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Abstract

Intracranial electro-encephalography (icEEG) provides a unique opportunity to record directly 

from the human brain and is clinically important for planning epilepsy surgery. However, 

traditional visual analysis of icEEG is often challenging. The typical simultaneous display of 

multiple electrode channels can prevent an in-depth understanding of the spatial-time course of 

brain activity. In recent decades, advances in the field of neuroimaging have provided powerful 

new tools for the analysis and display of signals in the brain. These methods can now be applied to 

icEEG to map electrical signal information onto a three-dimensional rendering of a patient’s 

cortex and graphically observe the changes in voltage over time. This approach provides rapid 

visualization of seizures and normal activity propagating over the brain surface and can also 

illustrate subtle changes that might be missed by traditional icEEG analysis. In addition, the direct 

mapping of signal information onto accurate anatomical structures can assist in the precise 

targeting of sites for epilepsy surgery and help correlate electrical activity with behavior. Bringing 

icEEG data into a standardized anatomical space will also enable neuroimaging methods of 

statistical analysis to be applied. As new technologies lead to a dramatic increase in the rate of 

data acquisition, these novel visualization and analysis techniques will play an important role in 

processing the valuable information obtained through icEEG.
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Originally introduced in the early 1900s, intracranial electroencephalography (icEEG) has 

become an important method in neurological diagnosis, particularly in patients with 
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epilepsy. Using electrodes implanted directly on the surface and depths of the brain, this 

technique can assist physicians in identifying regions of seizure onset and in mapping 

normal functional areas of the cerebral cortex. However, there are certain challenges faced 

by clinicians using icEEG as a diagnostic tool, such as the simultaneous visualization of 

many electrode channels arising from anatomically disparate regions. Epileptologists who 

use this technique for planning surgical resection are also confronted with localizing a three-

dimensional ictal onset region using two-dimensional EEG information. New high-density 

arrays that combine multiple subdural strips and depth electrodes will continue to increase 

the number of channels collected during icEEG recordings, making more intuitive and easily 

interpreted visual representations critical for efficient data processing.

Over the past 20 years, developments in the field of neuroimaging have established widely 

used methods for making computational models of the human cortex and precisely 

localizing changes in the brain. By combining these analysis techniques with icEEG 

information, we can now visualize electrical signals on a cortical surface and illustrate the 

spatial time course of the collected data. Signal processing and other forms of computational 

analysis can provide further insight, particularly when displayed in the context of each 

patient’s unique anatomy. Implementing this approach requires a digital set of icEEG 

recordings, MRI scans of the patient’s brain, and a map of all electrode locations co-

registered with neuroimaging data (Fig. 1). Computational software can assist in integrating 

these data sets into a three-dimensional, colored projection of icEEG information (Table 1). 

Data presented in this form can assist both researchers and medical providers in 

understanding the time course of electrical signals in the brain, using the kind of analysis 

typically employed in functional neuroimaging to obtain new insights into neural activity 

during health and disease.

As icEEG acquisition tools become increasingly sophisticated, continued development of 

advanced quantitative techniques is crucial. Providing clinicians with novel and insightful 

visualization methods could lead to more accurate diagnosis and enhanced treatment of 

patients with epilepsy and other neurological disorders. Researchers will also benefit from 

enhanced computational methods that provide unique insight into electrical activity in the 

brain. This review will explore the basic steps involved in generating icEEG cortical 

projections, including MRI surface rendering, mapping electrodes to the brain surface, 

computational data processing, projecting electrical channels onto the cortex, and 

assembling a three-dimensional movie of icEEG data (Fig. 1; Supplementary Video 1). A 

brief description of traditional icEEG analysis is also included to provide background and 

clinical context.

