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Abstract

Assessment of changes in DNA methylation (DNA-m) has the potential to identify adverse environmental exposures.
To examine DNA-m among a subset of participants (n¼369) in the Isle of Wight birth cohort who reported variable near res-
ident traffic frequencies. We used self-reported frequencies of heavy vehicles passing by the homes of study subjects as a
proxy measure for TRAP, which were: never, seldom, 10 per day, 1–9 per hour and >10 per hour. Methylation of cytosine-
phosphate-guanine (CpG) dinucleotide sequences in the DNA was assessed from blood samples collected at age 18 years
(n¼369) in the F1 generation. We conducted an epigenome wide association study to examine CpGs related to the frequency
of heavy vehicles passing by subjects’ homes, and employed multiple linear regression models to assess potential associa-
tions. We repeated some of these analysis in the F2 generation (n¼140). Thirty-five CpG sites were associated with heavy
vehicular traffic. After adjusting for confounders, we found 23 CpGs that were more methylated, and 11 CpGs that were less
methylated with increasing heavy vehicular traffic frequency among all subjects. In the F2 generation, 2 of 31 CpGs were as-
sociated with traffic frequencies and the direction of the effect was the same as in the F1 subset while differential methyla-
tion of 7 of 31 CpG sites correlated with gene expression. Our findings reveal differences in DNA-m in participants who
reported higher heavy vehicular traffic frequencies when compared to participants who reported lower frequencies.
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Introduction

Evidence for the health impacts of air pollution has been
mounting up for several decades [1–3]. Exposure to ambient air
pollutants is associated with both acute and chronic health
effects and the impacts are felt on global and local scales [4].
Interestingly, the observed adverse health effects are seen even
at very low levels of air pollution exposure, and it is unclear
whether any threshold exists (i.e. a concentration below which
there are no effects on health) [5]. The concentration of air pol-
lutants can differ in a small geographic area depending on local
ambient conditions [6]. Key environmental factors that signifi-
cantly affect local air quality includes proximity to traffic, wood
burning, coal burning, dry cleaning, motor vehicle exhaust and
industrial emissions, among others [7–14]. Exposures to such
environmental factors are associated with asthma exacerbation
[15], although their contribution to the development of the dis-
ease is uncertain [16].

For an environmental factor such as traffic, it is often neces-
sary to investigate simple proxies such as distance to roadways
and traffic estimates or counts, to help assign individual expo-
sures and account for spatial variability. For instance, there is
increasing evidence that living near heavy traffic is associated
with increased rates of asthma, cardiovascular disease and de-
mentia [17–21], and chronic air pollution exposure gradients at
such small scales are associated with adverse cardiorespiratory
effects [22]. In the absence of neighborhood level, air pollution
measurements, proximity to traffic, traffic volume, among other
methods, can be employed [6, 20, 23–30]. Such substitutes facili-
tate the characterization of smaller-scale air pollution expo-
sures, and have been operative in some health studies [31–33].

Recent evidence indicates that epigenetics may play an im-
portant role in mediating the health effects of air pollution [34].
Indeed, it has been suggested that the extent of epigenetic
markers can change progressively and help construct cumula-
tive exposure patterns over time [35]. Interestingly, changes in
epigenetic markers can result from exposure to a risk factor
such as air pollution, and such changes can potentially serve as
predictive biomarkers of susceptibility to adverse health [36].
The epigenetic marker of DNA methylation (DNA-m), which is
the addition of a methyl group to cysteine in cytosine-
phosphate-guanine (CpG) dinucleotides sequences in the DNA,
is reported to be related to air pollution exposures [37, 38], and
adverse respiratory health [39], including asthma [40, 41].

Changes in the epigenome and gene expression may be in-
duced by exposure to air pollution [34, 42] and this is relevant to
the development of several pathophysiological processes.
Difflerential blood DNA-m in response to air pollution exposure
from sources such as traffic has been reported [43–45]. We can-
not or rarely can directly assess DNA-m in target tissues, such
as the lung. However, for many biomarkers, blood changes are
considered to constitute a window through which specific pro-
cesses in other tissues can be assessed. In addition, during de-
velopment, blood and airways stem from the mesoderm and
may represent to have a similar development and susceptibility
[46]. For these reasons, the effects of TRAP on epigenome in
blood samples represent informative biomarkers of change in
the airways.

Given that (i) TRAP exerts its greatest impact on local scales,
particularly near roadways [47] and (ii) the mechanistic basis for
the effects of TRAP on the epigenome is not well delineated [48],
additional studies can provide further evidence and advance
the current state of the science [49]. Accordingly, we used the
self-reported frequencies of heavy vehicles passing by the

homes of study subjects as a proxy measure for TRAP and eval-
uated their associations with the methylation of CpG sites
among 18-year-old participants in the Isle of Wight (IoW) birth
cohort, UK (n¼ 369). Our motivating questions were:

1. Which specific CpG sites are associated with heavy vehicular
traffic in the birth cohort?

2. Are there any trends in the association between differential
DNA-m (both higher and lower) and the frequency of expo-
sure to heavy vehicular traffic?

Results
Characteristics of Study Population

Eighteen percent of the subjects (n¼ 67) reported never having
any heavy vehicles passing by their homes while 82% reported
some heavy vehicular traffic outside their homes (Table 1).
About 20% had a history of maternal smoking and nearly 50%
were exposed to tobacco smoke outside their homes and before
age 4 (Table 1). About a quarter of the subjects were current
smokers who started smoking at an average of 14.5 (SD 1.5)
years. A vast majority of the subjects present a middle class sta-
tus (72%) with over 90% still living at home with their parents
and 70% living in a private residential property. The average
body mass index (BMI) was 23.6 (SD 4.3). In this subset with
DNA-m, there were more females than males (66% vs. 34%) due
to the study design (following until pregnancy) (Table 1).

Which Specific CpG Sites Are Associated with Heavy
Vehicular Traffic in the IoW Cohort?

There were a total of 371 CpG sites that were associated with
heavy vehicular traffic frequency based on ttscreening results.
However, we chose the top CpGs with a cutoff percentage of 70
[m¼ 70 across 100 total iterations (i¼ 100)] was used to deter-
mine the final pool of potentially important CpG sites (in our
case 35 of 371 had a cutoff percentage between 70 and 94).
Therefore, a final group of 35 CpGs was selected in step 1
(Tables 2 and 3). The 35 CpG sites are listed in the order of signif-
icance based on the epigenome-wide association analysis
results. Over 30% of these CpGs were located on Chromosome 1.
The identified CpG sites were associated with 34 different genes
(two CpG sites—cg11156891 and cg12407057—mapped to one
gene ANKRD65). A majority of the CpG sites were located in the
body of the identified gene (24 of 35); 4 were 200–1500 bases up-
stream of the transcriptional start site (TSS), while 2 were 0–200
of the TSS; 3 were within the 50 untranslated region, and 2 were
over 50 kb from the nearest gene (Table 3).

We also assessed answers to other traffic-related questions
such as ‘How often do cars pass your house or on the street less than
100 meters away?’ and ‘How frequently are you annoyed by outdoor
air pollution (from traffic industry, etc) in your home if you keep the
window open?’. However, these did not have much variability nor
did they yield any significant results with the ttScreening package.
The CpG by CpG analysis also did not show any statistically sig-
nificant results for Any versus Never reports of heavy vehicular
traffic frequency after adjusting for false discovery rate (FDR; all
adjusted P-values were �0.4). There was no association between
heavy vehicular traffic frequency and cg05575921, located in the
aryl hydrocarbon receptor repressor (AHRR) gene. However, there
appeared to be an association with self-reported smoking status
(among current smokers), tobacco smoke exposure assessed
through a questionnaire administered at 10 years and environ-
mental tobacco smoke exposure (Table 4).
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Gene Set Enrichment Analysis

Using the bioinformatic resource ToppGene Suite [50], we per-
formed a gene enrichment analysis to determine the pathway(s)
associated with genes of the significant CpG sites [the respec-
tive genes that had the exact CpG coordinates, or if the CpG was
located between two genes (i.e. intergenic CpGs), we selected
the gene with the closest proximity to the intergenic CpG].
Input parameters for the gene enrichment analysis were as

follows: All 34 genes were included in the training set, the hy-
pergeometric probability mass function was used to calculate
P-values, and the FDR was controlled at 0.05 using the
Benjamini–Hochberg method.

Two genes, RASA3 and JPH3, were associated with both
ligand-gated calcium channel activity and calcium-release
channel activity (Fig. 1). Four genes (CRISPLD2, CDCP2, VWA1

and LGI2) were identified in the biological pathway for encoding

Table 1: Comparison of population characteristics of participants in the whole cohort and those with DNA-m at age 18 years

Whole cohort
(n¼ 1313)

Sample with DNA-m
(n¼ 369)

P-value

n (%) n (%)

Gender <0.0001
Female 660 (50.27) 245 (66.4)
Male 653 (49.73) 124 (33.6)
Maternal smoking status 0.24
No 1002 (76.31 292 (79.1)
Yes 305 (23.23) 75 (20.3)
Unanswered 6 (0.46) 2 (0.5)
Frequency of heavy vehicles passing by home 0.783
>10 per hour 274 (20.87) 77 (20.9)
1–9 per hour 223 (16.98) 69 (18.7)
10 per day 119 ( 9.06) 36 (9.8)
Seldom 427 (32.52) 120 (32.5)
Never 241 (18.35) 67 (18.2)
Missing 29 (2.21)
Exposure to smoking outside home 0.41
Yes 598 (45.54) 180 (48.8)
No 663 (50.50) 181 (49.1)
Unanswered 52 (3.96) 8 (2.2)
Current smoking status 0.3
No 910 (69.31) 270 (73.2)
Yes 368 (28.03) 95 (25.8)
Unanswered 35 (2.67) 4 (1.1)
Any exposure to environmental tobacco smoke (at 10 years) 0.23
No 716 (54.5) 223 ( 60.4)
Yes 492 (37.5) 132 (35.8)
Unanswered 105 (8.0) 14 (3.8)
Any exposure to environmental tobacco smoke (at birth, 1 year, 2 year or 4 years) 0.11
No 602 (45.8) 186 (50.4)
Yes 708 (53.9) 182 (49.3)
Unanswered 3 (0.23) 1 (0.27)
Socio-economic status 0.73
High 103 (7.84) 33 ( 8.9)
Mid 952 (72.51) 267 (72.4)
Low 177 (13.48) 58 (15.7)
Unanswered 81 (6.17) 11 (2.9)
Living with parents 0.11
Yes 1158 (88.19) 342 (92.7)
No 129 (9.82) 27 (7.3)
Missing 26 (1.98)
Type of residential property 0.78
Rented privately 145 (11.0) 28 (7.5)
Rented council/housing association 209 (15.9) 65 (17.6)
Owned privately 908 (69.1) 271 (73.4)
Other 18 (1.37) 5 (1.4)
Missing 33 (2.51)
Median (p5, p95)
BMI 22.1 (18.2, 32.1) 22.5 (18.7, 32.1) 0.09
Age subject started smoking 15 (12, 17) 15 (12, 17) 0.88
Time living in present house 48 (6, 48) 48 (6, 48) 0.48

Percentage has been rounded up to whole numbers, where applicable.
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structural extra-cellular matrix (ECM) glycoproteins (all FDR-
adjusted P< 0.05, Fig. 1). Additionally, a total of nine genes
(CRISPLD2, ANKRD65, FBXO25, VWA1, C1QTNF12, UNC5B, SEPT9,
ACAP3 and JPH3) came up as having a coexpression association
with genes that are upregulated in the human microvascular
endothelial cells.

