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Abstract
The Na+/Ca2+ exchanger (NCX) protein family is a part of the cation/Ca2+

exchanger superfamily and participates in the regulation of cellular Ca2+

homeostasis. NCX1, the most important subtype in the NCX family, is expressed
widely in various organs and tissues in mammals and plays an especially
important role in the physiological and pathological processes of nerves and the
cardiovascular system. In the past few years, the function of NCX1 in the
digestive system has received increasing attention; NCX1 not only participates in
the healing process of gastric ulcer and gastric mucosal injury but also mediates
the development of digestive cancer, acute pancreatitis, and intestinal absorption.
This review aims to explore the roles of NCX1 in digestive system physiology
and pathophysiology in order to guide clinical treatments.
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Core tip: The Na+/Ca2+ exchange 1 protein (NCX1) is a membrane transporter and
participates in the regulation of cellular Ca2+ homeostasis. As we known,NCX1 is
expressed widely in various organs and tissues and plays an especially important role in
the physiological and pathological processes of nerves and the cardiovascular system.
This review aims to explore the roles of NCX1 in digestive system physiology and
pathophysiology in order to guide clinical treatments.
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INTRODUCTION
Ca2+  is  an important cellular signal.  Changes in intracellular Ca2+  control various
cellular processes that are relevant to the regulation of normal function and to the
development  of  diseases.  These  processes  include  muscle  contraction,  blood
coagulation, nerve excitation, angiogenesis, cell apoptosis[1-3], and the development of
cancer[4,5].  The  homeostasis  of  intracellular  calcium is  controlled  by  a  variety  of
proteins and ion channels,  including the plasma membrane Na+/Ca2+  exchanger
(NCX). Members of the NCX family can exchange Na+ and Ca2+ in either direction
depending  on  the  transmembrane  electrochemical  gradients  and  membrane
potential[6], and these exchangers have a two-way transport mode such that under
physiological conditions, one Ca2+ ion exits and three Na+ ions enter the cell but the
reverse transport occurs under special conditions (such as cancer or inflammation),
that is, three Na+ ions exit and one Ca2+ ion enters[7]. The NCX family contains three
separate gene products exhibiting differential expression: NCX1, NCX2, and NCX3.
NCX1 is widely expressed in mammalian organs and tissues[8], and NCX2 and NCX3
are expressed mainly in nerves and skeletal muscle[9]. Numerous studies have shown
that NCX1 is involved in a variety of physiological and pathophysiological processes.
For example, in the cardiovascular system, NCX1 can control the contraction and
relaxation of  vascular smooth muscle[10],  while  NCX1 can regulate heart  rhythm,
which is related to arrhythmia[11,12], and participate in the regulation of myocardial
ischemia-reperfusion  injury [ 1 3 ] .  In  the  nervous  system,  NCX1  regulates
neurotransmitter release[14] and microglia-related functions[15], which is associated with
cerebral ischemia-reperfusion and Alzheimer's disease[16,17].  In the urinary system,
NCX1 is involved in renal Ca2+  reabsorption and associated with renal ischemia-
reperfusion[18,19]. In the endocrine system, NCX1 can regulate insulin secretion[20]. In the
immune  system,  NCX1  is  associated  with  the  development  of  systemic  lupus
erythematosus[21]. In recent years, NCX1 has been found to be expressed in all of the
organs of the digestive system and play important roles in the physiological processes
and  digestive  diseases  (such  as  pancreatitis,  gastric  ulcer,  and  gastrointestinal
cancers)[22-24], However, the mechanism and function of NCX1 in the gastrointestinal
tract have not yet been completely elucidated, particularly relating to certain digestive
diseases and tumors. This review intends to explore the roles of NCX1 in digestive
system physiology and pathophysiology as  well  as  current  treatments  utilizing
NCX1-based therapeutics.