Traditional icEEG Analysis

Intracranial EEG monitoring has long been used as part of presurgical evaluation in patients 

with medically refractory seizures. Originally developed to precisely localize epileptogenic 

zones, it is primarily used in cases where noninvasive testing is inconclusive or presurgical 

mapping of cortical function is required. Different approaches have been studied when 

interpreting icEEG recordings to improve our abilities at locating seizure onset zones, 

functional cortical areas, and epileptic networks (Momjian and others 2003).
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One such approach is analysis of icEEG power, which has frequently been investigated in 

both animal and human models. Previous work has examined power bands in the beta, delta, 

and gamma frequency ranges and attempted to correlate spectral activity to both ictal and 

interictal periods (Ebersole and Pedley 2002). Recently, much interest has focused on the 

relationship between high-frequency activity and the region of seizure onset (Gupta and 

others 2011; Jacobs and others 2010; Schevon and others 2009). It has been suggested that 

high-frequency oscillations (HFOs) of 250 to 500 Hz are excellent markers for locating the 

epileptogenic zone, and studies have demonstrated that the removal of HFO-generating 

tissue increases the likelihood of positive surgical outcomes (Jacobs and others 2010). Until 

recently, the ability to detect HFOs has been limited in most intracranial acquisition systems, 

which have a sampling frequency of 0.5 to 2 kHz and use a low pass filter of 100 to 500 Hz 

(Jirsch and others 2006). Higher bandwidth systems are now becoming increasingly 

available for icEEG recordings.

To study the dynamic changes seen during icEEG recordings, power spectral analysis is 

often combined with topographic mapping to illustrate seizure onset and propagation 

(Akiyama and others 2006; Englot and others 2010). This technique provides important 

insight in identifying the epileptic network and characterizing regions that should be targeted 

during surgical resection. Given the limitations of pure visual analysis of icEEG recordings, 

further development of similar techniques is essential for advancing our understanding of 

seizure onset, seizure propagation, and epileptic networks. The use of three-dimensional 

icEEG surface rendering is one such technique that shows promising potential.

MRI-Based Surface Rendering

Before EEG information can be projected onto a patient’s brain, two-dimensional MRI scans 

must be converted into a set of three-dimensional coordinates that accurately describe the 

cortical surface. A mesh model composed of polygon faces and vertices is typically chosen 

for this representation because of its efficiency at continuously encoding complex 

topographies (Carman 1995). Computational methods for performing this transformation 

have been widely studied since at least the early 1990s, when a wire-frame model was 

proposed for displaying the sulci and gyri of a cortical sheet (Dale and Sereno 1993). 

Building on algorithms originally developed for face recognition (Yuille 1991), early 

methods used iterative deformations of a voxel-constrained sphere to define the interface 

between white and grey matter in a patient’s brain (Fig. 2, top). Repulsion forces generated 

by neighboring vertices and areas of MRI contrast (representing the cortical-white matter 

boundary) determined the final form of the resulting object: a minimal energy state. A mesh 

grid was tessellated over the sphere-enclosed voxels to create a three-dimensional model of 

the cortical surface. Since first being described, this algorithm has been progressively refined 

(Han and others 2001; MacDonald 1998) and is currently implemented in several freely 

available software packages, such as CLASP (Kim and others 2005).

An alternative method for cortical surface rendering is based on segmentation of MRI 

volumes through tissue classification (Shattuck and Leahy 2001) (Fig. 2, bottom). 

Segmentation-based surface rendering has been implemented in a number of software 

platforms, including BioImage Suite, FreeSurfer, and Curry (Table 1). This “bottom-up” 
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approach begins with a small initial region that is incrementally grown through addition of 

topologically similar voxels. Several improvements to this technique have been proposed 

since its original introduction, and most variations now employ a “marching cubes” 

algorithm to arrive at a cortex-constrained surface (Lorensen and Cline 1987). After an 

accurate model has been constructed from the MRI, tessellation is used to create a polygon 

mesh. Although “segmentation” is generally considered a more geometrically accurate 

technique than “iterative morphing,” incorrectly classified voxels (i.e., failure to detect the 

correct tissue type) can arise from noise and inhomogeneity artifacts (Lee and others 2006).