When the analysis is separated into the 23 more methylated
and 11 less methylated CpG sites, the latter is identified in the fol-
lowing gene families: zinc fingers (P¼ 5.3E–3, FDR-adjusted
P¼ 1.7E–2), synaptotagmins (P¼ 5.6E–3, FDR-adjusted P¼ 1.7E–2)
and A-kinase anchoring proteins (P¼ 9.9E–3, FDR-adjusted P¼ 2.0E–
2) but no molecular functions are identified. On the other hand, the
former is associated with five different molecular functions:

i. calcium-release channel activity (P¼ 1.7E–4, FDR-adjusted
P¼ 1.2E–2),

ii. ligand-gated calcium channel activity (P¼ 1.7E–4, FDR-
adjusted P¼ 1.2E–2),

iii. intracellular ligand-gated ion channel activity (P¼ 6.E–4,
FDR-adjusted P¼ 2.9E–2),

iv. succinyl-CoA hydrolase activity (P¼ 1.2E–3, FDR-adjusted
P¼ 4.3E–2) and

v. metal ion transmembrane transporter activity (P¼ 1.7E–3,
FDR-adjusted P¼ 4.7E–2).

Additionally, 17 gene families are identified with these 23
more methylated CpGs including CD molecules Type I classical
cadherins and Peptidyl arginine deiminases (both: P¼ 5.2E–3,
FDR-adjusted P¼ 3.4E–2).

Association with Air Pollutants in the Comparative
Toxicogenomics Database

The analysis did not reveal any links to air pollutants, as there is
currently not enough data on air pollution to factor into biological
pathway analyses. However, a search of the description and page
index of each gene provided information on reported chemicals re-
lated to air pollution in the comparative toxicogenomics database
[51]. All but three genes were associated with chemical(s) found in
air pollution, e.g. ‘benzo(a)pyrene’, ‘7,8-dihydro-7,8-dihydroxyben-
zo(a)pyrene 9,10-oxide’, ‘smoke’ and even ‘particulate matter’
(Table 2).

Diseases for Which the Identified Genes Are Enriched

The gene enrichment analysis also identified the following dis-
eases that associated with six of the genes identified with the
significant CpG sites in this study

Table 2: Summary of (a) CpG sites found this is exploratory study, (b) genes associated with the CpGs and (c) list of chemicals documented in
the comparative toxicogenomics database that are related to air pollution

(a) CpG site (b) Identified gene in this study (c) Comparative toxicogenomics database chemical (related to air pollution)

cg25895913 CDH4 Benzo(a)pyrene, 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
cg11156891 ANKRD65 Benzo(a)pyrene
cg12407057 ANKRD65 Benzo(a)pyrene
cg20747739 FAM132A Benzo(a)pyrene
cg18565510 ACAP3 Benzo(a)pyrene
cg24843003 DAZAP1 Benzo(a)pyrene, air pollutants, occupational, 1-hydroxypyrene
cg15730464 LGI2 Benzo(a)pyrene, soot, tobacco smoke pollution
cg16196077 RTKN2 Benzo(a)pyrene, ozone
cg02707264 MYRIP Benzo(a)pyrene
cg03476673 CRISPLD2 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
cg07023532 ACOT4 Benzo(a)pyrene
cg20255272 VWA1 None
cg12417992 SLC6A9 Benzo(a)pyrene, ozone, dibenzo(a, l)pyrene
cg04154465 WNT2B None
cg12813768 SYCP1 None
cg14162906 TMEM222 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
cg24361098 BCL11A Benzo(a)pyrene
cg16147794 SLC16A10 Benzo(a)pyrene
cg16668397 JPH3 None
cg26419883 TRPM5 Benzo(a)pyrene
cg21775675 TMEM161B None
cg04794690 PADI3 Benzo(a)pyrene, particulate matter
cg06942649 FBXO25 Benzo(a)pyrene
cg18459806 NIN Benzo(a)pyrene, 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
cg20631351 PALM Smoke
cg00347824 NSMAF Benzo(a)pyrene
cg17053854 SEPT9 Benzo(a)pyrene, 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
cg25324786 RASA3 Benzo(a)pyrene, 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
cg26720961 TSNARE1 None
cg05575058 FAM164A Benzo(a)pyrene
cg15742605 SAMD11 Smoke
cg26185508 CDCP2 None
cg02378006 UNC5B None
cg08462127 MYOM2 Benzo(a)pyrene
cg11017318 SYT16 None

This information was obtained from the UCSC GenomeBroswer (GRCh37/hg19).
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• SEPT9 is associated with Orbital separation diminished, heredi-

tary neuralgic amyotrophy (HNA), Brachial Plexus Neuritis,

Epiphyses, hemoglobinopathies.
• NIN is associated with Orbital separation diminished, Seckel syn-

drome, HNA, Spondyloepimetaphyseal dysplasia with multiple

dislocations, Lumbar scoliosis.
• JPH3 is associated with Huntington disease-like 2, Akinetic rigid

syndrome, Brachial Plexus Neuropathies
• MYOM2 is associated with IgA myeloma, Osteosclerotic Myeloma
• BCL11A is associated with Amyotrophy, HNA, hemoglobinopa-

thies, F-cell distribution, fetal hemoglobin levels
• PADI3 is associated with Uncombable hair, generalized

trichodysplasia

Are There Any Trends in the Association between the
Frequencies of Heavy Vehicular Traffic on the IoW and
DNA-m?

An initial ANOVA revealed a total of 24 of 35 CpGs with signifi-
cantly different DNA-m (P< 0.05) when those who reported no
heavy vehicles (never) were compared with those who reported
any heavy vehicular traffic (Table 5). Further evaluations (using

never, seldom, 10 per day, 1–9 per hour or >10 per hour levels)
showed all 35 CpGs had significantly different DNA-m for at least
one of the five categories of heavy vehicle traffic P� 0.01 (Table 5).

After adjusting for history of maternal smoking, environ-
mental tobacco smoke exposure (0–4 years and/or at 10 years),
SES, gender, BMI, current smoking status and/or exposure to
smoke outside the home, 34 CpGs remained statistically signifi-
cant depending on the category of heavy vehicle traffic fre-
quency reported (P� 0.05, range for n¼ 329–369) (Table 6). We
also present results for linear models for the top 35 CpG sites
identified with the ttscreening method after adjusting for all con-
founding factors considered a priori in this study, and the
results are similar to Table 6 where associations are still present
in 34 of 35 CpG sites for at least one category of the exposure
variable (Supplementary Table S1).

In particular, we found 23 CpGs that were more differentially
methylated (Fig. 2). Nineteen of these 23 CpG sites are found in
the body of the associated genes while the remaining 4 are lo-
cated in promoter regions (TSS1500 and TSS200) (Table 3).
Conversely of the 11 CpGs that were less methylated with in-
creasing heavy vehicle traffic frequency (Fig. 2), 5 are located in
the body of the gene, an additional 5 are found in promoter

Table 3: Descriptive statistics of the DNA-m of the significant CpG sites in whole blood samples at age 18 (n¼ 369)

Raw P-values from tt
screening

Chromosome
(hg19)

CpG site Location Coordinate
(hg19)

Minimum 5th Pctl Median 95th Pctl Maximum

3.69E–06 1 cg25895913 Body 54619445 –0.804 –0.414 0.025 0.366 0.612
2.17E–06 1 cg11156891 Body 1373678 –1.485 –0.881 –0.125 1.191 2.589
6.84E–06 1 cg12407057 Body 44500834 –0.971 –0.517 –0.087 0.900 2.540
1.62E–06 17 cg20747739 TSS1500 75463180 –0.812 –0.358 0.004 0.335 0.709
8.53E–06 14 cg18565510 Body 51293793 –0.897 –0.500 –0.002 0.464 0.844
2.22E–05 8 cg24843003 Body 79578035 –0.904 –0.449 0.003 0.416 1.093
2.21E–05 2 cg15730464 Body 60748951 –1.254 –0.655 0.016 0.562 0.825
1.48E–05 11 cg16196077 TSS200 2434192 –1.311 –0.798 –0.048 0.880 1.512
7.14E–05 1 cg02707264 50UTR 1366206 –0.744 –0.365 0.005 0.321 0.634
3.00E–05 1 cg03476673 50UTR 1183257 –1.149 –0.598 –0.015 0.608 1.208
2.33E–04 3 cg07023532 TSS1500 39851931 –0.968 –0.505 –0.013 0.488 1.229
7.50E–05 19 cg20255272 Body 711001 –1.700 –1.046 0.104 0.460 0.807
5.26E–05 1 cg12417992 Body 113045271 –0.572 –0.347 –0.025 0.396 0.716
8.95E–05 1 cg04154465 Body 1238702 –1.351 –0.588 0.004 0.600 1.390
5.58E–05 1 cg12813768 Body 115398123 –1.643 –0.861 0.002 0.885 1.441
9.81E–05 1 cg14162906 TSS1500 27647606 –0.713 –0.392 –0.004 0.379 0.803
1.22E–04 8 cg24361098 Body 143386260 –1.080 –0.634 0.015 0.537 0.996
3.50E–05 16 cg16147794 Body 87720712 –1.217 –0.578 –0.022 0.660 1.565
1.20E–04 5 cg16668397 Body 87441487 –0.565 –0.386 –0.008 0.462 0.785
1.16E–04 8 cg26419883 Body 2017365 –0.818 –0.419 –0.007 0.418 0.702
1.52E–04 13 cg21775675 �50 kb upstream of

TMEM161B
114866221 –0.987 –0.460 –0.005 0.518 1.296

1.42E–04 19 cg04794690 Body 1409547 –1.217 –0.500 0.002 0.525 0.719
7.64E–05 10 cg06942649 Body 64028521 –1.588 –0.948 0.016 0.757 1.066
2.30E–04 8 cg18459806 50UTR 436813 –0.610 –0.359 0.002 0.373 0.807
2.18E–04 8 cg20631351 Body 59571961 –0.679 –0.379 –0.005 0.362 0.818
2.01E–04 20 cg00347824 Body 60460465 –1.267 –0.538 0.028 0.458 1.166
4.21E–05 1 cg17053854 Body 17768059 –0.474 –0.289 0.001 0.277 0.682
2.55E–04 1 cg25324786 Body 879383 –0.935 –0.568 0.021 0.466 0.985
3.05E–04 14 cg26720961 Body 62279992 –1.221 –0.556 –0.009 0.583 1.659
4.63E–04 4 cg05575058 TSS1500 25087441 –0.907 –0.455 –0.029 0.459 0.804
3.39E–04 6 cg15742605 Body 111405660 –0.645 –0.417 –0.023 0.531 1.064
2.17E–04 10 cg26185508 TSS200 73026288 –0.909 –0.493 –0.007 0.487 0.948
1.12E–04 1 cg02378006 Body 1366274 –1.212 –0.576 –0.015 0.595 1.240
2.69E–04 16 cg08462127 Body 84870203 –0.832 –0.434 0.004 0.431 0.724
5.65E–04 14 cg11017318 �200 kb upstream

of SYT16
74057654 –0.607 –0.382 0.004 0.369 0.772
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regions and the last one is �50 kb upstream of TMEM161B
(Table 3). Among subjects reporting the two highest heavy vehi-
cle traffic frequencies: 1–9 per hour or >10 per hour, statistical
significance was consistently reached for the differential meth-
ylation observed at these CpG sites (P� 0.05, Table 6).