STRUCTURAL FEATURES OF NCX1
NCX1 is a transmembrane bidirectional transporter with a molecular weight of 110
kDa and consists of 970 amino acids. NCX1 has 9 transmembrane segments, forming a
large central cytoplasmic loop between the 5th and 6th transmembrane segments[25,26].
In addition, the NCX1 transmembrane segment has two internal repeat regions, the
α1 and α2 repeat regions [27]. The first half of the transmembrane segment, including
the α-repeat region, may be involved in ion transport[28-30]. In contrast, the second half,
which contains the central cytoplasmic ring, has an inhibitory effect on the entire
sodium-calcium exchanger[31,32].  In  addition,  there are  two binding sites  that  can
regulate Na+ and Ca2+[33,34], and there is a secondary Ca2+ adapter site[35] (Figure 1).

NCX1 AND THE ESOPHAGUS
The esophagus is a muscular portion of the digestive tract that transports food from
the  pharynx to  the  stomach depending on the  contraction  of  muscle.  In  normal
conditions, the tension of the lower esophageal smooth muscle (LES) depends mainly
on the intracellular Ca2+ concentration. A high concentration of intracellular Ca2+ can
cause smooth muscle contraction, and a low concentration of Ca2+  causes smooth
muscle relaxation[36].  However,  the contraction of  the esophageal  body is  mainly
dependent on the gradient of extracellular calcium. The occurrence of esophagitis is
also closely related to the regulation of  Ca2+  in pathological  conditions.  Calcium
channel  blockers  (CCBs)  have  been used in  the  treatment  of  esophageal-related
diseases, such as achalasia[36,37]. Achalasia is a kind of neuropathy where the smooth
muscle fiber is not relaxed or cannot relax completely, a partial loss of esophageal
body peristalsis  occurs,  and the motility is  not  coordinated.  Gelfond et  al[38]  first
reported that  use of  the L-type CCB nifedipine can relax the esophageal  smooth
muscle to reduce the pressure of the lower esophageal sphincter by blocking the flow
of calcium ions into the cells and intracellular calcium release, thereby achieving the
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Figure 1

Figure 1  Structural features of NCX1.

purpose of treating achalasia. However, taking CCBs for a long time will cause the
LES to become too relaxed and will lead to reflux esophagitis (RE)[39].  There is no
definitive evidence as to whether NCX1 plays a regulatory role in RE. However, Kim
et  al[40]  found  that  NCX1  is  widely  expressed  in  the  esophageal  muscle  layer.
Furthermore, the estrogen E2-induced inhibition of smooth muscle contraction in the
esophagus and the mucus secretion in the esophageal mucosa are mainly achieved by
downregulating the expression of calcium-related genes such as NCX1, CaBP-9k, and
PMCA1 and decreasing the intracellular calcium level. It is suggested that NCX1 may
play an important role in the regulation of contraction and relaxation in the LES. In
addition, at present, our research group also confirmed that NCX1 expression was
significantly increased along with the expression of TRPC6, TRPV4, and other acid-
sensitive calcium channels that have a regulatory role in Barrett’s esophagus or reflux
esophagitis  caused  by  acid  reflux  or  bile  reflux.  Interfering  with  NCX1  can
significantly inhibit  the release of inflammatory mediators and the expression of
intestinal  metaplasia  genes  caused  by  the  aforementioned  pathogenic  factors.
Therefore,  NCX1  is  likely  to  be  an  important  treatment  target  for  esophageal
functional diseases.

NCX1 also plays an important role in the correlation between smoking and the
pathogenesis of esophageal squamous cell carcinoma (ESCC)[41].  Clinical evidence
showed that the expression of NCX1 in ESCC tissue was significantly higher than that
in esophageal noncancerous tissue and demonstrated a positive correlation between
the NCX1 expression level and the smoking status of ESCC patients. The tobacco-
derived  carcinogen  4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone  (NNK)  can
significantly enhance NCX1 expression in normal esophageal cells and human ESCC
cells. NNK mediates an increase in the intracellular Ca2+ concentration through NCX1
activation and promotes the proliferation and migration of human ESCC cells[41].
These  findings  indicate  that  tobacco  smoking  could  cause  Ca2+  entry  through
enhanced expression and function of NCX1, finally resulting in the pathogenesis of
ESCC. Furthermore, NCX1 is also involved in the proliferation and migration of ESCC
cells.  To elucidate the mechanism of NCX1 in ESCC, it  is  necessary to study the
function of NCX1 in ESCC in the future.