Developments in the field of cortical surface rendering have largely progressed along either 

the “iterative morphing” or “segmentation” methods described above (Liu and others 2008). 

Because the “iterative morphing” method does not use voxel-based classification, noise and 

artifacts are negligible contributors to the final surface. However, the minimal energy 

algorithm associated with this technique often fails to accurately represent deep sulci in the 

brain (Manceaux-Demiau and others 1998). There are trade-offs for each approach that 

should be considered in the context of the MRI quality and the patient’s cortical topography. 

Ultimately, the selection of a high-quality rendering algorithm is an important consideration 

in both clinical work and research.

Mapping Electrodes to the Brain Surface

After generating a computational model of the patient’s brain, the surface must be co-

registered with electrode placement information that was recorded during icEEG 

implantation. Understanding the precise location of each electrode is critical for correct 

mapping of electrical signals to anatomical regions. A number of imaging techniques have 

been employed to localize implanted intracranial electrodes, including a postimplant MRI, 

curvilinear reformatting of the preimplant MRI, digital photography co-registration, and 

CT/MRI co-registration (LaViolette and others 2011; Tao and others 2009). Currently, 

CT/MRI co-registration is the most commonly used technique in most epilepsy centers. This 

method offers the advantages of accurate electrode visualization through CT and high 

anatomical detail through MRI. Co-registration of CT and MRI occurs through either a 

reference point–based method (using standard landmarks or external fiducial markers) or an 

automatic method based on cross-modal image comparison.

Several software packages currently exist for performing the transformation necessary to 

map electrodes to the brain surface (Table 1). Curry (http://www.neuroscan.com/curry.cfm) 

is an example of a multimodal imaging software package that employs the reference point–

based method. It co-registers the MRI and CT using five landmark points: nasion, 

preauricular left, preauricular right, inion, and vertex. The subdural electrodes are segmented 

from postoperative CT images using a thresholding technique and then transformed from CT 

images onto the MRI (Bai and others 2011; Tao and others 2009). The co-registration error 

typically ranges from 3 to 10 mm due to the reliability of fiducial markers (Tao and others 

2009).

The automatic co-registration technique is implemented in several software packages, 

including BioImage Suite (http://www.bioimagesuite.org), SPM (http://
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www.fil.ion.ucl.ac.uk/spm/), and FLIRT (http://www.fmrib.ox.ac.uk/fsl/flirt/index.html). 

Developed at Yale University, BioImage Suite co-registers postoperative MRI and CT using 

a six-parameter rigid transformation. A grid-based transformation is then used to co-register 

the postoperative and preoperative MRI images. This accounts for any distortion of the brain 

arising from electrode implantation and the craniotomy (Papademetris and others 2009). 

SPM uses a similar approach that includes a normalized mutual information routine. In the 

FLIRT algorithm, an efficient search method is applied across many possible registrations to 

find the optimal transformation. The desired registration will be a global cost minimum with 

respect to modality overlap. With all these registration methods, a reference intra-operative 

photo of the electrodes in situ can be useful to correct any residual registration error 

according to the anatomic shapes of the blood vessels and sulci (LaViolette and others 

2011).

Computational Processing of icEEG Data

An accurate cortical mesh model combined with precisely localized electrodes can be used 

to project icEEG information onto a graphical representation of a patient’s cortex. Although 

it is possible to display raw broadband amplitude from the recorded signal, the electrical 

data often undergo computational processing before being displayed on the mesh surface. 

One common processing method is power spectral analysis, which breaks a channel’s power 

information into clinically useful, discrete frequency bands. Using this type of analysis, 

specific bands such as Beta or Delta can be filtered out of the acquired signal and used to 

localize areas of interest during a seizure or normal cortical activity. Previous studies have 

found correlations between interictal high-frequency signals and seizure onset regions, 

suggesting this type of analysis could be useful in a clinical setting (Gupta and others 2011; 

Jacobs and others 2010; Schevon and others 2009). Signal frequency has also been used as a 

marker to map normal cortical activity such as language, motor, and other functions (Chang 

and others 2010; Engell and McCarthy 2010).