Stratification by current smoking status, revealed similar
trends among smokers and nonsmokers. Although statistically
significant differences were only detected for 12 CpGs among
smokers and 26 CpGs among nonsmokers, mainly for those
reporting >10 heavy vehicles per hour (Supplementary Tables
S2 and S3, respectively). Regression results for males only
revealed only 10 statistically significant CpG sites with differen-
tial methylation: 7 were more methylated and 3 were less meth-
ylated (Supplementary Table S4). Results for females indicated
31 significant CpGs with 22 more methylated and 9 less methyl-
ated (Supplementary Table S5). The direction of methylation
remained the same and the smaller number of significant CpG

sites among male subjects is probably due to their smaller sam-
ple size in this birth cohort (n¼ 124).

Results of Replication and Gene Expression Analysis

We replicated the findings for 31 of 35 CpG sites identified in a
smaller sample of 140 newborns in the F2 generation. Two CpG
sites: cg25895913 (LGI2) and cg00347824 (NSMAF) were associ-
ated with traffic frequencies, and the direction of the effect was
the same as in the F1 subset. The former CpG site had less
methylation, while the latter had more methylation, with in-
creasing vehicular traffic frequency respectively (Table 7). Then,
Spearman rank correlation analysis revealed seven CpG sites:
cg24843003 (DAZAP1), cg03476673 (CRISPLD2), cg12417992
(SLC6A9), cg04154465 (WNT2B), cg24361098 (BCL11A), cg16668397
(JPH3) and cg17053854 (SEPT9) whose differential methylation
was significantly correlated with gene expression (Table 8,

Table 4: Results for linear models for methylation of cg07555921 (AHRR), considered to be a marker for smoking

Parameter Estimate Standard error P-value

Model 1: Exposure variable only: frequency of heavy vehicular traffic (ref5never), n 5 369
Heavy vehicular traffic frequency: >10/hour –0.10 0.11 0.4
Heavy vehicular traffic frequency: 1–9/hour 0.13 0.11 0.2
Heavy vehicular traffic frequency: 10/day –0.05 0.13 0.7
Heavy vehicular traffic frequency: Seldom 0.08 0.10 0.4
Model 2: Smoking related variables only, n 5 342
Maternal smoking –0.07 0.09 0.4
Current smoking status 0.77 0.08 <.0001
Smoking outside the home 0.09 0.07 0.2
Any environmental tobacco smoke exposure –0.16 0.08 0.05
Tobacco smoke exposure at 0–4 years 0.09 0.06 0.2
Tobacco smoke exposure at 10 years 0.15 0.09 0.09
Model 3: All variables considered apriori among all subjects, n 5 329
Heavy vehicular traffic frequency: >10/hour –0.14 0.10 0.2
Heavy vehicular traffic frequency: 1–9/hour –0.04 0.10 0.7
Heavy vehicular traffic frequency: 10/day –0.08 0.13 0.5
Heavy vehicular traffic frequency: Seldom –0.04 0.09 0.7
Maternal smoking –0.10 0.10 0.3
Current smoking status 0.75 0.08 <.0001
Smoking outside the home 0.11 0.07 0.1
Any environmental tobacco smoke exposure –0.18 0.09 0.04
Tobacco smoke exposure at 0–4 years 0.09 0.07 0.2
Tobacco smoke exposure at 10 years 0.17 0.09 0.06
High SES (ref¼ low SES) –0.22 0.13 0.1
Mid SES (ref¼ low SES) –0.04 0.09 0.6
BMI 0.02 0.01 0.007
Gender 0.04 0.07 0.5
Model 4: All variables considered apriori among current smokers, n 5 77
Heavy vehicular traffic frequency: >10/hour –0.13 0.30 0.7
Heavy vehicular traffic frequency: 1–9/hour 0.48 0.34 0.2
Heavy vehicular traffic frequency: 10/day 0.41 0.37 0.3
Heavy vehicular traffic frequency: Seldom 0.20 0.31 0.5
Maternal smoking –0.07 0.26 0.8
Age subject started smoking 0.20 0.06 0.002
Smoking outside the home 0.79 0.32 0.02
Any environmental tobacco smoke exposure –0.33 0.23 0.2
Tobacco smoke exposure at 0–4 years 0.14 0.20 0.5
Tobacco smoke exposure at 10 years 0.32 0.25 0.2
High SES (ref¼ low SES) –0.68 0.44 0.1
Mid SES (ref¼ low SES) –0.04 0.24 0.9
BMI 0.03 0.02 0.1
Gender 0.04 0.21 0.9

P-values in bold and bold italics denote statistical significance less than or equal to 0.05 and 0.1 respectively.
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Figure 1: Results of gene enrichment analysis identifying potential pathway(s) associated with the genes identified with the significant CpG sites in this study. More

details on the gene enrichment analysis can be found in the supplementary material provided

Table 5: Analysis of variance for unadjusted DNA-M of CpG sites in whole blood samples at age 18 (n¼ 369)

CpG site Any (n¼ 302) versus no (n¼ 67) heavy
vehicle traffic frequency

Five categories of heavy vehicle traffic frequency: (1) never (n¼ 67),
(2) seldom (n¼ 120), (3) 10/day (n¼ 36), (4) 1–9/hour (n¼69),
(5) >10/hour (n¼ 77)

Mean square F value (df¼ 1) P value Mean square F value (df¼ 4) P value

cg25895913 0.53 9.4 0.002 0.33 6.1 <0.0001
cg11156891 4.55 9.7 0.002 2.61 5.7 0.0002
cg12407057 4.55 9.7 0.002 1.37 5.2 0.0004
cg20747739 0.30 6.6 0.01 0.27 6.2 <0.0001
cg18565510 0.84 9.7 0.002 0.44 5.2 0.0005
cg24843003 0.97 12.3 0.0005 0.40 5.1 0.0005
cg15730464 1.59 13.0 0.0004 0.78 6.6 <0.0001
cg16196077 1.32 5.0 0.03 1.39 5.5 0.0003
cg02707264 0.06 1.3 0.3 0.22 5.1 0.0006
cg03476673 1.38 9.5 0.002 0.71 5.0 0.0007
cg07023532 1.62 17.6 <.0001 0.51 5.6 0.0002
cg20255272 0.66 3.6 0.06 0.73 4.1 0.003
cg12417992 0.37 8.2 0.0046 0.20 4.5 0.001
cg04154465 0.48 3.4 0.07 0.56 4.0 0.003
cg12813768 1.08 4.3 0.04 1.13 4.7 0.001
cg14162906 0.49 8.9 0.003 0.26 4.7 0.001
cg24361098 1.38 11.1 0.0009 0.56 4.6 0.001
cg16147794 0.27 1.8 0.2 0.81 5.6 0.0002
cg16668397 0.42 6.8 0.01 0.24 3.9 0.004
cg26419883 0.25 4.1 0.05 0.26 4.4 0.002
cg21775675 0.33 3.7 0.06 0.36 4.1 0.003
cg04794690 1.31 14.8 0.0001 0.49 5.5 0.0003
cg06942649 2.04 8.2 0.004 1.06 4.3 0.002
cg18459806 0.29 5.7 0.02 0.20 4.1 0.003
cg20631351 0.29 5.5 0.02 0.18 3.5 0.008
cg00347824 0.62 6.4 0.01 0.37 3.9 0.004
cg17053854 0.18 5.9 0.02 0.13 4.6 0.001
cg25324786 0.15 1.6 0.2 0.36 4.0 0.004
cg26720961 0.01 0.1 0.7 0.61 5.0 0.0006
cg05575058 0.64 8.6 0.004 0.27 3.7 0.006
cg15742605 0.21 2.5 0.1 0.28 3.5 0.008
cg26185508 0.82 9.4 0.002 0.39 4.5 0.002
cg02378006 0.39 3.1 0.08 0.54 4.5 0.001
cg08462127 0.15 2.2 0.1 0.30 4.4 0.002
cg11017318 0.28 5.3 0.02 0.18 3.5 0.008

P-values in bold and bold italics denote statistical significance less than or equal to 0.05 and 0.1 respectively.
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partial r� 0.27, P-value� 0.05). For an additional two of these
CpG sites: cg14162906 (TMEM222) and cg17053854 (SEPT9), there
were marginal correlations with expression data from their as-
sociated genes (Table 8, 0.05> P-value� 0.06).

Discussion

We aimed to answer two questions: (i) Which specific CpG sites are
associated with heavy vehicular traffic in the birth cohort? (ii) Are there
any trends in the association between differential DNA-m and the fre-
quency of heavy vehicular traffic? Regarding the first question, we
found 35 CpG sites to be associated with heavy vehicular traffic.
These CpG sites were associated with 34 different genes (two CpG
sites—cg11156891 and cg12407057 mapped to the same gene:
ANKRD65). Additionally, 31 of these genes have been reported to
be associated with air pollution related chemicals such as
benzo(a)pyrene in the comparative toxicogenomics database. In
adopting an epigenome-wide approach, as opposed to a candi-
date gene approach, our analysis adds novel information on epi-
genetic markers for traffic-related air pollution exposure. These
exposure-associated changes in the epigenome could be used to
identify exposure to air pollutants, particularly those from incom-
plete combustion of fuels such as diesel which is often used in
buses and trucks. With further research, it can also guide the de-
velopment of effective clinical and public health interventions
and reduce the burden of air pollution–related health outcomes.

For the second question on assessing the association be-
tween differential DNA-m and traffic-related air pollution, we
found 23 CpGs that were more methylated, and 11 CpGs that
were less methylated with increasing heavy vehicular traffic
frequency for all subjects after adjusting for confounders. These
associations between heavy vehicular traffic frequency and
DNA-m measurements persisted after stratification by current
smoking status for 26 and 12 CpG sites among nonsmokers and
smokers, respectively. Among subjects reporting the two high-
est heavy vehicular frequency levels: 1–9 per hour or >10 per
hour, statistical significance was consistently reached for the
differential methylation observed at these CpG sites (P� 0.05,
Table 6). This exploratory study highlights the fact that epige-
netic differences can be observed among subjects exposed to
varying frequencies of local traffic.