EXPRESSION AND FUNCTION OF NCX1 IN THE STOMACH
The  stomach,  the  main  digestive  organ  of  the  human body,  is  connected  to  the
esophagus and the duodenum. It is known that the plasma membrane Ca2+ -ATPase
(PMCA),  NCX,  and  the  endoplasmic  reticulum (ER)  Ca2+  -ATPase  are  the  main
mechanisms for the transport of intracellular Ca2+ to the extracellular space of gastric
smooth muscle cells[42,43]. Studies have shown that NCX1 is widely expressed in the
antrum  of  guinea  pigs,  while  NCX2  has  higher  expression  in  the  fundus[44].
Researchers believe that different NCX subtypes, which have different physiological
functions, are expressed in different parts of the stomach and regulate each other.
NCX1 is mainly involved in gastric antral motility, while NCX2 mainly changes the
intracellular Ca2+ homeostasis in fundus smooth muscle cells to control the contraction
and relaxation of the fundus smooth muscle[44]. This information suggests that the
NCX family may control  the movement of  the whole stomach by controlling the
movement of the gastric antrum and fundus smooth muscle.

In a study of gastrointestinal motility diseases, Hagi et al[45]  found that NO and
PACAP act as important mediators of the transient and sustained relaxation in the
mouse gastric fundus. A change in functional coupling and/or collaborative functions
between  NO  signaling  and  PACAP  signaling  may  cause  intracellular  Ca2+

concentration changes, thereby controlling gastric fundus relaxation in mice. The
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overexpression  of  NCX1  in  smooth  muscle  may  result  in  increased  functional
coupling and/or collaborative functions between NO signaling and PACAP signaling,
resulting in the occurrence of functional gastrointestinal disorders[46]. Interestingly,
studies on experimental gastric ulcer (GU) indicate that nitric oxide synthase (NOS)
activity  may  be  an  important  marker  of  neutrophil  infiltration[47,48].  NO  also
contributes to ethanol-induced gastric ulceration and inflammatory bowel diseases
(IBD) due to its role in the stimulation of cell proliferation in the gastric mucosa[49-51].
However, the overexpression of NCX1 in gastrointestinal smooth muscle may affect
the function of the NO signaling pathway, and whether this change will promote GU
and IBD process through the NO signaling pathway needs further study. It has also
been reported that electric field stimulation (EFS) can induce sustained relaxation of
the stomach fundus, but not other intestinal regions[52-54]. The study suggested that this
sustained status may be closely related to the regulatory functions of NCX1 and
NCX2. In the past few years, studies have shown that NCX1 and NCX2 are expressed
in smooth muscles and neurons to regulate the relaxation and motility of the gastric
fundus. Upon NCX1 or NCX2 heterozygosity deletion, the fundus relaxation and the
gastric peristalsis can be enhanced by EFS[55]. Therefore, the NCX family may be an
important treatment target for functional gastrointestinal diseases. In addition, Lajos
V also found that NCX family members (NCX1, NCX2, and NCX3) are expressed
extensively in human gastric  myofibroblasts  and participate in the regulation of
intracellular calcium oscillations. Knockdown of NCX1 significantly inhibited the
migration and proliferation of gastric myofibroblasts induced by insulin-like growth
factor II (IGF-II)[22]. Gastric myofibroblasts are a kind of contractile, nonexcitatory cell
induced by inflammatory factors such as transforming growth factor (TGF-β), and
these cells are localized to the subepithelium throughout the whole gastrointestinal
tract[56,57]. It is known that gastric myofibroblasts can not only regulate the secretion of
extracellular matrix proteins and the formation of new blood vessels, promoting the
healing process of  ulcers[58,59],  but  also participate in the development of  chronic
gastritis and gastric cancer cell invasion and metastasis[60,61]. Further study on the role
of NCX in gastrointestinal smooth muscle may elucidate the regulatory mechanisms
of ulcer healing and tumor invasion and metastasis.