Another common form of signal processing is to search for coherence between channels in 

an icEEG recording. Coherence analysis has widely been used to investigate EEG signals 

under normal conditions (Bullock and others 1995; Weiss and Mueller 2003); however, 

recent work has employed this technique to gain insight into abnormal brain function. One 

recent study used functional connectivity to elucidate the epileptic network in patients 

undergoing cortical resectioning (Zaveri and others 2009). Connectivity was defined 

between channels using a frequency-indexed correlation coefficient and was evaluated for all 

pairs of contacts ipsilateral to the seizure-onset area. The results suggested that significant 

connectivity exists in the area around the seizure-onset zone and that the correlation is 

inversely related to distance. Processing for coherence is also commonly used in brain-

computer interface research. In one recent study, event-related desynchronization was used 

to detect patient intent for shoulder abduction and elbow flexion (Zhou and others 2009).

In addition to those mentioned above, many other methods are used to process icEEG 

signals. BCI2000 is a development platform for signal analysis that includes spatial and 

temporal filters, linear classifiers, and other signal operators (Schalk and others 2004). 

Software such as MATLAB (http://www.matlab.com) is a common environment for 
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implementing various other EEG analysis methods, including Teager energy, mutual 

information, approximate entropy, and time-frequency distributions. In principle, any one of 

these methods could be similarly rendered on the cortical surface.

Displaying icEEG Data on the Cortical Surface

To visualize icEEG signal information, areas proximal to each electrode can be colored 

according to the amplitude of the channel’s processed data (Cervenka and others 2011; 

Englot and others 2010; Voytek and others 2010). A color scale is often established based on 

the range of values present in the electrical signal data set. The continuous icEEG signal 

must be broken into discrete time bins that define each brain surface polygon’s value for a 

particular display frame (e.g., each frame may be chosen to display 0.5 s of icEEG time). 

The decision of a sampling window size will determine the level of variability and 

specificity present in an icEEG time course projection (Welch 1967). Although a large frame 

period will smooth out undesired signal noise, if the window is too large, important epileptic 

events may also be masked. Selection of an appropriate window size will often depend on 

the signal-to-noise ratio present in an icEEG data set as well as the sampling rate of the 

acquisition system. If a power spectral analysis was performed, the sampling window used 

for the Fourier transform sets a lower limit on the period of time that can be resolved in each 

display frame.

Various approaches have been used when determining the scope and magnitude of coloration 

for a particular icEEG data set. Although many investigators elect to plot electrical signals 

on a two-dimensional topographic map (Ebner and others 2011; Gupta and others 2011; 

Voytek and others 2010), using a three-dimensional template can provide further insight on 

the anatomical structures involved. Previous studies have used a nearest neighbor method 

where cortical polygons are colored strongest when near an electrode and fade linearly to 

zero as distance is increased (Englot and others 2010; Gunduz and others 2012) (Fig. 3, top). 

The spatial resolution of electrode coverage is one parameter that may be used in 

determining the rate of decay for polygon opacity. In other cases, small circles are placed at 

each electrode location and are colored according to the icEEG data (Cervenka and others 

2011) (Fig. 3, middle). The coloration scale can be determined by the maximum power 

intensity or other choice of threshold, which will of course influence interpretation of the 

results. Some studies have avoided coloration entirely, opting instead to plot scalable circles 

and size them proportionally to the amplitude of each channel’s signal (Besle and others 

2011) (Fig. 3, bottom).

