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Abstract
Purpose: Nurses investigate reasons for variable patient symptoms and responses to treatments to inform how best to improve
outcomes. Genomics has the potential to guide nursing research exploring contributions to individual variability. This article is
meant to serve as an introduction to the novel methods available through genomics for addressing this critical issue and includes a
review of methodological considerations for selected genomic approaches. Approach: This review presents essential concepts
in genetics and genomics that will allow readers to identify upcoming trends in genomics nursing research and improve research
practice. It introduces general principles of genomic research and provides an overview of the research process. It also highlights
selected nursing studies that serve as clinical examples of the use of genomic technologies. Finally, the authors provide suggestions
about how to apply genomic technology in nursing research along with directions for future research. Conclusions: Using
genomic approaches in nursing research can advance the understanding of the complex pathophysiology of disease susceptibility
and different patient responses to interventions. Nurses should be incorporating genomics into education, clinical practice, and
research as the influence of genomics in health-care research and practice continues to grow. Nurses are also well placed to
translate genomic discoveries into improved methods for patient assessment and intervention.
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The leading causes of death worldwide, including heart dis-

ease, cerebrovascular diseases, lower respiratory infections,

and diabetes (World Health Organization, n.d.), involve mul-

tifaceted interactions among genetic and environmental fac-

tors. To understand the complexities that underlie the risks

and outcomes for these common disorders, it is essential to

examine the comprehensive biological mechanisms at a mole-

cular level. Genomics can increase our understanding of these

diseases by helping us to decipher the interactions of all com-

ponents in the genome with one another and the environment.

Analysis of the genome and its interaction with the environ-

ment is also imperative for developing precision health

approaches for routine clinical care that will increase our

ability to prevent and treat disease and disability (Feero, Gutt-

macher, & Collins, 2010). Genomics is the study, not just of

single genes, but of the functions and interactions of all the

genes in the genome (Guttmacher & Collins, 2004) at the

deoxyribonucleic acid (DNA), messenger ribonucleic acid

(mRNA), or protein levels as well as their interactions with

environmental factors.

In early 2013, the Genomic Nursing State of the Science

Initiative (Calzone et al., 2013) established a blueprint for

genomic nursing science that encompassed a broad range of

genomic nursing care and research topics that are mapped to

the four major areas of the National Institute of Nursing

Research Strategic Plan: health promotion and disease preven-

tion, advancing the quality of life, innovation, and training. In

order to meet the goals of this ambitious initiative, nurse
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scientists must integrate recent genomic technologies into their

research. Such a practice should lead to an improved ability to

identify patients at greater risk for diseases and to promote

health and well-being through a more comprehensive and sys-

tematic approach to characterizing patients’ phenotypes, the

observable manifestations of their genotypes.

With their broad and comprehensive view of health and

disease, nurses have traditionally bridged gaps among health-

care providers, individuals, families, and communities. They

have the ability to translate complex biological concepts and

uses of front-end technologies into clinically relevant practice.

In order to remain integral members of the health-care team,

however, nurses must begin to incorporate genomics into their

research and to translate genomic findings into clinical prac-

tice. The purpose of this article is to review general principles

of genomics and recent genomic methods in an effort to support

nurse educators, researchers, and clinicians as they strive to

integrate these concepts into their own work. We also use the

current state of the science to suggest future directions for

research. Authors of previous reviews have suggested ways

to integrate genomics into nursing research and practice (Beery

& Hern, 2004; Cashion, Driscoll, & Sabek, 2004; Lea, 2009;

Loescher & Merkle, 2005), yet none have focused on metho-

dological considerations or recent genomic technologies.

Therefore, we present here a comprehensive methodological

review of recent genomic research along with the description

of exemplary nursing studies involving neurological disorders.

Online Supplementary Table 1 provides definitions of and brief

discussions about terms and concepts we use in this review.

General Principles of Genomics

Complex Biomolecular Interactions: More Than Making
Proteins

Genetic information encoded in DNA is transcribed to various

types of RNA molecules. The most commonly known type of

RNA, mRNA, is translated into polypeptides, which subse-

quently results in producing the proteins that the gene codes.

However, recent research has revealed important functions for

RNA molecules beyond mRNA’s role in the production of

proteins (Strachan & Read, 2010).