NCX1 AND THE INTESTINE

NCX1 and the small intestine
The expression of NCX1 protein has been detected in the small intestine, colon, and
rectum[62,63], and it participates in the physiological regulation mechanism of intestinal
calcium absorption, bicarbonate secretion, ileal smooth muscle movement and so on.
The  small  intestine  absorbs  90%  of  calcium[3,64,65].  Additionally,  NCX1  mainly
participates in the process of extracellular discharge of calcium ions from the basal
membrane of intestinal epithelial cells. NCX1 can transport three Na+ ions into the cell
and transport one Ca2+ ion out of the cell; this transport is regulated by vitamin D and
1,25-(OH)2D3

[66], which can enhance the expression and activity of NCX on the basal
membrane and promote the transport of Ca2+ from the cell to the outside[66]. Moreover,
Wongdee  et  al  found  that  vitamin  D  can  upregulate  the  expression  of  the  Ca2+

transporter gene NCX1, thus enhancing the Ca2+ transmembrane transport[67].
It is well known that the gastric acid defense barrier involves bicarbonate, and the

hyposecretion of bicarbonate is one of the key mechanisms for the pathogenesis of
duodenal ulcers. It has been reported that intracellular calcium signals can promote
HCO3

- secretion depending on the activation of the HCO3
- secreting channel cystic

fibrosis transmembrane conductance regulator (CFTR) or on the activation of the
intermediate-conductance Ca2+ activated K+ channel (IKCa2+), which provide a driving
force for HCO3

-  secretion[68].  However, NCX1 may be the key to the regulation of
intracellular calcium changes. Dong et al found that the NCX1 protein is functionally
expressed in the mouse duodenal mucosal epithelium, and a dynamic calcium ion
experiment determined that the reverse regulation mode of NCX1 occurs, causing Na+

efflux and Ca2+ entry to regulate HCO3
- secretion[69]. Subsequent research confirmed

that the muscarinic receptor agonists carbachol and 5-hydroxytryptamine (5-HT) can
increase the intracellular calcium concentration and promote duodenal bicarbonate
secretion after stimulating mouse duodenal mucosal or epithelial cells and confirmed
that  disturbing  or  inhibiting  the  function  of  NCX1  can  obviously  block  the
intracellular  calcium change and promote bicarbonate secretion[70].  These results
suggest that NCX1 and its mediated Ca2+ influx play a critical and extensive role in
regulating the secretion of HCO3

- in the duodenal mucosa. Other studies have shown
that NCX1 and NCX2 are also involved in ileal smooth muscle contraction and ileal
motility  regulation[71].  Nishiyama et  al  found that  NCX2 regulates  ileal  motility
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primarily by controlling the sensitivity of acetylcholine (AchE) and substance P (SP) in
smooth  muscle[71].  Compared  with  that  in  the  wild-type  model,  the  contraction
amplitude induced by AchE and SP after NCX2 knockout was significantly reduced;
although NCX1 also plays a role in the regulation of ileal contraction, this decline was
not evident in the NCX1 knockout model[71]. This finding suggests that NCX2 plays a
more important role than NCX1 in ileal movement.

NCX1 and the colon
NCXs (NCX1 and NCX2) are also widely expressed in colonic smooth muscle and the
myenteric plexus layers[72]. Nishiyama et al showed that NCX1 overexpression in the
mouse distal colon enhanced the relaxation amplitude induced by EFS, suggesting
that  NCX1  can  affect  the  distal  colonic  smooth  muscle  movement  in  mice[71].
Furthermore, it was found that the secretion of the mucin MUC5AC induced by ATP
depends on the influx of Ca2+  into colonic goblet cells and that ATP requires the
activation of TRPM5 channels to increase intracellular Na+, which activates the NCX
reverse transport mode and increases intracellular Ca2+ uptake; thus, inhibiting NCX
can  significantly  reduce  the  MUC5AC  secretion  in  goblet  cells[73].  There  is  also
evidence that the NCX family may also be involved in the pathogenesis of diarrhea.
Although NCX1 and NCX2 were found to be expressed in the myenteric nerve plexus
of the proximal colon and the colon transversum as well as longitudinal and annular
muscular layers, the function of NCX1 and NCX2 in intermuscular neurons may be
different from that in smooth muscle[74]. Kazuhiro et al have found that in a diarrhea
model induced with magnesium sulfate or 5-HT, the diarrhea in NCX2 heterozygous
knockout mice (NCX2 HET) was more serious than that in wild-type mice (WT), but
the  diarrhea  in  NCX1  heterozygous  knockout  mice  (NCX1  HET)  showed  no
significant changes from that of WT[75].  Magnesium sulfate-induced diarrhea was
exacerbated  in  NCX2  HET  by  decreasing  normal  and  soft  fecal  materials  and
increasing watery fecal materials, however, PGE2-induced diarrhea in NCX1 HET and
NCX2 HET was similar to that in the WT[75]. The researchers believe that this finding
may be due to the mechanism of 5-HT-induced diarrhea involving stimulation of the
5-HT3 receptor in myenteric plexus neurons and its downstream cholinergic and
tachykinin excitatory pathways[76,77]. However, PGE2 acts directly on smooth muscle
and stimulates fluid accumulation to induce diarrhea[78,79]. Therefore, NCX2 rather
than NCX1 in the myenteric plexus may play a critical role in the occurrence and
development of diarrhea. Further study of NCX may provide new targets for the
diarrhea caused by gastrointestinal dysfunction.