Producing a Three-Dimensional Movie of icEEG Information

After surface projections of each incremental time period have been rendered, they can be 

combined to generate a three-dimensional color movie of icEEG signal information. This 

form of data presentation can be clinically useful for understanding the regions involved in 

seizure onset and propagation and can also help demonstrate sequential involvement of 

different cortical areas in normal information processing. Recent studies have used this 

technique to provide insight on electrical events in the brain and gain an understanding of 

time-related changes that might not be present in a traditional two-dimensional mapping 
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(Akiyama and others 2006; Brunner and others 2009; Englot and others 2010) (Fig. 4; 

Supplementary Video 1).

Several important parameters should be considered when generating a movie, such as frame 

rate, the use of a time-averaged window, and the best view angles of the brain to display. 

Decisions that affect how data are visualized can have important consequences during 

interpretation of the results. In cases where noise is a significant component of the icEEG 

signal, processing techniques such as a continuous sliding window can be used to smooth 

out changes in the projection display (Englot and others 2010; Harris 1978). Averaging 

values for each electrode over several data points will not only reduce temporal resolution 

but also eliminate high-frequency fluctuations that have little neurological meaning. Finding 

the appropriate scale for a sliding window requires familiarization with the quality and 

variability of the icEEG signal, which can often be assessed during a baseline, interictal 

period.

In addition to other parameters that determine how icEEG data will be displayed in a movie, 

appropriate view angles must be chosen to highlight the anatomical areas important in a 

study. Because the three-dimensional cortex is viewed on a two-dimensional computer 

monitor, the view angle will determine what electrodes are visible during review. Lateral, 

medial, and inferior views are common choices to maximize electrode visibility (Bidet-

Caulet and others 2007; Cervenka and others 2011; Englot and others 2010) (see Fig. 4; 

Supplementary Video 1). Some software packages (such as Curry) allow icEEG movies to 

be rotated in three-dimensions during playback. This gives the reviewer maximum control 

over the field of vision during analysis.

Conclusions and Future Directions

Made possible through incremental advances in neuroimaging and computational analysis, 

projecting icEEG signals onto the cortex is an innovative new technique that has tremendous 

potential for understanding brain activity in the context of an individual’s unique anatomy. It 

can provide clinicians and investigators with a rapid and intuitive tool for elucidating the 

electrical correlates of normal brain function and also lead to a broader understanding of 

signal propagation during periods of abnormal cortical activity. In settings such as a clinical 

epilepsy monitoring unit, this method can be a powerful way to identify seizure onset areas 

and understand the anatomical regions involved in ictal propagation. Research on normal 

brain function will also benefit from this form of data presentation, which integrates well 

with other computational methods and offers a highly visual, improved alternative to 

traditional icEEG data display. By bringing icEEG data into a standard anatomical space, it 

is also possible to perform group statistical analyses across events or across subjects, using 

methods similar to those employed in functional neuroimaging. Updating the old saying “a 

picture is worth a thousand words,” we propose that “a moving picture is worth hundreds of 

squiggly lines.”

Much potential exists for future developments in icEEG surface renderings, including 

increased accuracy of cortical reconstruction, improvements in spatial and temporal 

resolution, and determination of the optimal data processing methods. The adaptability of 
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this method to different blends of data processing is a major benefit of this technique and 

will allow users to alter their analyses as improvements become available. As with all forms 

of neuroimaging analysis, the highly compelling visual nature of the results is also a major 

potential pitfall, and additional work is needed to rigorously establish the optimal thresholds, 

parameters, and statistical significance levels tht should be used to interpret the displayed 

data. As improved technology allows the number of electrodes and recording bandwidth to 

increase in the coming years, innovative methods of icEEG analysis based on neuroimaging 

will greatly improve our understanding of these valuable sets of human data.

Acknowledgments

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of 
this article: This work was supported by NIH R01NS055829, R01NS066974, R01MH67528, R01HL059619, 
P30NS052519, U01NS045911, CTSA UL1 RR0249139, a Donaghue Foundation Investigator Award, and the Betsy 
and Jonathan Blattmachr Family [HB]; as well as by the Ewha Global Top 5 Grant 2011 of Ewha Womans 
University and the Basic Science Research Program through the National Research Foundation of Korea (NRF) 
funded by the Ministry of Education, Science and Technology [R01-2011-0015788 to HWL].