RNA that does not serve as the template for encoding pro-

teins, or noncoding RNA (ncRNA), influences phenotypes and/

or disease state by influencing the regulatory process of gene

expression. MicroRNAs (miRNAs) are one type of ncRNAs

that can control the function of DNA, RNA, and protein, influ-

encing the chain of events (Chen & Rajewsky, 2007). Initially,

the very short miRNA (21–25 nucleotides long on average) was

omitted from the analyses of the human genome. When

miRNA binds to the base-pairing site of the target mRNA, it

degrades the mRNA, reduces expression of the target gene, and

eventually inhibits translation. MiRNA along with the several

other known types of ncRNAs, such as transfer RNAs (tRNAs),

ribosomal RNAs (rRNAs), small nucleolar RNAs (snoRNAs),

and small interfering RNAs (siRNAs), dramatically increase

the complexity of genomics, as we now know that it involves

a multitude of regulatory factors functioning differently when

faced with different circumstances (for descriptions of charac-

teristics and functions of diverse small ncRNAs, please see

previous reviews such as the one by, e.g., Li and Liu, 2011).

Several other small biomolecular mechanisms increase geno-

mic complexity and regulate gene expression. Epigenetic mar-

kers, for example, have garnered significant attention in clinical

studies because their actions result in modified phenotypes or

disease risk without changing the genotype. The epigenetic pat-

tern is potentially dynamic throughout life and thus has the poten-

tial to serve as a therapeutic target (Bjornsson, Daniele Fallin, &

Feinberg, 2004). Along with miRNA, DNA methylation and his-

tone modification are the major epigenetic mechanisms.

Along with these epigenetic markers, the three main genetic

components (DNA, RNA, and proteins) interact in such a way

that they are also able to mediate an individual’s response to

environmental factors (e.g., pathogens, pollutants). Thus, study

of these interactions can provide insights into the intra- and

interindividual variability in common responses to environ-

mental threats. The genome, transcriptome, and proteome

interconnect in binary and ternary interactions with each other,

particularly through RNA-, protein-, and small-molecule-

mediated regulatory interactions (Bhartiya et al., 2012). In Fig-

ure 1, we incorporated these complex biomolecular interactions

to illustrate the process of determining the most appropriate

genomic nursing research approach. We describe the major

components of this process in more detail below.

Phenotype in Genomic Research

A person’s genome interacts with internal and external factors

to create phenotypes such as height, physical appearance, and

personality. These phenotypes may be explained, in part, by

variations in the genomic sequence, but interactions among

genetic and environmental factors also play a role. As

explained above, DNA, RNA, protein, and epigenetic factors

can all affect phenotypes; for instance, they can affect disease

progression, onset or nonrecovery and symptomatology, and

even drug metabolism and tolerance.

In some instances, the genome sequence plays a major role

in the variation of the phenotype, while for other phenotypes, it

contributes minimally or not at all to the variation. The like-

lihood of finding genetic variations that are responsible for a

specific phenotype increases when a genome sequence contri-

butes to the phenotype more than environmental factors do.

Therefore, careful and accurate quantification and measure-

ment of the genomic underpinning of the phenotype or symp-

tom is a crucial step in this research. For instance, the National

Institutes of Health–Symptom Science Model (NIH-SSM)

describes a process where a complex symptom or symptom

cluster is characterized into a phenotype consisting of biologi-

cal and clinical data, followed by the biomarker discovery

using genomic or other applications, and then subsequent appli-

cation of the findings as therapeutic targets in clinical practice

(Cashion & Grady, 2015).
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Table 1. Selected Genomic Approaches and Technologies in Increasing Use.