NCX1 AND THE PANCREAS

Expression and distribution of NCX in the pancreas
NCX1 is functionally expressed in the β-cells, acinar cells, and ductal cells of the rat
pancreas and has a distinct pattern of distribution in pancreatic ducts depending on
their  size and proximity to acini[80].  Two splicing variants of  NCX1,  NCX1.3 and
NCX1.7,  are  mainly  expressed  in  rat  pancreatic  cells[81-84];  however,  three  other
variants, NCX1.2, NCX1.9, and NCX1.13, were also found in guinea pigs, hamsters
and mice. In the past few years, studies have proved that different types of NCX1
have different expression levels between different species.

Role of NCX1 in pancreatic physiological processes
The  physiological  functions  of  the  pancreas  include  secreting  various  digestive
enzymes and insulin.  Normally,  the intracellular ATP/ADP ratio increases after
pancreatic β-cells uptake glucose, via the closure of K+-ATP channels, causing β-cell
depolarization and inducing extracellular calcium influx through calcium channels in
the  membrane;  the  intracellular  calcium increase  causes  fusion  of  the  vesicular
membrane containing insulin with the cytoplasmic membrane and the subsequent
secretion of insulin from cells via vesicular exocytosis[85]. It has been found that both
the voltage-dependent calcium channel  (CaV) and the intracellular  IP3-sensitive
calcium pool are important in insulin secretion regulation in the past few years[86], but
the role of the NCX family in this process is just beginning to be evaluated.

In normal pancreatic islet β-cells, NCX1 is mainly responsible for Ca2+ efflux from
cells. The aim is to control the Ca2+ concentration within the normal physiological
range in order to accurately control the insulin release level[83,87]. In native pancreatic
ducts, the NCX1 expression level is downregulated by acetylcholine and secretin but
upregulated by insulin[80];  as  the main physiological  stimulant of  insulin release,
glucose has the reverse regulatory effect on the transcription, expression, and activity
of NCX[88].
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NCX1 and pancreatic diseases
Pathologically, NCX also has a regulatory mechanism affecting the insulin secretion
from the β-cells of diabetic patients. In the past few years, research has shown that
NCX  overexpression  can  lead  to  ER  stress  and  Ca2+  release  from  the  ER,  thus
promoting β-cell  apoptosis,  reducing β-cell  proliferation,  and decreasing insulin
secretion[88]. Herchuelz et al[89] found that heterozygous inactivation of NCX1 (Ncx1+/-
) leads to an increase in β-cell function and a 5-fold increase in both β-cell mass and
proliferation.  The  mutation  also  increases  the  β-cell  resistance  to  hypoxia,  and
Ncx1+/- islets show a 2-4 times higher rate of curing diabetes than Ncx1+/+ islets
when transplanted into diabetic animals. However, in some cases, NCX may change
into the reverse regulation mode to promote Ca2+ entry, prolonging the duration of
the peak electrical activity associated with glucose and increasing insulin release[90]. In
summary, the different NCX1 expression and transport modes can regulate insulin
secretion,  so selective inhibition of  NCX1 may improve insulin secretion,  which
provides more theoretical evidence for novel glucose-sensitive insulinotropic drugs
for type 2 diabetes that target NCX1.

