Skip to main content
. 2019 Jan 22;18:6. doi: 10.1186/s12938-019-0627-4

Table 2.

Classification results of GGOs and non-GGOs by ResNet and pre-trained ResNet

Threshold TP FN FP TN TPR Precision F-score
Pre-trained ResNet 0.1 262 31 43 257 0.894198 0.8590164 0.876254
0.2 255 38 38 262 0.870307 0.8703072 0.870307
0.3 255 38 33 267 0.870307 0.8854167 0.877797
0.4 255 38 33 267 0.870307 0.8854167 0.877797
0.5 253 40 31 269 0.863481 0.8908451 0.87695
0.6 252 41 29 271 0.86007 0.8968 0.87805
0.7 250 43 28 272 0.853242 0.8992806 0.875657
0.8 246 47 25 275 0.83959 0.9077491 0.87234
0.9 244 49 23 277 0.832765 0.9138577 0.871429
ResNet 0.1 270 23 79 221 0.921502 0.773639 0.841121
0.2 269 24 72 228 0.918089 0.7888563 0.84858
0.3 267 26 66 234 0.911263 0.8018018 0.853035
0.4 265 28 63 237 0.904437 0.8079268 0.853462
0.5 263 30 59 241 0.89761 0.81677 0.85528
0.6 260 33 56 244 0.887372 0.8227848 0.853859
0.7 258 35 53 247 0.880546 0.829582 0.854305
0.8 256 37 51 249 0.87372 0.8338762 0.853333
0.9 250 43 46 254 0.853242 0.8445946 0.848896

FN false negative, FP false positive, TN true negative, TP true positive, TPR true positive rate