Our results suggest that exposure to emissions, presumably
from the exhaust of heavy vehicles passing by the residences of
study subjects, may have an impact on DNA-m. It has been sug-
gested that epigenetic states can convey susceptibility to air
pollution, which can lead to biological changes, and ultimately,
adverse health [43, 52]. DNA-m profiles can provide insight into
aspects of biology such as gene activity and regulation, and our
gene enrichment analysis offers examples of how the genes as-
sociated with the CpG sites are related to various molecular
functions, pathways and some rare diseases. Based on the loca-
tion of the CpG site such as promoter or body, altered methyla-
tion may lead to increased transcription, silencing or altered
splicing [53–56]. Hence, a differential transcription level is only
one of the consequences of DNA-m. For instance, it has been
considered that methylation in promoter regions may lead to
changes in gene expression, i.e. gene silencing [57]; and such
changes can serve as putative markers or risk factors for altered
susceptibility and/or disease states. Additionally, DNA-m can
help in identifying CpG sites, and possibly genes, that are more
susceptible to environmental exposures [58].

In a replication and gene expression analysis study among
140 newborns from the F2 generation, 6 of the 7 CpG sites that
correlated with expression, cg24843003 (DAZAP1), cg12417992

(SLC6A9), cg04154465 (WNT2B), cg24361098 (BCL11A), cg16668397
(JPH3) and cg17053854 (SEPT9), are located in the bodies of the
associated genes. The seventh, cg03476673, is found in the
50UTR region of CRISPLD2. Of the remaining 23 CpG sites with
corresponding expression data but no statistically significant
correlations, 3 are located in the TSS1500 region including
cg14162906 (TMEM222) which achieved a marginal significance.
The rest are in the following regions: body of the associated
gene (n¼ 14), TSS200 region (n¼ 2), 50UTR region (n¼ 2), �50 kb
upstream of TMEM161B (n¼ 1) and �200 kb upstream of SYT16
(n¼ 1). The association of 31 of 34 genes (identified from CpG
sites in this study) to air pollution–related chemicals adds plau-
sibility to potential environment–gene interactions, and can
contribute to emerging data that provide a more complete view
of environmental exposures. We posit that traffic-related air
pollution may be a plausible environmental exposure of interest
on the IoW.

With increasing evidence that exposure to air pollution is as-
sociated with adverse health outcomes, biologically plausible
mechanistic pathways of air pollution’s effects, such as oxida-
tive stress, inflammation, coagulation, endothelial function and
hemodynamic response, have been implicated [59]. Exposure to
ambient particulate matter, which is known to be emitted from
diesel truck traffic, is associated with decreased lung function
and increases in respiratory disease and symptoms such as
asthma exacerbation [47, 60–62, 72]. Exposure to gaseous air
pollutants including nitrogen species (e.g. NO2, NO, NOx) are
also associated with deleterious effects such as bronchial reac-
tivity, airway oxidative stress, pulmonary and systemic inflam-
mation [63–66]. Several epidemiologic studies have reported
that short-term increases in ambient pollutants such as PM2.5

and nitrogen dioxide (NO2) are associated with increases in air-
way inflammation in children and adults [67–73].

A recent epigenome-wide meta-analysis by Gruzieva et al.
[74] provides evidence on the association between prenatal air
pollution exposures and differences in the methylation of sev-
eral genes in cord blood. In particular, the authors found signifi-
cant associations between NO2 exposures and DNA-m for CpG
sites that mapped to genes in the solute carrier family (SLC),
family with sequence similarity (FAM) and transmembrane pro-
teins (TMEM). Five CpG sites [associated gene in square
brackets] (cg12417992 [SLC6A9], cg14162906 [TMEM222],
cg16147794 [SLC16A10], cg20747739 [FAM132A], cg21775675
[TMEM161B]) related to three gene superfamilies from the
Gruzieva et al. meta-analysis were associated with heavy vehic-
ular traffic frequency and DNA-m in our study. The association
of one of the CpG sites with FAM132A (codes for an important
anti-inflammatory adipokine [75]), strengthens the hypothesis
that inflammation may be a possible mechanism though which
ambient air pollution affects human health [76].

While underlying molecular alterations of air pollution me-
diated adverse health remain to be further investigated, another
recent study with two European cohorts identified decreasing
DNA-m on CpG island shores, shelves and gene bodies with in-
creasing concentrations of nitrogen oxide (NO) species [77]. NO
species are currently the best available indicators of spatial vari-
ation and mixtures of outdoor urban air pollution such as traffic
[78]. Our analysis did not reveal CpG sites associated with the
inflammatory genes mentioned in the above study, and to the
best of our knowledge, the significant CpG sites reported in our
study have not been reported in previous air pollution studies.
This may be due to differences in (i) study populations, (ii) expo-
sure assessment and concentrations, (iii) complex multiple bio-
logical pathways or (iv) a combination of any of the previous
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Table 6: Results for multiple linear regression models for CpG sites associated with the frequency of heavy vehicles passing by all subjects’
homes

CpG Associated
gene

Heavy vehicle
frequency
(ref¼never)

Estimate Standard
error

P value Significant covariates
in final model

Dunnett’s test
(LSMEAN¼
never)

Linear trend
test (F value,
df¼ 1) P value

Direction of
methylation

cg25895913
(n¼ 355)

CDH4 >10/hour 0.15 0.04 0.0002 Tobacco smoke expo-
sure (at 10 years);
gender

*** 18.16 "
1–9/hour 0.17 0.04 <.0001 *** <0.0001
10/day 0.06 0.05 0.2
Seldom 0.05 0.04 0.2

cg11156891
(n¼ 329)

ANKRD65 >10/hour –0.48 0.13 0.0002 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

*** 14.49 #
1–9/hour –0.29 0.13 0.03 * 0.0002
10/day –0.19 0.15 0.2
Seldom –0.12 0.11 0.3

cg12407057
(n¼ 329)

ANKRD65 >10/hour –0.33 0.10 0.0006 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

*** 15.51 #
1–9/hour –0.24 0.10 0.01 * 0.0001
10/day –0.08 0.12 0.5
Seldom –0.07 0.09 0.4

cg20747739
(n¼ 362)

FAM132A >10/hour 0.14 0.04 <.0001 Gender; BMI *** 19.7 "
1–9/hour 0.11 0.04 0.002 ** <0.0001
10/day 0.04 0.04 0.3
Seldom 0.03 0.03 0.4

cg18565510
(n¼ 362)

ACAP3 >10/hour 0.20 0.05 <.0001 Gender; BMI *** 15.33 "
1–9/hour 0.14 0.05 0.008 ** 0.0001
10/day 0.09 0.06 0.1
Seldom 0.07 0.05 0.1

cg24843003
(n¼ 369)

DAZAP1 >10/hour 0.19 0.05 <.0001 Gender *** 14.73 "
1–9/hour 0.15 0.05 0.002 ** 0.0001
10/day 0.07 0.06 0.2
Seldom 0.09 0.04 0.03 *

cg15730464
(n¼ 348)

LGI2 >10/hour 0.28 0.06 <.0001 Tobacco smoke expo-
sure ( at 10 years);
SES; gender

*** 20.56 #
1–9/hour 0.17 0.06 0.006 ** <0.0001
10/day 0.03 0.07 0.7
Seldom 0.16 0.05 0.004 **

cg16196077
(n¼ 336)

RTKN2 >10/hour –0.27 0.09 0.003 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
current smoking sta-
tus; exposure to
smoke outside the
home

** 12.62 #
1–9/hour –0.25 0.09 0.007 ** 0.0004
10/day –0.14 0.11 0.2
Seldom 0.02 0.08 0.8

cg02707264
(n¼ 329)

MYRIP >10/hour –0.11 0.04 0.005 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

** 14.16 #
1–9/hour –0.02 0.04 0.6 0.0002
10/day 0.01 0.05 0.7
Seldom 0.02 0.03 0.5

cg03476673
(n¼ 329)

CRISPLD2 >10/hour –0.23 0.07 0.0009 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

***
�

9.07 #

1–9/hour –0.12 0.07 0.09 0.003
10/day –0.11 0.08 0.2
Seldom –0.08 0.06 0.2

continued
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Table 6: (continued)

CpG Associated
gene

Heavy vehicle
frequency
(ref¼never)

Estimate Standard
error

P value Significant covariates
in final model

Dunnett’s test
(LSMEAN¼
never)

Linear trend
test (F value,
df¼ 1) P value

Direction of
methylation

cg07023532
(n¼ 362)

ACOT4 >10/hour 0.18 0.05 0.0006 Gender; BMI *** 4.39 "
1–9/hour 0.23 0.05 <.0001 *** 0.04
10/day 0.21 0.06 0.0008 ***
Seldom 0.14 0.05 0.003 **

cg20255272
(n¼ 348)

VWA1 >10/hour 0.24 0.07 0.0009 Tobacco smoke expo-
sure (0–4 years only);
gender; BMI; SES; cur-
rent smoking status

** 13.83 "
1–9/hour 0.13 0.07 0.08 0.0002
10/day 0.08 0.09 0.3
Seldom 0.001 0.06 1.0

cg12417992
(n¼ 362)

SLC6A9 >10/hour 0.12 0.04 0.001 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years only);
SES; gender

** 7.91 "
1–9/hour 0.11 0.04 0.003 *

�
0.005

10/day 0.10 0.04 0.02
Seldom 0.04 0.03 0.2

cg04154465
(n¼ 351)

WNT2B >10/hour 0.23 0.06 0.0003 SES; gender; BMI *** 16.12 "
1–9/hour 0.17 0.06 0.008 ** <0.0001
10/day 0.11 0.08 0.2
Seldom 0.02 0.06 0.7

cg12813768
(n¼ 336)

SYCP1 >10/hour –0.34 0.09 0.0001 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
current smoking sta-
tus; exposure to
smoke outside the
home

*** 16.56 #
1–9/hour –0.18 0.09 0.04 * <0.0001
10/day –0.08 0.11 0.5
Seldom –0.08 0.08 0.3

cg14162906
(n¼ 362)

TMEM222 >10/hour 0.11 0.04 0.004 BMI; gender ** 5.45 "
1–9/hour 0.13 0.04 0.002 ** 0.02
10/day 0.12 0.05 0.01 *
Seldom 0.04 0.04 0.2

cg24361098
(n¼ 362)

BCL11A >10/hour 0.25 0.06 <.0001 BMI; gender *** 10.56 "
1–9/hour 0.15 0.06 0.02 * 0.001
10/day 0.15 0.07 0.04 *
Seldom 0.13 0.05 0.02 *

cg16147794
(n¼ 329)

SLC16A10 >10/hour –0.19 0.07 0.006 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

** 8.91 #
1–9/hour –0.07 0.07 0.3 0.003
10/day –0.13 0.08 0.1
Seldom 0.06 0.06 0.4

cg16668397
(n¼ 362)

JPH3 >10/hour 0.13 0.04 0.002 BMI; gender ** 10.56 "
1–9/hour 0.13 0.04 0.003 ** 0.001
10/day 0.07 0.05 0.2
Seldom 0.03 0.04 0.4

cg26419883
(n¼ 362)