Molecular Target and Methods Description Technology Examples From Existing Research

DNA: Measuring DNA sequence
(e.g., SNP), copy number or
epigenetic variation by analyzing
genotypes with specific
phenotypes, either symptom or
disease (e.g., blood pressure or
disease prevalence), in a group
of individuals

a. Candidate gene association
study

Testing selected genes, based on
their known biological function,
for a correlation between
disease phenotype and genetic
variation

Fluorescent 50 exonuclease assay
(e.g., TaqMan system): Using
primer and probe sets for
genotyping for multiple
individual SNPs from selected
small genomic regions like
specific genes

Exploration of genotypes of
neuroglobin encoding gene
(NGB) in brain-injury patients
(Chuang et al., 2010)

b. Genome-wide association study Testing the entire genome for a
correlation between disease
phenotype and common genetic
variation

Microarray assay: Using probes
designed for millions of
preselected sequence variations
and arrayed on a small surface,
hybridizing samples and
scanning fluorescent tags on the
hybridized probes to generate
genotype calls

Study of an association between
SNPs and transcranial Doppler
signals, a measure of vasospasm
in subarachnoid hemorrhage
patients (Kim et al., 2013)

c. Epigenetic study Identifying functionally relevant
modification of the genome that
causes enduring and heritable
changes in gene expression
without a change in DNA
sequence (e.g., DNA
methylation, histone
modification)

Genome-wide DNA methylation
analysis: Bisulfite or chromatin
immunoprecipitation treatment
followed by microarray
scanning or sequencing

Study of differential methylation of
inflammatory regulatory genes
in patients with PTSD (Smith
et al., 2011)

Study of hyperglycemia-mediated
induction of genes and pathways
by genome-wide histone
(H3K9, H3K14)
hyperacetylation and DNA
methylation (methyl CpG)
analysis methods (Pirola et al.,
2011)

RNA: Measuring gene expression
as a synthesis of encoded RNA
(transcription) for the eventual
synthesis of proteins
(translation) related to specific
phenotypes

a. Targeted analysis — Northern blotting: Detecting and
quantifying mRNA isolated and
separated by gel
electrophoresis, which is mostly
appropriate to address the
presence/absence of a specific
RNA molecule

Study of clinical markers of acute
rejection after pancreas
transplantation by evaluation of
differential gene expression
using RT-qPCR (Cashion et al.,
2006)

RT-qPCR: Semiquantifying specific
mRNAs to detect the level of
expression of a specific gene by
amplifying and measuring
fluorescence or fluorescent
report-probed targets
simultaneously. The
fluorescence is compared to
that of reference or
housekeeping genes

(continued)
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Table 1. (continued)

Molecular Target and Methods Description Technology Examples From Existing Research

b. Genome-wide analysis — Microarray assay: Simultaneous
determination of levels of all
RNA transcripts in a sample
compared to those of reference
genes as an analysis of global
RNA levels and transcriptional
profiling. Arrays contain
multiple and densely mapped
probes of protein-coding genes
to reduce any potential
selection bias and to be more
sensitive in detecting the
expression level of splicing
variants

Study of transcriptome profiles
using peripheral whole blood to
reveal underlying genetic
contributions to traumatic brain
injury (Barr et al., 2010)

Protein: Determining protein
concentration or expression
pattern and localization in order
to detect the presence of
disease or abnormal
physiological conditions

a. Antibody-based methods Using antibody probes that react
with specific proteins,
producing an image of the
protein’s location

Enzyme-linked immunosorbent
assay: Proteins from sample are
attached to the surface of a
plate, where a specific antibody
is applied and bound to the
proteins. The antibody is then
linked to an enzyme, and the
enzyme’s substrate is added to
produce a detectable color
image

Study of use of inflammatory
proteins for predicting future
major adverse coronary events
in patients with heart disease
who underwent elective
coronary stent insertion
(Frazier, Vaughn, Willerson,
Ballantyne, & Boerwinkle, 2009)

Study to investigate
hypothalamus–pituitary–
adrenal axis dysregulation and
immune function alterations in
PTSD (Gill, Vythilingam, & Page,
2008)

b. Mass spectrometry Detecting and characterizing
proteins based on their mass
after fractionating the proteins
or peptides using two-
dimensional gel electrophoresis
or high-performance liquid
chromatography

— Study to investigate cord/maternal
transfer ratios for
buprenorphine and
norbuprenorphine in women at
delivery by measuring drug
concentrations in maternal and
cord serum samples using liquid
chromatography-tandem mass
spectrometry (Bartu, Ilett,
Hackett, Doherty, & Hamilton,
2012)

c. Nanoproteomic study Rapidly detecting low-abundance
biomarkers with the application
of nanoparticles for early
detection of diseases

