Table 2.
Threshold | TP | FN | FP | TN | TPR | Precision | F-score | |
---|---|---|---|---|---|---|---|---|
Pre-trained ResNet | 0.1 | 262 | 31 | 43 | 257 | 0.894198 | 0.8590164 | 0.876254 |
0.2 | 255 | 38 | 38 | 262 | 0.870307 | 0.8703072 | 0.870307 | |
0.3 | 255 | 38 | 33 | 267 | 0.870307 | 0.8854167 | 0.877797 | |
0.4 | 255 | 38 | 33 | 267 | 0.870307 | 0.8854167 | 0.877797 | |
0.5 | 253 | 40 | 31 | 269 | 0.863481 | 0.8908451 | 0.87695 | |
0.6 | 252 | 41 | 29 | 271 | 0.86007 | 0.8968 | 0.87805 | |
0.7 | 250 | 43 | 28 | 272 | 0.853242 | 0.8992806 | 0.875657 | |
0.8 | 246 | 47 | 25 | 275 | 0.83959 | 0.9077491 | 0.87234 | |
0.9 | 244 | 49 | 23 | 277 | 0.832765 | 0.9138577 | 0.871429 | |
ResNet | 0.1 | 270 | 23 | 79 | 221 | 0.921502 | 0.773639 | 0.841121 |
0.2 | 269 | 24 | 72 | 228 | 0.918089 | 0.7888563 | 0.84858 | |
0.3 | 267 | 26 | 66 | 234 | 0.911263 | 0.8018018 | 0.853035 | |
0.4 | 265 | 28 | 63 | 237 | 0.904437 | 0.8079268 | 0.853462 | |
0.5 | 263 | 30 | 59 | 241 | 0.89761 | 0.81677 | 0.85528 | |
0.6 | 260 | 33 | 56 | 244 | 0.887372 | 0.8227848 | 0.853859 | |
0.7 | 258 | 35 | 53 | 247 | 0.880546 | 0.829582 | 0.854305 | |
0.8 | 256 | 37 | 51 | 249 | 0.87372 | 0.8338762 | 0.853333 | |
0.9 | 250 | 43 | 46 | 254 | 0.853242 | 0.8445946 | 0.848896 |
FN false negative, FP false positive, TN true negative, TP true positive, TPR true positive rate