TRPM5 >10/hour 0.15 0.04 0.0003 BMI; gender *** 13.64 "
1–9/hour 0.06 0.04 0.2 0.0003
10/day 0.05 0.05 0.3
Seldom 0.03 0.04 0.5

cg21775675
(n¼ 329)

TMEM161B >10/hour –0.17 0.05 0.001 Maternal Smoking;
Tobacco Smoke
Exposure (0–4 years
and at 10 years); SES;
gender; BMI; current
smoking status; expo-
sure to smoke outside
the home

** 10.07 #
1–9/hour –0.05 0.05 0.3 0.002
10/day –0.09 0.06 0.2
Seldom 0.002 0.05 1.0

cg04794690
(n¼ 362)

PADI3 >10/hour 0.18 0.05 0.0005 BMI; gender *** 11.27 "
1–9/hour 0.22 0.05 <.0001 *** 0.0009
10/day 0.08 0.06 0.2

continued
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Table 6: (continued)

CpG Associated
gene

Heavy vehicle
frequency
(ref¼never)

Estimate Standard
error

P value Significant covariates
in final model

Dunnett’s test
(LSMEAN¼
never)

Linear trend
test (F value,
df¼ 1) P value

Direction of
methylation

Seldom 0.12 0.05 0.008 **
cg06942649

(n¼ 362)
FBXO25 >10/hour 0.26 0.08 0.002 BMI; gender ** 7.5 "

1–9/hour 0.26 0.09 0.002 ** 0.007
10/day 0.22 0.10 0.03 *
Seldom 0.09 0.08 0.2

cg18459806
(n¼ 329)

NIN >10/hour –0.16 0.04 <.0001 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

*** 13.46 #
1–9/hour –0.07 0.04 0.07 * 0.0003
10/day –0.10 0.05 0.04 *
Seldom –0.03 0.04 0.4

cg20631351
(n¼ 362)

PALM >10/hour 0.12 0.04 0.001 BMI; gender ** 10.25 "
1–9/hour 0.10 0.04 0.01 * 0.002
10/day 0.07 0.05 0.2 �
Seldom 0.03 0.04 0.3 �

cg00347824
(n¼ 362)

NSMAF >10/hour 0.19 0.05 0.0003 BMI; gender *** 8.63 "
1–9/hour 0.09 0.05 0.09 0.004
10/day 0.12 0.06 0.05
Seldom 0.06 0.05 0.2

cg17053854
(n¼ 348)

SEPT9 >10/hour 0.09 0.03 0.003 Tobacco smoke expo-
sure (at 10 years); BMI;
gender

** 13.15 "
1–9/hour 0.09 0.03 0.003 ** 0.0003
10/day 0.04 0.04 0.3
Seldom 0.01 0.03 0.8

cg25324786
(n¼ 336)

RASA3 >10/hour 0.15 0.05 0.005 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
current smoking sta-
tus; exposure to
smoke outside the
home

**
�

17.15 "

1–9/hour 0.09 0.05 0.09 <.0001
10/day –0.03 0.06 0.7
Seldom –0.03 0.05 0.5

cg26720961
(n¼ 336)

TSNARE1 >10/hour 0.12 0.06 0.05 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
current smoking sta-
tus; exposure to
smoke outside the
home

� 9.55 "
1–9/hour 0.03 0.06 0.7 0.002
10/day –0.01 0.08 0.9
Seldom –0.10 0.06 0.09

cg05575058
(n¼ 329)

FAM164A >10/hour –0.16 0.05 0.001 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

** 7.77 #
1–9/hour –0.08 0.05 0.09 0.006
10/day –0.10 0.06 0.1
Seldom –0.06 0.04 0.2

cg15742605
(n¼ 329)

SAMD11 >10/hour 0.19 0.05 0.0003 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

*** 18.74 "
1–9/hour 0.08 0.05 0.1 <.0001
10/day 0.04 0.06 0.5
Seldom –0.01 0.05 0.9

cg26185508
(n¼ 362)

CDCP2 >10/hour 0.15 0.05 0.002 BMI; gender ** 5.48 "
1–9/hour 0.18 0.05 0.0005 *** 0.02
10/day 0.17 0.06 0.005 **
Seldom 0.07 0.04 0.1

UNC5B >10/hour 0.19 0.06 0.001 ** 15.56 "

continued
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three reasons. These newly identified CpG sites and associated
genes are certainly worth exploring in larger cohorts.

In our study, the two CpG sites that were associated with ve-
hicular traffic in both the F1 and F2 generation may be reflective
of the effects of TRAP exposures at these two loci. It also sug-
gests possible prenatal exposures to traffic-related air pollu-
tants in the F2 generation. Secondly, correlation between DNA-
m and gene expression at 7 of 31 CpG sites (and three marginal
correlations) supports the hypothesis that DNA-m is a potential
mechanism through which traffic-related air pollutants can af-
fect gene expression. Three of these seven CpG sites are associ-
ated with genes previously identified in the literature to be
related to inhalation. For instance, CRISPLD2 has been identified
as a glucocorticoid responsive gene that modulates cytokine
function in airway smooth muscle cells [79]. WNT2B has been
reported to be associated with embryonic origins of the lung
since the inactivation of WNT2A and WNT2B, resulted in com-
plete absence of lung development [80]. Methylation of JPH3
from sputum samples is a sensitive and specific predictor of
chronic mucous hypersecretion in former male smokers [81].
The lack of 100% replication and correlation in our analysis may
be due to small sample sizes and exposure misclassification
from the use of questionnaire data rather than air pollution
data (for instance the questionnaire administered at 18 years
specified ‘heavy vehicle’ while the questionnaire during preg-
nancy only mentioned ‘vehicle’). While our results must be
interpreted with caution, there are additional studies that add
to the evidence that adverse effects of air pollution that can oc-
cur when one is exposed. A recent study, which did not

replicate its results in a separate independent cohort, found
that living close to major roadways at birth was associated with
differential cord blood methylation [82]. Another study, which
was also not replicated in an independent cohort found signifi-
cant associations between long-term air pollution exposure
(NO2) and DNA-m for seven CpG sites (Bonferroni corrected
threshold P< 1.2E–7) [83].

With continuing indication that exposure to ambient air pol-
lutants may contribute to adverse public health [1, 84], further
research is needed to identify the components of air pollution
that determine its toxicity and a pristine environment such as
the IoW could offer a suitable environment to study ambient air
pollutant toxicity. The constituents of the pollution potentially
generated by heavy vehicles may need to be identified so that
early preventative and possible control strategies can be tar-
geted efficiently. Whether these findings raise the risk for future
cellular malfunction and disease is unknown. One main reason
for the persistence (or the lack thereof) of such findings could be
attributed to small sample sizes. In our case, the nonsmokers
were consistently between 248 and 270 while smokers were be-
tween 78 and 95 subjects. Another reason could be due to the
small magnitude effect sizes that are common with environ-
mental epigenetic research [85]. Profiling of the epigenome over
time in this population will help improve understanding of
TRAP exposures and how the epigenome responds to this stim-
uli. Additionally, we found that secondhand smoke exposure is
represented by the questions posed to subjects about tobacco
smoke exposures since these variables were associated with the
methylation of cg07555921 (AHRR), while the exposure variable

Table 6: (continued)

CpG Associated
gene

Heavy vehicle
frequency
(ref¼never)

Estimate Standard
error

P value Significant covariates
in final model

Dunnett’s test
(LSMEAN¼
never)

Linear trend
test (F value,
df¼ 1) P value

Direction of
methylation

cg02378006
(n¼ 329)

Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

1–9/hour 0.07 0.06 0.2 <.0001
10/day 0.001 0.07 1.0
Seldom –0.0001 0.05 1.0

cg08462127
(n¼ 329)

MYOM2 >10/hour 0.13 0.05 0.006 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

**
�

6.48 "

1–9/hour 0.04 0.05 0.4 0.01
10/day 0.11 0.06 0.06
Seldom –0.02 0.04 0.7

cg11017318
(n¼ 329)

SYT16 >10/hour –0.06 0.04 0.1 Maternal smoking; to-
bacco smoke expo-
sure (0–4 years and at
10 years); SES; gender;
BMI; current smoking
status; exposure to
smoke outside the
home

1.37 NA
1–9/hour –0.05 0.04 0.2 0.2
10/day –0.08 0.05 0.1
Seldom 0.0001 0.04 1.0

Once the Dunnett’ tests provided statistical evidence of differences in marginal means of the heavy vehicular traffic frequency, a second test for trend is performed to

assess a ‘dose–response’ relationship.

***P<0.001;

**P< 0.01;

*P<0.05; P<0.1.
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was not. Therefore, these observed effects of heavy vehicular
traffic on DNA-m may be without the contribution of this type
of air pollution. Further studies in the future may be needed to
examine this in depth.

There are some limitations to this study. First in this study,
our exposure variable of interest, heavy vehicular traffic fre-
quency, was ascertained by questionnaire responses from study
subjects and we did not attempt to conduct exposure assess-
ment inside or outside their residences, and these analyses
were based on current residences (at the time of the blood draw
at 18 years old in the F generation) as opposed to conditions in
former places of residence. Secondly, the associations observed
in this study are informative. However, further analysis may be
needed to assess other self-reported exposures such as tobacco
exposures, particularly on a cumulative scale. Given that the
data in this pilot study are from a birth cohort to which a third
generation follow-up has been added, further investigation of
the DNA-m of the same subset of this population at earlier time
points or in their offspring could address some of these limita-
tions. Thirdly, methylation data were obtained from whole
blood but not from specific cell subgroups, due to cost, but while
differential methylation may or may not be present in all cell
subsets, we believe that important biological insights still may
be gained from studying DNA-m in whole blood [86]. Moreover,

we did adjust for the cell types in the screening step of the
analysis, thereby overcoming this limitation. Additionally, mul-
tiple studies have validated the 450K DNA-m array from
Illumina [87–89], and this assay is generally accepted in the sci-
entific literature. Hence we did not see a necessity to addition-
ally test the results of specific CpGs from the 450K DNA-m array
with methyl-specific qPCR. The use of bisulfite sequencing can
be challenging, since it reduces genome complexity and some
of the methods may not differentiate between methylcytosine
and hydroxymethylcytosine. The incorporation of appropriate
controls for bisulfite reactions and careful interpretation of
DNA-m level after accounting for cell types can overcome some
of these challenges [90]. An overview of major difficulties re-
lated to bisulfite sequencing and how to overcome them are
presented in the review by Li et al. [91]. Although the correla-
tions between CpG sites and expression data reached statistical
significance, the coefficients were weak. One may consider this
as a limitation of our study; however, gene expression is influ-
enced by multiple factors and our analysis only focus on the
role of DNA-m on gene expression. Future studies with large
sample sizes need to further investigate associations between
traffic-related DNA-m and gene expression, taking other factors
such as genetic polymorphisms and network of related genes,
into consideration. Finally, since this is the first study that

Figure 2: Adjusted means (with 95% confidence limits) for DNA-M of 35 significant CpG sites associated with the frequency of heavy vehicles that passed by subjects’

homes for a subset of the IoW birth cohort, F1 generation (range of sample size: 336–369). Adjustments depended on CpG site under consideration and included:

Maternal Smoking; Tobacco Smoke Exposure (0–4 years and/or at 10 years); SES; BMI; gender; current smoking status; exposure to smoke outside the home. ***P<0.001;

**P< 0.01; *P< 0.05; P<0.1. Once the Dunnett’ tests provided statistical evidence of differences in marginal means of the heavy vehicular traffic frequency, a second test

for trend is performed to assess a ‘dose–response’ relationship

Frequency of heavy vehicle traffic and association with DNA methylation | 13

Deleted Text:  
Deleted Text: ethylation
Deleted Text: (
Deleted Text: )
Deleted Text: &thinsp;
Deleted Text:  
Deleted Text: ethylation
Deleted Text: (
Deleted Text: 28, 99, 1154b)
Deleted Text: &thinsp;
Deleted Text:  
Deleted Text: ethylation
Deleted Text:  
Deleted Text: ethylation
Deleted Text: (
Deleted Text: Kurdyukov and Bullock, 2016)
Deleted Text: (
Deleted Text: )


shows an effect of varying heavy vehicular traffic frequency on
DNA-m among residents on the Isle, further replication of these
associations in an independent cohort is needed.