— Study to develop porous, buoyant,
core-shell hydrogel
nanoparticles that contain high-
affinity reactive chemical baits
for better protein and peptide
harvesting, concentration, and
preservation in bodily fluids
(Tamburro et al., 2011)

Note. SNP ¼ single-nucleotide polymorphism; PTSD ¼ post-traumatic stress disorder; RT-qPCR ¼ real-time reverse-transcription polymerase chain reaction.
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Heritability and Relative Risk of Phenotype

One of the important concepts related to phenotypic variation is

heritability, which estimates the proportion of phenotypic var-

iance within a population that genetic inheritance explains

(Strachan & Read, 2010). A researcher can identify the extent

to which genomic variation contributes to the height differ-

ences within a population by calculating a heritability estimate

of human height. Heritability estimates, albeit with some lim-

itations, can also be used to predict disease risk and provide a

guide to altering clinical care according to the risk.

Another parameter used to estimate the contribution of geno-

mic factors to phenotypes is relative risk, which refers to the

difference in the risk of developing a condition for people with a

family history compared to those without a history (Strachan &

Read, 2010). For example, the relative risk of breast cancer is

higher in women with first-degree relatives (e.g., mother–daugh-

ter relationship), who have had breast cancer compared to the

general population. When the heritability estimate or relative

risk of a phenotype is low, the influence of the genome sequence

is considered to be relatively smaller than the influence of other

factors such as environment, and the genomic influence can be

easily masked or have a negligible impact.

Intermediate Phenotype (Endophenotype)

Most human diseases are non-Mendelian and rather complex,

involving many genes and their interactions as well as

nongenetic factors. Intermediate phenotypes, or endopheno-

types, offer an approach to overcoming the limitation of finding

genomic contributions to complex diseases. Endophenotypes

characterize disease in a molecular or genetic manner rather

than using a clinical diagnosis to define the phenotype. A fun-

damental assumption of this construct is that variation in an

endophenotype depends on variation in a fewer number of

genes than does the more complex clinical traits, therefore

making it easier to identify genetic contributions (Gottesman

& Shields, 1973). As endophenotypes lie on the spectrum

between genes and disease, they are better able than clinically

based phenotypes to differentiate diagnoses that present with

similar symptoms.

In Table 1, we list studies that serve as examples of the use

of the particular genomic technologies employed. For instance,

some nurse scientists have used endophenotypes such as tran-

scriptome profiles (a set of differently expressed mRNAs) from

peripheral whole blood to reveal underlying genetic contribu-

tions to traumatic brain injury (Barr et al., 2010) and ischemic

stroke (Kim et al., 2013).

Genomic Technologies

Candidate Gene Approach

The ultimate goal of genomic studies is to better understand the

biological basis of disease, including early indicators of dis-

ease, which should result in a greater ability to prevent disease,

Phenotype

“DNA sequence varia�on like 
SNP?”

“Structural varia�on like copy-
number varia�on?”

“Any heritable changes in 
gene expression that do 
not involve changes to 
the underlying DNA 
sequence?”

“Which of the many 
types of RNAs is most 
relevant for the 
phenotype?”

“Protein expression 
changes?”

“Post-transla�on 
modifica�on?”

DNA

Epigene�c

RNA

Protein

What is a 
phenotype of 

interest?

Is this phenotype 
heritable?

How much of the 
phenotypic variance 

is expected to be 
explained by 

gene�c factors?

Studying gene�c varia�ons 
by focusing on different 

molecular targets

How to integrate 
genomic findings?

How much of the 
phenotypic variance is 

expected to be explained 
by nongene�c, 

environmental factors?

Figure 1. Process for determining the genomic approaches for research. In order to determine the most appropriate genomic approach when
incorporating the complex biomolecular interactions among genome, transcriptome, and proteome into their research, nurse scientists should
consider questions such as those shown in this figure. SNP ¼ single-nucleotide polymorphism.
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individualize pharmacological treatment, and improve the

quality of life through better management of symptoms.

Researchers have widely employed candidate gene association

(CGA) to achieve this goal by analyzing associations between

genotypes and specific phenotypes. As described in Table 1,

CGA is mainly based on, and limited by, existing knowledge in

biology, yet it can be easily applied to genetic studies with less

time, effort, and financial costs than need to be expended for a

genome-wide approach, which we discuss in the next section.