In addition to regulating physiological insulin secretion, the Ca2+ homeostasis is
also a key factor leading to pancreatitis, hypercalcemia, pancreatic cancer, and other
diseases. Pancreatitis is one of the most common acute abdomen problems, and the
pathogenesis is the abnormal accumulation of intracellular Ca2+ (calcium overload) to
promote excessive activation of trypsinogen, resulting in pancreatic autodigestive
injury[91].  Previous  studies  have  reported  that  the  calcium  overload  in  acute
pancreatitis may be related to calcium channels such as CRAC/TRPV1/TRPV3[92,93];
however, it has recently been found that the NCX1 reverse regulation mode may also
be  involved  in  this  overload.  Yu  et  al  confirmed  that  the  mRNA  and  protein
expression  of  NCX1  in  tissues  of  acute  pancreatitis  induced  by  cerulein  was
significantly increased in cell experiments and animal experiments[94]. The authors
found that the expression of inflammatory mediators such as TNF-α and interleukin-6
(IL-6) caused by cerulein was decreased significantly after treatment with KB-R7943 (a
specific inhibitor of NCX1)[94]. This finding suggests that NCX1 may play a critical role
in the occurrence and development of  acute pancreatitis.  In addition,  pancreatic
cancer is a kind of cancer with high malignancy and poor prognosis, and duct cell
carcinoma is  the main pathological  type of  pancreatic  cancer[95,96].  However,  it  is
generally accepted that alterations in TGF-β signaling and its downstream SMAD
pathway play an important role in pancreatic cancer development[97]. The study by
Chow et al found that TRPC1 and NCX1 are expressed and functional in pancreatic
cancer cells. TGF-β activates TRPC1 and NCX1 channels to mediate a cytoplasmic Ca2+

concentration increase in pancreatic cancer cells, which activates the downstream
PKC/SMAD4 pathway to regulate pancreatic cancer cell motility[98].  These results
suggest that NCX1 may be involved in the malignant biological behavior regulation of
pancreatic cancer (Figure 2).

NCX1 AND THE LIVER

NCX1 and hepatic ischemia-reperfusion
Although NCX1 is expressed in normal livers, liver fibrosis, and liver cancer, the
transcription levels and regulation modes are different under these three conditions,
suggesting that NCX may have different functions and effects in the development of
hepatitis, liver fibrosis, and liver cancer[99]. In the study of liver ischemia-reperfusion
injury, intracellular calcium accumulation is a critical mechanism of cell apoptosis and
injury[100].  NCX mainly adopts the forward control mode in ischemic-reperfusion
injury. Trisulfated disaccharide (TD) can transport excess intracellular calcium out of
the cell by activating NCX1, thus reducing the serum levels of inflammation markers
(TNF-α, IL-6, and IL-10) and the lipid peroxidation after liver injury[101].

NCX1 and liver fibrosis
Hepatic fibrosis is a necessary process in the progression from chronic hepatitis to
cirrhosis.  The activation and proliferation of hepatic stellate cells  (HSCs) are the
central link of hepatic fibrosis. Nakamura et al found that the NCX mRNA and protein
expression levels were significantly upregulated in response to the activation of rat
HSCs induced by CCl4[102]. It was also reported that NCX expression is upregulated in
cirrhotic tissue, although the specific mechanism is not clear; NCX may be a new
target in liver fibrosis or cirrhosis research[93].