References

Akiyama T, Otsubo H, Ochi A, Galicia EZ, Weiss SK, Donner EJ, and others. 2006 Topographic 
movie of ictal high frequency oscillations on the brain surface using subdural EEG in neo-cortical 
epilepsy. Epilepsia 47(11):1953–7. [PubMed: 17116039] 

Bai X, Towle V, Van Drongelen W, He B. 2011 Cortical potential imaging of somatosensory evoked 
potentials by means of the boundary element method in pediatric epilepsy patients. Brain Topogr 
23:333–43. [PubMed: 20652392] 

Besle J, Schevon CA, Mehta AD, Lakatos P, Goodman RR, McKhann GM, and others. 2011 Tuning of 
the human neo-cortex to the temporal dynamics of attended events. J Neurosci 31(9):3176–85. 
[PubMed: 21368029] 

Bidet-Caulet A, Fischer C, Besle J, Aguera PE, Giard MH, Bertrand O. 2007 Effects of selective 
attention on the electrophysiological representation of concurrent sounds in the human auditory 
cortex. J Neurosci 27(35):9252–61. [PubMed: 17728439] 

Brunner P, Ritaccio AL, Lynch TM, Emrich JF, Wilson JA, Williams JC, and others. 2009 A practical 
procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in 
humans. Epilepsy Behav 15(3):278–86. [PubMed: 19366638] 

Bullock T, McClune M, Achimowicz J, Iragui-Madoz V, Duckrow R, Spencer S. 1995 Temporal 
fluctuations in coherence of brain waves. Proc Natl Acad Sci U S A 92(25):11568–72. [PubMed: 
8524805] 

Carman G 1995 Computational methods for reconstructing and unfolding the cerebral cortex. Cerebr 
Cortex 5(6):506–17.

Cervenka MC, Boatman-Reich DF, Ward J, Franaszczuk PJ, Crone NE. 2011 Language mapping in 
multilingual patients: electrocorticography and cortical stimulation during naming. Front Hum 
Neurosci 5(13):1–15. [PubMed: 21283556] 

Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM, Knight RT. 2010 Categorical speech 
representation in human superior temporal gyrus. Nat Neurosci 13(11):1428–32. [PubMed: 
20890293] 

Dale AM, Sereno MI. 1993 Improved localization of cortical activity by combining EEG and MEG 
with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5(2):162–76. 
[PubMed: 23972151] 

Ebersole J, Pedley T. 2002 Current practice of clinical electroencephalography. Philadelphia (PA): 
Lippincott Williams & Wilkins.

Youngblood et al. Page 8

Neuroscientist. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ebner N, He Y, Fichtenholtz H, McCarthy G, Johnson M. 2011 Electrophysiological correlates of 
processing faces of younger and older individuals. Soc Cogn Affect Neurosci 6(4):526–35. 
[PubMed: 21030480] 

Engell A, McCarthy G. 2010 Selective attention modulates face-specific induced gamma oscillations 
recorded from ventral occipitotemporal cortex. J Neurosci 30(26):8780–6. [PubMed: 20592199] 

Englot DJ, Yang L, Hamid H, Danielson N, Bai X, Marfeo A, and others. 2010 Impaired 
consciousness in temporal lobe seizures: role of cortical slow activity. Brain 133(12):3764–77. 
[PubMed: 21081551] 

Gunduz A, Brunner P, Daitch A, Leuthardt E, Ritaccio A, Pesaran B, and others. 2012 Decoding covert 
spatial attention using electrocorticographic (ECoG) signals in humans. NeuroImage 60(4):2285–
93. [PubMed: 22366333] 

Gupta J, Marsh E, Nieh H, Porter B, Litt B. 2011 Discrete gamma oscillations identify the seizure 
onset zone in some pediatric epilepsy patients. Conf Proc IEEE Eng Med Biol Soc 2011:3095–8. 
[PubMed: 22254994] 

Han X, Xu C, Prince JL. 2001 A topology preserving deformable model using level sets. 2:765–70.