To conduct a CGA study, researchers select a small number of

candidate genes or regions in the human genome to test a

hypothesis. Their selection is based on the literature and prior

hypotheses, experimental findings in animal models,

or empirical information. Investigation of genetic variations

or the function of genomic components in specific genes or

regions can be conducted using various biomolecular tech-

niques, including, for one, real-time reverse-transcription

polymerase chain reaction (RT-qPCR), a method used to

amplify, detect, and quantify targeted DNA or gene copies.

Individual single-nucleotide polymorphism (SNP) genotyp-

ing is another popular genomic technology because of the

high frequency and relatively uniform distribution of SNPs

across the human genome (more than 30 million across the

genome). SNP genotyping focuses on targeted SNPs at

specific genetic loci to explore genetic variation.

Genome-Wide Approach

Even with the recent achievement of the Encyclopedia of DNA

Elements (ENCODE) project, which uncovered the roles of the

functional elements within the human genome (Maher, 2012),

CGA is still limited by our current and incomplete understand-

ing of the biological significance of the human genome. Con-

sequently, the genome-wide association (GWA) approach

continues to gain in popularity because it tests 200,000–

400,000 known RNA transcripts simultaneously or millions

of SNPs across the whole genome without the bias inherent

in the initial selection process of the CGA (Wang, Kim, Wang,

& Dionne, 2012). In GWA studies, researchers typically use

microarray technology to index human genetic variation such

as SNP variations (affecting single-nucleotide bases of DNA

sequence) and copy number variations (structural variations

with sizes up to several megabases of DNA sequence) as well

as expression levels of genes or magnitude of epigenetic modi-

fications using matched probes on a small surface or membrane

(Grant & Hakonarson, 2008). The probes of an array are

designed to examine preselected sequence variations, transcripts,

or epigenetic changes. After samples are hybridized to an array,

fluorescence on the hybridized probes is scanned to generate

genotype results, gene-expression level, or magnitude of epige-

netic modifications.

To establish biological parameters associated with disease

states, researchers have investigated biomarkers or pathways

that can be used to monitor responses to therapeutics by focus-

ing on the specific tissues in which the response is expected to

occur. As shown in Table 1, the technique of transcriptome

profiling is ideal for discovering molecular targets and/or bio-

logical pathways that contribute to advancing clinical diagno-

sis, predicting outcomes, or delineating therapeutic treatment

options (Pongrac, Middleton, Lewis, Levitt, & Mirnics, 2002).

The transcriptome is partially controlled by the epigenome,

which causes enduring and heritable modification of the gen-

ome without changing the DNA sequence. Major epigenetic

markers include DNA methylation and histone modifications,

which are key identifiers of transcriptional output. These mar-

kers provide unique signatures of cellular identity and control

cell fates. In particular, DNA methylation, which is one of the

most investigated of the epigenetic changes, induces gene

silencing (Brenet et al., 2011). Reductions in methylation may

indicate overactivated gene functions. In Table 1, we provide

an example of an analysis method used to detect DNA methy-

lation associated with disease phenotype. Another epigenetic

marker, histone proteins modification, relies on the assumption

that a particular combination of histone modifications controls

the activity of the DNA coiled around the histone proteins.

Histone acetylation, for example, is known to increase gene

expression in most cases. However, this description is overly

simplistic because no single histone modification is predictive

for DNA activity.

Next-Generation Sequencing: Producing More
High-Throughput Data

The use of next-generation sequencing (NGS) technologies

provides high-throughput sequence data in a relatively short

amount of time for moderate cost, which has led to an increase

in investigators’ ability to examine the genetic components of

disease. The cost of sequencing a genome has dropped expo-

nentially since the introduction of NGS technologies that are

replacing the traditional microarray. In GWA studies, whole-

genome sequencing is becoming more and more popular.

Whole-genome sequencing is now a standard tool of the

GWA study. Next-generation sequencers can replace almost

all assays based on the microarray platforms. The

transcriptome and epigenome can be analyzed with NGS

through RNA sequencing (RNA-Seq) and chromatin

immunoprecipitation sequencing (ChIP-Seq) (characterizing

protein–DNA interactions involved in gene regulation or

chromatin organization) analyses, respectively.