Conclusions

Our findings reveal differences in DNA-m in participants who
reported higher heavy vehicular traffic frequencies when com-
pared with participants who reported lower frequencies. Such
findings may be attributed to TRAP exposure and suggest that
further studies are needed.

Materials and Methods
Study Population

Subjects in this study are from a whole population birth cohort
established in 1989 on the IoW, UK, to prospectively study the
natural history of allergies and asthma. This cohort has been
previously described in detail elsewhere [92]. Informed consents
and detailed information from questionnaires were obtained
from participants at recruitment and at each follow-up year: 1,
2, 4, 10 and 18 years [93]. The questionnaires for the entire birth
cohort study are for study-specific objectives, while asthma and
allergy symptom questions are from the validated International
Study of Asthma and Allergies in Childhood (ISAAC) [92]. Local
Research Ethics Committees approved of the parent study, and
the Institutional Review Board at the Medical University of
South Carolina approved the current study. In this exploratory
analysis, we focus on 369 individuals (245 women and 124 men)
with DNA-m measurements at age 18 years. Due to the original
study question of inheritance via females, we included more
females than males at 18 years.

DNA-m Analysis

DNA was extracted from peripheral blood samples and its con-
centration was determined by Qubit quantitation, as described
previously [94]. Genome-wide DNA-m was assessed using the
Illumina Infinium Human Methylation 450 beadchip (Illumina,
Inc., CA, USA), which interrogates >484 000 CpG sites associated
with approximately 24 000 genes. Arrays were processed and
imaged using the manufacturer’s recommendations, as de-
scribed elsewhere [95]. Multiple identical control samples were
assigned to each bisulfite conversion batch, and the samples
were randomly distributed on microarrays to assess assay vari-
ability and to control batch effects respectively.

Methylation levels (b values) were calculated for queried
CpG loci using the methylation module of GenomeStudio soft-
ware [96]. DNA-m levels for each CpG were estimated as the
proportion of intensity of methylated (M) over the sum of meth-
ylated (M) and unmethylated (U) probes, b¼M/[cþMþU] with c

being a constant to prevent dividing by zero [97]. DNA-m levels
were corrected for batch effect using ‘IMA’ and ‘ComBat’ pack-
ages in R [98]. M-values were calculated as log 2 ratio of the in-
tensities of methylated probe versus unmethylated probe, and
used in subsequent analysis [99]. The detection P-value for each
CpG site was used as a quality control measure of probe perfor-
mance and CpG sites with: (i) detection P-value> 0.01 in >10%
of the samples and (ii) probe single nucleotide polymorphism
(SNP) excluded from all analyses.

We estimated the proportion of cell types in adult peripheral
blood using the estimateCellCounts() function in minfi packageT
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Table 8: Partial Spearman rank correlation coefficients between DNA-m and gene expression in the cord blood of 155 newborns born to a sub-
set of the 369 subjects from the IoW cohort

CpG Direction of
methylation

Associated
gene

Gene
expression

Partial correlation
coefficient (Spearman)

P value

cg25895913 " CDH4 A_21_P0009987 –0.09 0.29
cg25895913 " CDH4 A_23_P17593 0.01 0.92
cg25895913 " CDH4 A_33_P3310976 –0.07 0.40
cg20747739 " FAM132A A_32_P75792 –0.01 0.91
cg18565510 " ACAP3 A_33_P3230290 0.01 0.93
cg18565510 " ACAP3 A_33_P3398564 0.04 0.61
cg24843003 " DAZAP1 A_23_P165247 0.19 0.021
cg24843003 " DAZAP1 A_33_P3359590 –0.18 0.028
cg15730464 # LGI2 A_33_P3358397 –0.04 0.59
cg15730464 # LGI2 A_33_P3393655 0.03 0.70
cg16196077 # RTKN2 A_21_P0007001 0.02 0.78
cg16196077 # RTKN2 A_21_P0007002 –0.09 0.30
cg16196077 # RTKN2 A_24_P13041 0.06 0.45
cg16196077 # RTKN2 A_32_P471485 –0.04 0.61
cg16196077 # RTKN2 A_33_P3219527 –0.09 0.25
cg02707264 # MYRIP A_23_P326760 0.05 0.58
cg03476673 # CRISPLD2 A_23_P106602 –0.20 0.015
cg12417992 " SLC6A9 A_21_P0001726 –0.02 0.85
cg12417992 " SLC6A9 A_21_P0001727 –0.04 0.61
cg12417992 " SLC6A9 A_23_P11984 0.27 0.0011
cg12417992 " SLC6A9 A_33_P3402615 0.06 0.45
cg04154465 " WNT2B A_23_P138352 0.16 0.0495
cg12813768 # SYCP1 A_23_P722 –0.02 0.83
cg14162906 " TMEM222 A_23_P97442 0.09 0.30
cg14162906 " TMEM222 A_33_P3259722 0.15 0.0622
cg24361098 " BCL11A A_21_P0002443 0.08 0.33
cg24361098 " BCL11A A_21_P0002444 –0.10 0.24
cg24361098 " BCL11A A_21_P0002445 –0.10 0.22
cg24361098 " BCL11A A_24_P402588 0.11 0.17
cg24361098 " BCL11A A_24_P411186 0.26 0.0012
cg24361098 " BCL11A A_33_P3249589 –0.01 0.91
cg24361098 " BCL11A A_33_P3249595 –0.06 0.44
cg16147794 # SLC16A10 A_24_P98047 0.08 0.31
cg16147794 # SLC16A10 A_33_P3308512 0.07 0.43
cg16668397 " JPH3 A_21_P0008991 0.07 0.37
cg16668397 " JPH3 A_21_P0008992 0.16 0.05
cg16668397 " JPH3 A_21_P0008993 0.20 0.015
cg16668397 " JPH3 A_21_P0008994 –0.01 0.88
cg16668397 " JPH3 A_24_P150791 0.16 0.048
cg16668397 " JPH3 A_33_P3423721 –0.20 0.016
cg26419883 TRPM5 A_23_P87279 –0.03 0.71
cg21775675 # TMEM161B A_21_P0000876 –0.02 0.83
cg21775675 # TMEM161B A_21_P0004517 –0.05 0.54
cg21775675 # TMEM161B A_23_P156355 –0.04 0.60
cg04794690 " PADI3 A_23_P126869 0.00 0.97
cg06942649 " FBXO25 A_21_P0005641 –0.06 0.49
cg06942649 " FBXO25 A_21_P0005919 –0.01 0.92
cg06942649 " FBXO25 A_21_P0010595 0.07 0.40
cg06942649 " FBXO25 A_21_P0012049 0.09 0.30
cg06942649 " FBXO25 A_21_P0013463 0.09 0.30
cg06942649 " FBXO25 A_21_P0013464 –0.01 0.93
cg06942649 " FBXO25 A_21_P0013530 0.07 0.42
cg06942649 " FBXO25 A_21_P0013531 0.01 0.92
cg06942649 " FBXO25 A_23_P94159 0.04 0.65
cg06942649 " FBXO25 A_33_P3841368 0.04 0.60
cg18459806 # NIN A_23_P396353 0.06 0.47
cg18459806 # NIN A_24_P412512 0.02 0.84
cg00347824 " NSMAF A_23_P134809 0.01 0.88
cg17053854 " SEPT9- A_21_P0009276 –0.11 0.17
cg17053854 " SEPT9- A_21_P0009277 –0.15 0.06
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following the Houseman approach [100] using the adult refer-
ence panel [101].

Exposure Assessment

The exposure variable of interest, the frequency of heavy vehicu-
lar traffic, was determined through questionnaire responses from
the subjects to the question: How often do heavy vehicles (e.g.
trucks/buses) pass your house or on the street less than 100 meters
away? The five-point response included: never, seldom, 10 per
day, 1–9 per hour or >10 per hour. We also assessed answers to
other air pollution related questions such as ‘How often do cars
pass your house or on the street less than 100 meters away?’ and
‘How frequently are you annoyed by outdoor air pollution (from traffic
industry, etc) in your home if you keep the window open?’. All sub-
jects were approximately 18 years old when the questionnaire
containing these questions was administered. While we have not
seen of any study in the literature that has used the same ques-
tion to assess exposure to TRAP, others have used questionnaire-
derived assessments as air pollution exposure variables [102,
103]. Others have used such questions along with proximity to
roadways, air pollution measurements, land use regressions to-
gether with the validated and widely used International Study of
Asthma and Allergies in Childhood (ISAAC) questionnaire to suc-
cessfully characterize health effects of interest [104–106].

Covariates of Interest

For this exploratory study, the covariates of interest obtained
from the subjects’ mothers were as follows: (i) gender; (ii) mater-
nal smoking status during pregnancy obtained from question-
naires at birth of the subject; (iii) tobacco smoke exposure
obtained through questionnaires completed at birth and at ages
1, 2, 4 and 10 years. Other covariates were obtained from the
questionnaire administered to the subjects at age 18: (iv) socio-
economic status (SES) ascertained from the question ‘what is
your family’s annual income (estimate)?’; (v) current smoking sta-
tus, and age subject started to smoke if applicable; (vi) exposure
to smoke outside the home ascertained by the question ‘are you
regularly exposed to smoking outside the home?’; (vii) BMI calcu-
lated from height and weight measurements obtained during the

18-year follow-up, using the following formula: weight (kg)/height
(m)�2. In addition, we considered the type of residential property
the subjects lived in (rented privately, rented council/housing as-
sociation, owned privately or other), whether the subjects were
still living with their parents, and the duration of living in the pre-
sent house (obtained in the course of the 4-year follow-up).

