Range of macroscopic and microscopic measures within the 
ROIs

Range of macroscopic 
measures of the 92 Gy matter 
regions

Whole brain 
T2 lesion load 
(mL)

Brain regions 
included as 
ROIs

Fiber length 
(mm)

Clustering 
coefficient

Axonal den-
sity (ROD)

Neuronal size 
(um2)

Fiber length 
(mm)

Clustering 
coefficient

1 123.17 
[120.26–
126.07]

0.58 [0.50–
0.66]

0.16 [0.12–
0.19]

102.95 
[102.90–
103.00]

134.75 
[85.80–
231.24]

0.51 [0.00–
1.00]

28.81 CG, SFG

2 198.23 
[178.95–
217.51]

0.11 [0.07–
0.14]

0.27 [0.24–
0.30]

115.54 
[112.55–
117.92]

172.16 
[112.18–
250.10]

0.09 [0.00–
0.52]

10.84 SFG, STG

3 143.38 
[125.78–
150.82]

0.43 [0.39–
0.69]

0.17 [0.12–
0.18]

110.11 
[96.71–
127.65]

155.74 
[111.13–
238.73]

0.41 [0.00–
1.00]

17.43 CG, IFG, SFG, 
STG

4 124.48 
[114.00–
139.55]

0.62 [0.53–
0.70]

0.17 [0.16–
0.19]

77.22 [62.13–
109.91]

127.19 
[81.43–
222.68]

0.53 [0.00–
1.00]

32.10 CG, IFG, SFG, 
STG, IPL

5 156.78 
[124.14–
165.22]

0.43 [0.25–
0.50]

0.17 [0.15–
0.19]

110.33 
[95.71–
123.32]

150.49 
[92.91–
218.917]

0.33 [0.00–
1.00]

25.45 CG, IFG, SFG, 
STG, IPL

6 158.78 
[129.77–
193.72]

0.57 [0.31–
0.66]

0.24 [0.20–
0.26]

101.79 
[99.49–
113.65]

149.86 
[98.41–
213.48] 
171.50

0.47 [0.00–
1.00]

16.16 CG, IFG, SFG, 
STG, IPL

7 145.16 
[125.13–
169.32]

0.38 [0.20–
0.62]

0.20 [0.18–
0.23]

115.35 
[110.24–
124.81]

153.89 
[55.48–
225.45] 
171.50

0.33 [0.00–
0.80]

5.99 CG, IFG, SFG, 
STG, IPL

8 180.42 
[142.50–
223.16]

0.21 [0.07–
1.00]

0.25 [0.22–
0.27]

118.60 
[105.85–
129.45]

165.48 
[110.22–
252.54]

0.20 [0.00–
1.00]

5.97 CG, IFG, SFG, 
STG, IPL
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No associations were found between nodal GM demy-
elination and macro-scale measures of integration and 
segregation or micro-scale measures of axonal density and 
neuronal size. On the contrary, whole-brain WM lesion 
volume was associated with clustering coefficient, fiber 
length, neuronal size and axonal density (N = 8; rho = 0.738; 
p = 0.037; rho = − 0.786; p = 0.021; N = 8; rho = − 0.905; 
p = 0.002; N = 8; rho = − 0.838; p = 0.009; N = 8, respec-
tively; Fig. 4a–d).

Macro‑scale connectomic measures and micro‑scale 
cellular features are node specific

After resampling of the 92 macro-scale network indices 
within each patient, such that these were randomly coupled 
to the patient’s nodal micro-scale characteristics (N = 2–5), 
over all 1000 repetitions, the association between macro-
scale clustering coefficient and micro-scale neuronal size 
had a lower correlation coefficient and a higher p value (i.e. 

did not reach significance) (rho = − 0.299; p = 0.188) com-
pared to the actual micro-scale and macro-scale correlation 
(N = 33; rho = − 0.451; p = 0.008). This indicates that the 
micro-scale properties of a ROI did not solely represent 
global network features of a subject, but that they were spe-
cific to the macro-scale properties of that ROI.

Discussion

This study provides novel information regarding the rela-
tionship of segregative and integrative regional macro-scale 
network properties and their micro-scale histological cor-
relates in MS. We showed that a negative correlation exists 
between nodal features of segregation (i.e. clustering coef-
ficient) and integration (i.e. fiber length) at the macro-scale. 
Further, these macro-scale network properties were associ-
ated with neuronal size and axonal density. Cortical regions 
with higher clustering coefficients were characterized by 

Fig. 4   WM lesion volume correlated with macroscopic network prop-
erties and microscopic tissue characteristics. a Correlation between 
clustering coefficient and white matter lesion volume. Whole-brain 
measures were used for both measures for every person. b Correlation 
between fiber length and white matter lesion volume. Whole-brain 
measures were used for both measures for every person. c Correlation 
neuronal size and white matter lesion volume. Whole-brain lesion 

volume was used for every person while micro-scale measures were 
averaged across regions of interest (ROIs). d Correlation between 
axonal density and white matter lesion volume. Whole-brain lesion 
volume was used for every person while micro-scale measures were 
averaged across regions of interest (ROIs). The scatterplot dot colors 
indicate the different subjects
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smaller neurons and lower axonal density, while regions 
with a longer fiber length contained larger neurons and 
higher axonal densities. Finally, subjects with a higher WM 
lesion volumes showed higher whole-brain clustering and 
shorter whole-brain fiber length but also smaller neurons 
and a lower axonal densities.