Methodological Considerations

Population Stratification: Gender, Ethnicity, and Cell Type

Many complex diseases have distinct demographic features

that contribute to an increase in risk for development of the

disease, while genetic variations also have distinct patterns/

characteristics across gender and ethnic groups. If more than

one gender or ethnic group are included in a sample, it can

result in selection bias due to an imbalance between the control

and affected subgroups. In such cases, false positives or nega-

tive associations between genotypes and phenotypes may not
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be avoidable. In animal models, researchers can easily avoid

selection bias by using genetically homogeneous inbred strains.

Among humans, one of the best approaches to avoid selection

bias is to sample from as homogeneous group as possible

(e.g., in gender and ethnicity). Alternatively, researchers may

use well-matched patient and control sampling in terms of

gender and ethnicity. In gene-expression profiling or epigen-

ome profiling, homogeneity is required not only at the popula-

tion level but also at the biological level (i.e., the type of cells

collected). Even though the genome comprises the same

sequence for more than 200 different human cell types, the list

of expressed genes and the expression pattern differs widely

among cell type, which induces different cell behaviors and

eventually complex traits. For example, the gene-expression

profile of peripheral blood cells is distinct from that of epithe-

lial cells in the large intestine and may not be as valuable in

diagnosis and prognosis of colon cancer. Thus, researchers

must carefully consider which tissues will provide the best

information to address the research question.

Validation Is Necessary

There is always a risk of error in the multiple steps of labora-

tory and analysis procedures. Therefore, validation of findings

on a small scale with different platforms or different types

of assays is always required. For example, findings of a

microarray gene-expression analysis can be validated with

RT-qPCR. Findings of sequence variation in a next-generation

sequencer can be validated in a targeted sequencing of a geno-

mic region with a sequencer based on different chemistry

including a traditional capillary sequencer.

Statistical Considerations for Genomic Data Analysis

With advances in technologies, including microarray and next-

generation sequencers, come advances in statistical approaches

to interpreting the data. When the technology generates higher

throughput data, researchers require more complex statistical

approaches to analyze those data. Particularly with NGS

technology, hundreds of millions to billions of data points are

generated from one subject. Therefore, traditional statistical

tools and computing power are not sufficient for handling

these high-throughput data efficiently. Because multiple

hypotheses are tested in genomic studies, the traditional

threshold for statistical significance, established with a p

value of .05, is not applicable. For example, in a study

testing 1 million SNPs for genetic association, 50,000 false

positives will be found when the p value is set at .05.

Therefore, the researcher must apply multiple test correction

to adjust for these false positives. One of the most conservative

ways to correct inflation from multiple tests is the Bonferroni

method, which divides a p value threshold by the number of

hypotheses tested. For example, for 1 million SNP arrays, the

statistically significant p value threshold would be .05/

1,000,000 ¼ 5 � 10�8. However, this method may

overcorrect because SNPs that are tested are not all

independent, thus leading to higher false-negative rates

(Chanock et al., 2007). Less stringent alternatives such as the

false discovery rate (FDR) test or permutation-based methods

are thus preferable for multiple-test correction in genomic

studies. For differential gene-expression analyses, researchers

can use probe-set filtering methods to reduce the number of

tested hypotheses and increase statistical power.

Increasing Need for Better Computing Power
and Complicated Tools

Because the actual read length of most next-generation sequen-

cers is usually short (ranging between 100 and 500 bases) and

cannot cover the entire chromosome or genome, these reads

must be aligned and compared to a reference genome to make a

sequence. It is recommended to sequence each base at least 30

times for nonsomatic variant finding (30� coverage for

sequence alignment), which requires 90 billion base reads for

one human genome (i.e., 3 billion � 30 times). Therefore,

researchers require a large amount of digital storage, up to

several terabytes, are needed for a typical NGS project. For

genome-wide somatic mutation findings, at least 80� coverage

is recommended, which increases the required storage space by

about 3 times compared to the nonsomatic-variant finding.

With the tremendous amount of raw data generated in a

sequencer, sequence alignment requires extensive computing,

power, and time. Network speed is also important as research-

ers will be required to transfer data frequently from the storage

space to the operating computer or vice versa. After the align-

ment, sequence data are statistically analyzed by multiple

layers of filtering. Existing software can be modified with

additional features called plug-ins to conduct this task.