Statistical Analysis

Descriptive statistics and chi square tests were used to assess
whether the 369 subjects in this study were representative of
the total birth cohort. Then, we conducted statistical analyses
in two main steps:

Step 1: Epigenome-wide Association Analysis
Screening tool. We employed ttScreening package (an
epigenome-wide DNA-m sites screening tool) to examine CpGs
that are potentially associated with the frequency of heavy
vehicles passing by subjects’ homes at age 18 years. This ap-
proach to screen epigenome-wide data was used since it gener-
ally performs better and has the potential to control both types I
and II errors [107]. Specifically, the ttScreening package conducts
surrogate variable analysis, unexplained variation in the data is
removed, prior to an iterative training-testing procedure. This
training-testing method performs better than methods such as
the FDR and the Bonferroni in reducing false-positive and false-
negative results. In addition to providing internal validation,
the use of training-testing builds more generalized models than
those constructed by traditional methods, and can detect addi-
tional loci undetectable using traditional methods [107].

The analytical methods implemented in the package
employed a screening process that filtered non-informative
CpGs through 100 iterations of a training-and-testing (TT) pro-
cess with robust regressions. We followed the default settings
for the ttScreening method: (i) 2 of 3 of the data for training, (ii)
the ‘two-step’ method for surrogate variable analysis (sva.me-
thod) [108], (iii) 100 iterations for the total number of screenings
(iterations), (iv) 50% as the cutoff proportion of those 100 itera-
tions (cv.cutoff) and (v) 0.05 significance level for the training
(train.alpha) and testing data (test.alpha). The 100 iterations are

Table 8: (continued)

CpG Direction of
methylation

Associated
gene

Gene
expression

Partial correlation
coefficient (Spearman)

P value

cg17053854 " SEPT9- A_21_P0009278 –0.07 0.37
cg17053854 " SEPT9- A_21_P0009279 –0.20 0.014
cg17053854 " SEPT9- A_21_P0009280 –0.01 0.92
cg17053854 " SEPT9- A_21_P0009396 –0.13 0.13
cg25324786 " RASA3 A_21_P0008023 –0.01 0.89
cg25324786 " RASA3 A_33_P3262515 –0.05 0.56
cg26720961 " TSNARE1 A_21_P0005916 0.00 0.96
cg26720961 " TSNARE1 A_33_P3291567 –0.06 0.44
cg26720961 " TSNARE1 A_33_P3297126 –0.09 0.30
cg15742605 " SAMD11 A_21_P0001250 –0.06 0.45
cg15742605 " SAMD11 A_33_P3818959 –0.02 0.77
cg26185508 " CDCP2 A_33_P3259522 –0.05 0.51
cg02378006 " UNC5B A_23_P52336 0.04 0.61
cg02378006 " UNC5B A_32_P52153 0.13 0.11
cg08462127 " MYOM2 A_21_P0005646 –0.07 0.39
cg08462127 " MYOM2 A_23_P258912 0.04 0.64
cg11017318 # SYT16 A_24_P143324 0.02 0.85

P-values in bold and bold italics denote statistical significance less than or equal to 0.05 and 0.1 respectively.
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recommended by the authors of the ttScreening package to cre-
ate a balance between computing efficiency and adequate
resampling to arrive at true associations. Also 50% is the default
for the cutoff proportion since the informative CpGs are usually
sparse in comparison to the candidate CpG sites, and the
authors’ simulations identified 50% cutoff percentage as suit-
able for small and large sample sizes [107].

The independent and dependent variables were heavy ve-
hicular traffic frequency and DNA-m, respectively. A CpG was
selected as an informative site if it showed statistical signifi-
cance in at least 70% of iterations. The ttScreening( ) function au-
tomatically adjusts for multiple testing using three methods,
including FDR, Bonferroni and the TT method [109].

CpG by CpG analysis. As an alternative to the ttscreening
method, we also conducted multiple linear regressions with the
M values of each CpG while adjusting for all covariates selected
apriori and calculated adjusted P-values for the multiple com-
parisons (p.adjust ( ) command in base R). The exposure variable
in this case was classified as ‘Any’ versus ‘No’ heavy vehicular
traffic frequency. All procedures in Step 1 were conducted with
R (version 3.4.2) [110].

Tobacco smoke exposure. Prior epigenome-wide association
studies have shown that the methylation of cg05575921 located
in the AHRR gene is a robust indicator of tobacco smoke expo-
sure [111, 112]. Even in different demographics, smoking histori-
es and rates of false-negative self-report of smoking behavior,
this CpG site can reliably detect smoking status [113].
Additionally, a recent study revealed that high levels of recent
secondhand smoke exposure was inversely associated with
DNA-m of cg05575921 in monocytes from nonsmokers, al-
though the effects were weaker when compared with active
smokers [114]. Hence we conducted linear regression models
with self-reported smoking status and secondhand smoke
exposures to examine the relationships between this CpG site
and tobacco smoke exposure, as well as our exposure variable:
heavy vehicular traffic frequency.

Step 2: Associations between the Frequency of Heavy Vehicular
Traffic and DNA-m
To investigate preliminary associations with heavy vehicular
traffic frequency, we assessed differences in unadjusted DNA-
m of the CpGs identified in the ttscreening method in Step 1 us-
ing analysis of variance (ANOVA) on only heavy vehicular fre-
quency. Then, the CpGs were further tested in multiple linear
models that included potential confounders to assess their as-
sociation with the heavy vehicular traffic frequency. A general
form of the model is seen in Equation (1):

DNA:Miv ¼ aþ bvþ cCovariatei þ �iv (1)

where DNA:Miv refers to the DNA-m for the ith subject reporting
vth category of heavy vehicular frequency, a is the intercept and
� is the error term. The coefficient bv is the deviation of grand
mean for vth category of heavy vehicle traffic frequency
(seldom, 10 per day, 1–9 per hour and >10 per hour) compared
to never. The lsmeans statement was used to derive model ad-
justed means.

Modeling and Variable Selection

For a covariate to be considered a confounder, the estimate of
the regression coefficient for heavy vehicle traffic frequency in
the reduced model (that excluded the confounder of interest)
had to fall outside the range of 10% of the estimate of the full

model (the full model includes all covariates considered apriori
in this study) [115]. The final models for each CpG site included
gender and any identified confounders. Models were assessed
for all subjects and then stratified by gender and current smok-
ing status since exposure to tobacco can lead to extensive
genome-wide changes in DNA-m [116].

Adjusted DNA-m Means and Trend Test

We performed Dunnett’s tests to compare model adjusted (mar-
ginal) means from four heavy vehicle traffic frequency catego-
ries (seldom, 10 per day, 1–9 per hour or >10 per hour) against a
control group mean (never) to check for statistically significant
differences. We also used PROC IML’s ORPOL function in SAS
[117] to obtain appropriate coefficients for contrast statements
to test for linear trends in increasing heavy vehicular frequency
with increasing or decreasing DNA-m measurements, only
when marginal means were significantly different from the
control mean (never category). When marginal means did not
significantly differ from the control category, the results were
not provided. P values <0.1 were considered statistically signifi-
cant for the trend tests. Finally, marginal means for DNA-m
were plotted by category of reported heavy vehicle traffic fre-
quency. Step 2 was performed with the SAS statistical package
(version 9.4; SAS Institute, Cary, NC, USA). All plots were derived
using ‘ggplot’ function in R.

Replication and Gene Expression
Study Population

Thirty-one of 35 significant CpG sites found in the present study
for the 369 subjects in the F1 generation were tested in the
DNA-m and gene expression data from cord blood in the new-
born cohort, the F2 generation (n¼ 155, born 2006–2013). This
step constitutes a replication of the CpGs in a semi-
independent cohort. In the F2 generation, there were 76 males
and 79 females and the average birthweight was 3459.3 g (stan-
dard deviation: 504.6). The median birthweight was 3515 g
(n¼ 148). The exposure variable was obtained from the ques-
tionnaire administered to the mothers during pregnancy. The
mothers’ answers to this question were used as the exposure
(independent) variable of interest: How often do vehicles pass
your house or on the street less than 100 meters away? The
answers were never, seldom, 10 per day, 1–9 per hour or >10 per
hour. When a mother answered the question once instead of
three times, this answer was assigned as the frequency of
vehicles that passed by the home during the entire pregnancy.
If she answered two or three times, the lowest frequency was
assumed to be her exposure. This was to be conservative on
their exposures since this pregnancy questionnaire did not
specify ‘heavy vehicles’, compared to the question posed to
them (F1 generation) at age 18. It also allowed for a distribution
of responses as follows: never (2), seldom (8), 10 per day (26), 1–9
per hour (39) and >10 per hour (72). Eight mothers did not pro-
vide an answer to this question during any of the three trimes-
ters and were excluded from the remaining analysis. Also there
were 31 of 35 top CpG sites available for the F2 newborn subset.

Gene Expression Array

At birth, IoW F2 cord blood samples were collected into
PAXgene Bone Marrow RNA Tubes and RNA extracted using
PAXgene RNA kits (PreAnalytiX GmbH, Switzerland). RNA integ-
rity was verified with the Agilent 2100 Bioanalyzer system.
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Genome-wide mRNA expression was assessed via one color
(Cy3) experiments with the Agilent (Agilent Technologies, Santa
Clara, CA) SurePrint G3 Human Gene Expression 8�60k v2 mi-
croarray kits. Array content was sourced from RefSeq, Ensembl,
UniGene and GenBank databases and provides full coverage of
the human transcriptome in 50 599 biological features (includ-
ing replicate probes and control probes). The oligos were 60mer
in length and each transcript was tagged at least once and some
had multiple tagging oligos for genes with documented splice
variants. Data QC indices and analyses were performed with
Agilent GeneSpring software. These data were then percent
shift normalized and log2-transformed.

Statistical Analysis

DNA-m data: Linear regression models, Dunnett’s multiple com-
parison tests and trend tests were used to assess the relation-
ship between the frequency of vehicular traffic and DNA-m, as
previously described for the subset from the F1 generation. The
models were adjusted for gender and birthweight. Successful
replication was defined as having the same direction of differ-
ential methylation and a P-value of <0.05.

Gene expression data: We calculated partial Spearman’s
rank correlations between the DNA-m at 31 of 35 CpG sites and
gene expression data for the associated genes while controlling
for cell types (Bcell, CD4T, CD8T, gran, mono, NK and nRBC).
Since cord blood includes nucleated red blood cells, we used the
cell references provided by Bakulski and colleagues [118, 119].
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Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante
M, et al. Epigenome-wide meta-analysis of methylation in
children related to prenatal NO(2) air pollution exposure.
Environ Health Perspect 2017;125:104–10.

75. Enomoto T, Ohashi K, Shibata R, Higuchi A, Maruyama S,
Izumiya Y, Walsh K, Murohara T, Ouchi N. Adipolin/C1qdc2/
CTRP12 protein functions as an adipokine that improves
glucose metabolism. J Biol Chem 2011;286:34552–8.

76. Esposito S, Tenconi R, Lelii M, Preti V, Nazzari E, Consolo S,
Patria MF. Possible molecular mechanisms linking air pollu-
tion and asthma in children. BMC Pulmonary Med 2014;14:
31–9.

77. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-
Nielsen O, Campanella G, Hoek G, Kyrtopoulos SA,
Georgiadis P, Naccarati A, et al. DNA methylation and expo-
sure to ambient air pollution in two prospective cohorts.
Environ Int 2017;108:127–36.