NCX1 and liver cancer
Finally,  in  hepatocellular  carcinoma  (HCC)  research,  our  research  group  has
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Figure 2

Figure 2  The regulated signal pathways and transcription factors of NCX1 in digestive diseases. Transforming growth factor-β (TGF-β) stimulates the
activation of PLC-IP3 and Ca2+ release from the endoplasmic reticulum, which activates TRPC1 and the reverse mode of NCX1 resulting in Ca2+ influx, and the
increase of Ca2+ mediates cell motility directly or indirectly via activation of Ca2+-dependent PKC in pancreatic cancer. Cerulein activates NCX1 and induces activation
of inflammatory factors TNF-α and IL-6 and the downstream NK-κB pathway in pancreatic cells. TGF-β can upregulate the expression of NCX1 and TRPC6 and
activate the downstream SMAD pathway to regulate the migration and invasion of hepatocellular carcinoma cells.

published articles confirming that the expression of NCX1 is obviously upregulated in
hepatoma cells and tissues and that NCX1 can affect the intracellular calcium level to
affect the cytokines TGF-β or IL-6 in the malignant behavior of hepatoma cells. A
study found that TGF-β can upregulate the expression of NCX1 and the transient
receptor potential channel TRPC6 in hepatoma cells and further induce intracellular
calcium activation in HCC to promote the formation of a complex between NCX1 and
TRPC6, thus activating the downstream SMAD pathway, which can regulate HCC
malignant biological behaviors such as migration and invasion[103]. Not only was the
phosphorylation of Smad proteins dependent on TRPC6 and NCX1, but also the Smad
signaling, especially the phosphorylation of Smad2, augmented the expression of
TRPC6 and NCX1. At the same time the upregulated expression of TRPC6 and NCX1
can be strongly correlated with the stage and pathologic grade of HCC, which may
become  useful  biomarkers  for  monitoring  disease  progression  of  liver  cancer
patients[103,104]. In a related study of IL-6 and liver cancer, it was also confirmed that an
intracellular pH regulator (NHE1), NCX1, and calmodulin (CaM) coexisted in the
same lipid-crossing structure of the cell membrane and that their expression levels
were upregulated in liver cancer tissues[105] (Figure 2). Moreover, IL-6 activated NHE1
to  promote  H+  excretion  and an  NCX1-induced external  Ca2+  influx,  and NHE1
pumped H+ in exchange for Na+ influx to promote NCX1 activation, which enhanced
the  interaction  between  NCX1  and  CaM,  thus  promoting  the  occurrence  and
development  of  liver  cancer[106].  The  above  findings  provide  the  basis  for  the
important role of NCX in hepatic carcinogenesis and also provide a new possibility
for drug development for early intervention in inflammation-associated tumors.

CONCLUSION
In summary, the NCX1 channel protein regulates the Ca2+ signaling pathway via its
forward/reverse modes in the digestive system and regulates the cell function, thus
participating in the occurrence and development of digestive system diseases (Figures
3 and 4). The functions of NCX1 in inflammation-associated digestive diseases (such
as inflammatory bowel disease and hepatitis ) will become a new research hotspot.
NCX1 could be a new molecular marker for the digestive system disease diagnosis
and treatment, and drug development targeting NCX1 will represent a new direction
of the treatment of digestive system diseases.
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Figure 3

Figure 3  The effects of NCX1 positive mode in the digestive system. Under normal circumstances, NCX1 adopts the positive mode in esophageal smooth muscle
and gastric smooth muscle, excreting Ca2+ from the cells, reducing intracalcium concentration and inducing smooth muscle relaxation. In the jejunum, vitamin D and
1,25-(OH)2D3 can enhance the expression and activity of NCX1 to increase the excretion of Ca2+. NCX1 mainly adopts the forward control mode in ischemic-
reperfusion injury. Trisulfated disaccharide (TD) can transport excess intracellular Ca2+ out of the cell by activating NCX1.

Figure 4

Figure 4  The roles of NCX1 reverse mode in the digestive system. In duodenal epithelial cells, carbachol and 5-HT can activate the reverse mode of NCX1,
enhancing Ca2+ influx to release HCO3

-. In hepatoma cells, NHE1 can promote H+ excretion and Na+ influx and activate the reverse mode of NCX1 to induce Ca2+

influx. In colon goblet cells, ATP activates the TRPM5 channel to induce Na+ influx, and an increase of Na+ concentration starts the NCX1 reverse mode and
increases Ca2+ influx and MUC5AC expression. In pancreatic islet β cells, under glucose stimulation, NCX1 can be converted to a reverse mode to promote Ca2+

influx to increase insulin secretion.
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