Researchers have also used cloud computing to address the

requirements of computing power and storage space as well as

data sharing. Currently, researchers are using both Amazon and

Google Cloud for genomics data analysis. For example, research-

ers involved in the 1000 Genome Project are sharing data using

Amazon S3 cloud space, and the Cancer Genome Atlas (TCGA)

data are available via both Amazon and Google Cloud.

Linking Genome to Proteome

Challenges in Proteomics

To understand the complex biological processes that underlie

disease onset and influence recovery, it is vital to understand

how proteins function in and around cells. Proteins determine

differential cell functioning and contribute to individual varia-

bility. The most common studies in proteomics focus on deter-

mining protein concentrations in blood, saliva, sweat, hair,

cerebral spinal fluid, or other types of tissues using enzyme-

linked immunosorbent assay (ELISA) or mass spectrometry.

As discussed earlier, although the fundamental pathways from

DNA to RNA to protein production are well described, there

are many complexities that can alter these processes and may

relate to disease and recovery. One of these complexities is the
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overwhelming number of proteins that are yet to be identified.

The human genome contains *20,000 protein-encoding genes,

but the total number of proteins is at least 10 times higher.

Another challenge is that amino acids, the base units of pro-

teins, are so small that their identification is difficult. Lastly,

many proteins that regulate central processes of health may be

found only in peripheral circulation and at very low concentra-

tions, which restricts researchers’ ability to measure them accu-

rately. However, recent proteomic technologies (e.g., a novel

ultrasensitive single-molecule ELISA) make the detection of

miniscule circulating peripheral biomarkers possible, includ-

ing, for example, plasma total tau, which is linked to compro-

mised neurological function and cognitive decline after a brain

injury (Olivera et al., 2015).

A New Wave in Proteomics: Proteogenomics
and Nanoproteomics

Technological advances that combine proteomics and geno-

mics can overcome the limits of proteomics and provide new

opportunities to determine proteomic mechanisms of disease.

The integrative approach of proteogenomics will be instrumen-

tal in developing novel intervention methods (Sarwal, Sigdel,

& Salomon, 2011). Another advancing area of science that will

revolutionize proteomic research is the application of nanopar-

ticles to biomarker identification and measurement. Many low-

abundance biomarkers that can be used for early detection of

disease are invisible to mass spectrometry because they exist in

bodily fluids at very low concentrations, are masked by high-

abundance proteins such as albumin and immunoglobulins, and

are very labile. Nanoproteomics offers techniques to overcome

these barriers. Using nanoparticles provides a robust analytical

platform for real-time and sensitive detection of low-

abundance proteins. Nanoproteomics offers several advan-

tages, such as ultralow detection levels, short assay time,

high-throughput capability, and low sample consumption.

Nanotechnology more generally offers the promise of new dis-

ease therapies that act through molecular mimicking methods

to result in selective neuronal regeneration (Kubinová &

Syková, 2009). The application and further development of

nanoproteomics will thus offer new avenues for identifying

biological processes that underlie diseases and developing

novel therapeutics to minimize the risks of the diseases.

A Final Step: Integrative Genomics

The Human Genome Project, completed in 2003 (National

Human Genome Research Institute, 2003), has greatly enriched

our knowledge of the human genome and also led to the devel-

opment and refinement of many genomic technologies. How-

ever, the project, itself, revealed very little about the functional

relevance of the genes in the genome, some of which has been

gradually uncovered by later international projects (e.g., the

HapMap or ENCODE projects).

Genetic variations, epigenetic changes, expression of

genes and proteins, as well as nongenomic factors interact

in complex processes that the research community is only

beginning to understand. Very few details about these com-

plex interactions are currently known, providing a challenge

to researchers in the field to characterize these biological

processes that mediate morbidity and mortality risks. A sys-

temic approach to research that integrates information from

DNA, RNA, and protein along with environmental factors

will thus most effectively contribute to our understanding of

the complexity of human health and disease.