78. Levy I, Mihele C, Lu G, Narayan J, Brook JR. Evaluating multi-
pollutant exposure and urban air quality: pollutant interre-
lationships, neighborhood variability, and nitrogen dioxide
as a proxy pollutant. Environ Health Perspect 2014;122:65–72.

79. Himes BE, Jiang X, Wagner P, Hu R, Wang Q, Klanderman B,
Whitaker RM, Duan Q, Lasky-Su J, Nikolos C, et al. RNA-Seq
transcriptome profiling identifies CRISPLD2 as a glucocorti-
coid responsive gene that modulates cytokine function in
airway smooth muscle cells. PLoS One 2014;9:e99625–1.

80. Ornitz DM, Yin Y. Signaling networks regulating develop-
ment of the lower respiratory tract. Cold Spring Harb Perspect

Biol 2012;4:a008318.
81. Bruse S, Petersen H, Weissfeld J, Picchi M, Willink R, Do K,

Siegfried J, Belinsky SA, Tesfaigzi Y. Increased methylation
of lung cancer-associated genes in sputum DNA of former
smokers with chronic mucous hypersecretion. Respir Res

2014;15:2–9.
82. Peng C, den Dekker M, Cardenas A, Rifas-Shiman SL, Gibson

H, Agha G, Harris MH, Coull BA, Schwartz J, Litonjua AA,
et al. Residential proximity to major roadways at birth, DNA
methylation at birth and midchildhood, and childhood cog-
nitive test scores: project viva (Massachusetts, USA). Environ

Health Perspect 2018;126:097006–11.
83. de Fc Lichtenfels AJ, van der Plaat DA, de Jong K, van Diemen

CC, Postma DS, Nedeljkovic I, van Duijn CM, Amin N, la
Bastide-van Gemert S, de Vries M, et al. Long-term air pollu-
tion exposure, genome-wide DNA methylation and lung
function in the LifeLines Cohort Study. Environ Health

Perspect 2018;126:027004-1 to 027004-8.

20 | Environmental Epigenetics, 2019, Vol. 4, No. 4



84. Pope CA III, Dockery DW. Health effects of fine particulate
air pollution: lines that connect. J Air Waste Manage Assoc
2006;56:709–42.

85. Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM,
Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R,
et al. Small-magnitude effect sizes in epigenetic end points
are important in children’s environmental health studies:
the children’s environmental health and disease prevention
research center’s epigenetics working group. Environ Health
Perspect 2017;125:511–26.

86. Houseman EA, Kim S, Kelsey KT, Wiencke JK. DNA methyla-
tion in whole blood: uses and challenges. Curr Envir Health
Rep 2015;2:145–54.

87. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou
C, Fuks F. Evaluation of the infinium methylation 450K tech-
nology. Epigenomics 2011;3:771–84.

88. Roessler J, Ammerpohl O, Gutwein J, Hasemeier B, Anwar SL,
Kreipe H, Lehmann U. Quantitative cross-validation and
content analysis of the 450k DNA methylation array from
Illumina, Inc. BMC Res Notes 2012;5:210.

89. Yang Y, Sebra R, Pullman BS, Qiao W, Peter I, Desnick RJ,
Geyer CR, DeCoteau JF, Scott SA. Quantitative and multi-
plexed DNA methylation analysis using long-read single-
molecule real-time bisulfite sequencing (SMRT-BS). BMC
Genomics 2015;16:350.

90. Kurdyukov S, Bullock M. DNA methylation analysis: choos-
ing the right method. Biology (Basel) 2016;5:1–21.

91. Li P, Demirci F, Mahalingam G, Demirci C, Nakano M, Meyers
BC. An integrated workflow for DNA methylation analysis. J
Genet Genomics 2013;40:249–60.

92. Arshad SH, Holloway JW, Karmaus W, Zhang H, Ewart S,
Mansfield L, Matthews S, Hodgekiss C, Roberts G,
Kurukulaaratchy R. Cohort profile: the Isle of Wight Whole
Population Birth Cohort (IOWBC). Int J Epidemiol 2018;47:
1043–1044i.

93. Kurukulaaratchy RJ, Fenn MH, Waterhouse LM, Matthews
SM, Holgate ST, Arshad SH. Characterization of wheezing
phenotypes in the first 10 years of life. Clin Exp Allergy 2003;
33:573–8.

94. Mukherjee N, Lockett GA, Merid SK, Melén E, Pershagen G,
Holloway JW, Arshad SH, Ewart S, Zhang H, Karmaus W.
DNA methylation and genetic polymorphisms of the Leptin
gene interact to influence lung function outcomes and
asthma at 18 years of age. Int J Mol Epidemiol Genet 2016;7:
1–17.

95. Bibikova M, J-B Fan. GoldenGateVR assay for DNA methylation
profiling. In: J Tost (ed.), DNA Methylation: Methods and
Protocols. Totowa, NJ: Humana Press, 2009, 149–63.

96. Soto-Ramı́rez N, Arshad SH, Holloway JW, Zhang H,
Schauberger E, Ewart S, Patil V, Karmaus W. The interaction
of genetic variants and DNA methylation of the interleukin-
4 receptor gene increase the risk of asthma at age 18 years.
Clin Epigenetics 2013;5:1.

97. Kuan PF, Wang S, Zhou X, Chu H. A statistical framework for
Illumina DNA methylation arrays. Bioinformatics 2010;26:
2849–55.

98. Ecker S, Chen L, Pancaldi V, Bagger FO, Fernandez JM,
Carrillo de Santa Pau E, Juan D, Mann AL, Watt S, Casale FP,
et al. Genome-wide analysis of differential transcriptional
and epigenetic variability across human immune cell types.
Genome Biol 2017;18:1–17.

99. Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, Lin SM.
Comparison of Beta-value and M-value methods for

quantifying methylation levels by microarray analysis. BMC
Bioinformatics 2010;11:587.

100. Houseman EA, Accomando WP, Koestler DC, Christensen
BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. DNA meth-
ylation arrays as surrogate measures of cell mixture distri-
bution. BMC Bioinformatics 2012;13:86–16.

101. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE,
Greco D, Soderhall C, Scheynius A, Kere J. Differential DNA
methylation in purified human blood cells: implications for
cell lineage and studies on disease susceptibility. PLoS One
2012;7:e41361.

102. Lindgren A, Stroh E, Montnemery P, Nihlen U, Jakobsson K,
Axmon A. Traffic-related air pollution associated with prev-
alence of asthma and COPD/chronic bronchitis. A cross-
sectional study in Southern Sweden. Int J Health Geogr 2009;
8:2–15.

103. Modig L, Forsberg B. Perceived annoyance and asthmatic
symptoms in relation to vehicle exhaust levels outside
home: a cross-sectional study. Environ Health 2007;6:29.

104. Kim HH, Lee CS, Yu SD, Lee JS, Chang JY, Jeon JM, Son HR,
Park CJ, Shin DC, Lim YW. Near-road exposure and impact of
air pollution on allergic diseases in elementary school chil-
dren: a cross-sectional study. Yonsei Med J 2016;57:698–713.

105. Liu W, Cai J, Huang C, Hu Y, Fu Q, Zou Z, Sun C, Shen L, Wang
X, Pan J, et al. Associations of gestational and early life expo-
sures to ambient air pollution with childhood atopic eczema
in Shanghai, China. Sci Total Environ 2016;572:34–42.

106. Schnass W, Huls A, Vierkotter A, Kramer U, Krutmann J,
Schikowski T. Traffic-related air pollution and eczema in the
elderly: findings from the SALIA cohort. Int J Hyg Environ
Health 2018;221:861–7.

107. Tong X, Ray MA, Lockett GA, Zhang H, Karmaus WJ. An effi-
cient approach to screening epigenome-wide data. Biomed
Res Int 2016;2016:1–16.

108. Leek JT. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genet 2007;3:1724–35.

109. Ray MA, Tong X, Lockett GA, Zhang H, Karmaus WJ. An effi-
cient approach to screening epigenome-wide data. Biomed
Res Int 2016;2016:2615348. 2615348 (1-16).

110. R Core Team. R (version 3.4.2): A Language and Environment for
Statistical Computing. https://www.r-project.org/ (3 March
2018, date last accessed), 2016.

111. Ladd-Acosta C. Epigenetic signatures as biomarkers of expo-
sure. Curr Environ Health Rep 2015;2:117–25.

112. Philibert R, Hollenbeck N, Andersen E, Osborn T, Gerrard M,
Gibbons FX, Wang K. A quantitative epigenetic approach for
the assessment of cigarette consumption. Front Psychol 2015;
6:656.

113. Andersen AM, Philibert RA, Gibbons FX, Simons RL, Long J.
Accuracy and utility of an epigenetic biomarker for smoking
in populations with varying rates of false self-report. Am J
Med Genet B Neuropsychiatr Genet 2017;174:641–50.

114. Reynolds LM, Magid HS, Chi GC, Lohman K, Barr RG,
Kaufman JD, Hoeschele I, Blaha MJ, Navas-Acien A, Liu Y.
Secondhand tobacco smoke exposure associations with
DNA methylation of the aryl hydrocarbon receptor repres-
sor. Nicotine Tob Res 2017;19:442–51.

115. Greenland S. Modeling and variable selection in epidemio-
logic analysis. Am J Public Health 1989;79:340–9.

116. Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A,
Gieger C, Weidinger S, Lattka E, Adamski J, Peters A, et al.
Tobacco smoking leads to extensive genome-wide changes
in DNA methylation. PLoS One 2013;8:e63812.

Frequency of heavy vehicle traffic and association with DNA methylation | 21

https://www.r-project.org/


117. SAS Institute Inc. Usage Note 22912: How Can I Obtain Test for
Trends (e.g. Linear, Quadratic, Cubic, etc.) Using PROC GLM?
http://support.sas.com/kb/22/912.html (3 March 2018, date
last accessed), 2003.

118. Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, L.
McKenney S, Witter F, Walston J, Feinberg AP, Fallin MD.
DNA methylation of cord blood cell types: applications for
mixed cell birth studies. Epigenetics 2016;11:354–62.

119. Cardenas A, Allard C, Doyon M, Houseman EA, Bakulski KM,
Perron P, Bouchard L, Hivert MF. Validation of a DNA meth-
ylation reference panel for the estimation of nucleated cells
types in cord blood. Epigenetics 2016;11:773–9.

120. Kim S, Shen S, Sioutas C, Zhu Y, Hinds WC. Size distribution
and diurnal and seasonal trends of ultrafine particles in
source and receptor sites of the Los Angeles basin. J Air
Waste Manage Assoc 2002;52:297–307.

22 | Environmental Epigenetics, 2019, Vol. 4, No. 4

http://support.sas.com/kb/22/912.html

	dvy028-TF1000
	dvy028-TF1
	dvy028-TF1001
	dvy028-TF1002
	dvy028-TF2
	dvy028-TF3
	dvy028-TF4
	dvy028-TF5
	dvy028-TF6
	dvy028-TF7
	dvy028-TF8
	dvy028-TF9
	dvy028-TF1003