We found a negative correlation between segregation 
and integration on the macro-scale across all 92 nodes on 
a group-level. This indicates that regions with a high clus-
tering coefficient are mostly connected to other regions via 
relatively short fibers, while regions that have long distance 
WM fibers have less connections between their nearest 
neighbors. From a graph theoretical point of view, a network 
with a trade-off between segregative and integrative proper-
ties may be optimal for information flow [20, 21]. Although 
alterations in the structural brain in MS have been described, 
maintained small world properties have been reported [12, 
27]. Therefore, the negative association between clustering 
coefficient and fiber length in our dataset is in line with pre-
vious literature.

The next step was to investigate the micro-scale correlates 
of these macro-scale measures. Higher clustering coefficient 
was associated with smaller neuronal size and lower axonal 
density, and vice versa for fiber length. Studies have shown 
that micro-scale axonal density reflects projections between 
neurons of different cortical regions as well as recurrent con-
nectivity between neurons within regions [31, 32]. Further-
more, neuronal size has been shown to reflect the extent of 
dendritic branching of a neuron [13]. Electrophysiological 
studies indicated that quantitative morphological differences 
of neurons (i.e. axonal and dendritic arborization) may con-
tribute to their qualitative abilities of complex signal integra-
tion, the formation of integrative neural networks and asso-
ciated cognitive processing [4, 15, 36]. This may be in line 
with our findings that neuronal size and axonal density are 
higher in regions that are macroscopically more involved in 
integrative rather than segregative processes and vice versa 
(Fig. 5).

Macro-scale and micro-scale measures were associ-
ated with whole brain WM lesion volume. This indicates 
that differences in these measures between patients are not 
solely a matter of inter-subject variation, but are at least 
partly explained by disease severity. More specifically, we 
found that higher WM lesion volumes were associated with 
higher whole-brain clustering coefficient and lower whole-
brain fiber length. This is in line with in vivo studies where 
structural network efficiency was associated with WM lesion 

volume [12, 27]. Zooming in, we found that a higher WM 
lesion volume, but not GM demyelination, was associated 
with lower neuronal size and lower axonal density. Interest-
ingly, the latter two micro-scale measures are thought to 
represent the histopathological underpinnings of cortical 
atrophy in MS [19], which is also related to damage in WM 
tracts [3, 11, 30]. Additionally, future research should deter-
mine whether specifically smaller neurons tend to shrink 
since previous research indicates that they may preferentially 
atrophy due to higher susceptibility of their thin axons to 
degenerate after WM damage [9]. According to the litera-
ture it could be that WM lesions mediate both macro-scale 
network characteristics and micro-scale GM characteristics, 
however, we cannot support this finding based on our results. 
Finally, our findings indicate that measures of structural net-
work organization may be seen as a bridge between micro-
scale cortical alterations and clinical disability.

Some limitations were present in our study. First, we 
did not include healthy subjects in this study. In future 
studies, the inclusion of healthy subjects is necessary to 
evaluate whether the relation found between macroscopic 
and microscopic properties in this study are also present 
in healthy subjects. Furthermore, although our sample 
size is not small for a combined post-mortem and MRI 
study, future studies with larger samples are necessary to 
replicate our findings. Also, MS patients were imaged on 
two different MRI scanners, but since network measures 
are quantified from binarized WM tract FA values within 
every subject, scanner influence on network measures is 
minimal. Lastly, crossing fibers may be a confounding fac-
tor when determining 20% of tracts with the highest FA 
values. However, since the effect of crossing fibers would 
be present in all subjects, inter-subject variation and dis-
ease severity remain more important factors determining 
our results.

To conclude, we showed that in MS, a trade-off (i.e. nega-
tive correlation) exists between segregative and integrative 
properties of brain regions. Subjects with distinct macro-
scale network characteristics also showed distinct tissue 
characteristics on the micro-scale. More specifically, regions 
containing smaller neurons and lower axonal densities were 
characterized by more locally clustered structural connectiv-
ity, while the opposite relation was observed for regions with 
longer WM connections. WM lesion volume was associated 
with network properties and tissue properties in MS. Our 
study can be seen as a first step to better understand what 
network characteristics, and possibly changes therein, com-
monly observed in MS may mean on a cellular level in MS.
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Fig. 5   Macro-scale network measures are reflected by micro-scale 
features of neuronal morphology. a This panel displays our hypothe-
sis that neurons with large cell bodies and extensive dendritic branch-
ing are present in regions that are macroscopically strongly involved 
in integrative processes (long fiber lengths) instead of local segre-

gation (low clustering coefficients). b This panel displays our thesis 
that neurons with small cell bodies and limited dendritic branching 
are present in regions that are macroscopically strongly involved in 
segregation (high clustering coefficients) and less involved in global 
integration (short fiber lengths)
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