The human microbiome constantly interacts with environ-

mental microbiomes in every ecosystem including soil, the

ocean, and the atmosphere (Biteen et al., 2016). These micro-

biomes affect health and risks for particular diseases (Johnson &

Versalovic, 2012). For instance, disruption of microbe–host

interactions by exposure to certain diets or chemicals (e.g., anti-

biotics) can lead to dysbiosis in the host. Research that increases

our understanding of metabolites and small molecules found in

the bodily tissues, organs, and cells has advanced microbiome

studies. Therefore, using different genomic approaches with the

same biological samples can be useful. In addition, comparing

findings from different species, which allows consideration of

research questions through gene homology, model organisms,

and comparative biology, will help construct more valid map-

pings of complex traits (Bubier & Chesler, 2012).

Regardless of its promising future, the science of integrative

genomics is still very limited, especially because of the lack of

appropriate analysis tools. Considering high-throughput data,

for instance, those generated by GWAs that easily reach mil-

lions of variables, integrative genomic analysis needs to handle

millions � millions of interactions among variables. Also, a

lack of consensus regarding aspects of study design such as

population stratification, sample size, and multiple test correc-

tions adds confusion to the interpretation of published results.

To overcome these limitations, the NIH launched a data-

sharing network and initiated data collection from all

NIH-funded genomic studies, such as the Gene Expression

Omnibus (GEO) and Sequence Read Archive (SRA) data-

bases. NIH’s Genomic Data Sharing policy mandates that

investigators share all genomic data (anonymized) generated

via NIH-funded studies through publicly available databases

effective January 25, 2015.

Conclusion

Because the fields of public health and clinical care are increas-

ingly integrating genomic information into practice (Feero

et al., 2010), health-care practitioners and researchers have

an increasing need to understand the major genomic technolo-

gies and related general principles. Genomic and proteomic

technologies have progressed very rapidly, and the accumula-

tion of genomic knowledge is outpacing its absorption and

uptake by health-care professionals, including nurses. In this

article, we described key concepts of the current genomic

approaches as well as methodological considerations in order

to provide a quick road map for nurses initiating or considering

genomic nursing.
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Research has identified thousands of DNA, RNA, and pro-

tein biomarkers along with their function and association with

human phenotypes. However, we still do not have enough

knowledge to map the genome and show all the links among

the associated biological processes. Interactions among these

molecules can be much more powerful than the simple math-

ematical summation of components. These interactions influ-

ence phenotypes and the complex processes underlying

morbidity and mortality.

One basis of nursing is the individualization of care for

patients exhibiting symptoms. These patients’ clinical symp-

toms have underlying bimolecular functions, which usually

accompany complex bimolecular interactions. Therefore,

nurses are in a key position for transforming personalized

health care by translating genomic information as they counsel

patients regarding their disease risks. Nurse scientists should,

thus, participate in interdisciplinary research not only to pro-

mote biologic discovery but also to increase understanding of

symptom biology and clinical outcomes as well as nurses’

ability help patients and their families in their clinical

decision-making (Williams, Tripp-Reimer, Daack-Hirsch, &

DeBerg, 2016). In order to facilitate this type of research,

investigators may also outsource clinical biomarker assays and

analyses, which may save time and reduce costs (Tsou, 2016).

Acquiring and continually updating their basic knowledge

of genomics and related technologies are crucial first steps for

nurses attempting to build a foundation to provide competent

personalized health care with more effective treatments for

precision medicine (White House, 2015) and, ultimately, to

become leaders in this promising and developing area of

health care (Lea, 2009). The American Nurses Association lists

genomics as an essential nursing competency and expects pro-

ficiency in the incorporation of genetic and genomic informa-

tion into practice (Consensus Panel on Genetics/Genomics

Nursing Competencies, 2006). Therefore, nursing education at

every level, for both current and future nurses, should incorporate

genomic technologies and approaches, an imperative that nursing

faculty generally acknowledge (Jenkins & Calzone, 2012).

Nurses in all areas of practice should also expect to participate

in genetic risk assessments, assume a pivotal role in explaining

genetic risk and genetic testing to patients, and support informed

health decisions and opportunities for early intervention. Given

nursing’s important role in the integration of genomic research

into health care and the dissemination of genomic information to

patients, nurse scientists should continue to extend the scope and

methods of nursing research to genomic approaches for integrat-

ing biological and behavioral factors and critical health outcomes

into a cohesive, more holistic model for nursing care.
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