Harris F 1978 On the use of Windows for harmonic analysis with the discrete Fourier transform. Proc 
IEEE 66(1):51–83.

Jacobs J, Zijlmans M, Zelmann R, Chatillon C, Hall J, Olivier A, and others. 2010 High-frequency 
electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 
67(2):209–20. [PubMed: 20225281] 

Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J. 2006 High-frequency oscillations 
during human focal seizures. Brain 129(6):1593–608. [PubMed: 16632553] 

Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, and others. 2005 Automated 3-D 
extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial 
volume effect classification. NeuroImage 27(1):210–21. [PubMed: 15896981] 

LaViolette P, Rand S, Ellingson B, Raghavan M, Lew S, Schmainda K, and others. 2011 3D 
visualization of subdural electrode shift as measured at craniotomy reopening. Epilepsy Res 94(1–
2):102–9. [PubMed: 21334178] 

Lee JK, Lee JM, Kim JS, Kim IY, Evans AC, Kim SI. 2006 A novel quantitative cross-validation of 
different cortical surface reconstruction algorithms using MRI phantom. Neuro-Image 31(2):572–
84. [PubMed: 16503170] 

Liu T, Nie J, Tarokh A, Guo L, Wong STC. 2008 Reconstruction of central cortical surface from brain 
MRI images: method and application. NeuroImage 40(3):991–1002. [PubMed: 18289879] 

Lorensen WE, Cline H. 1987 Marching cubes: a high resolution 3D surface construction algorithm. 
Comput Graphics 21(4):163–9.

MacDonald D 1998 A method for identifying geometrically simple surfaces from three-dimensional 
images. Montreal, Canada: McGill University.

Manceaux-Demiau A, Bryan RN, Davatzikos C. 1998 A probabilistic ribbon model for shape analysis 
of the cerebral sulci: application to the central sulcus. J Comput Assist Tomogr 22(6):962–71. 
[PubMed: 9843240] 

Momjian S, Seghier M, Seeck M, Michel C. 2003 Mapping of the neuronal networks of human cortical 
brain functions. Adv Tech Stand Neurosurg 28:92–142.

Papademetris X, DeLorenzo C, Flossmann S, Neff M, Vives K, Spencer D, and others. 2009 From 
medical image computing to computer-aided intervention: development of a research interface for 
image-guided navigation. Int J Med Robot 5(2):147–57. [PubMed: 19301361] 

Schalk G, McFarland D, Hinterberger T, Birbaumer N, Wolpaw J 2004 BCI2000: a general-purpose 
brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–43. [PubMed: 
15188875] 

Schevon C, Trevelyan A, Schroeder C, Goodman R, McKhann G, Emerson R. 2009 Spatial 
characterization of interictal high frequency oscillations in epileptic neocortex. Brain 132(11):
3047–59. [PubMed: 19745024] 

Shattuck DW, Leahy RM. 2001 Automated graph-based analysis and correction of cortical volume 
topology. IEEE Trans Med Imaging 20(11):1167–77. [PubMed: 11700742] 

Youngblood et al. Page 9

Neuroscientist. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tao J, Hawes-Ebersole S, Baldwin M, Shah S, Erickson R, Ebersole J. 2009 The accuracy and 
reliability of 3D CT/MRI co-registration in planning epilepsy surgery. Clin Neurophysiol 120(4):
784–53.

Voytek B, Canolty R, Shestyuk A, Crone N, Parvizi J, Knight R. 2010 Shifts in gamma phase-
amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front 
Hum Neurosci 4:191. [PubMed: 21060716] 

Weiss S, Mueller H. 2003 The contribution of EEG coherence to the investigation of language. Brain 
Lang 85(2):325–43. [PubMed: 12735948] 

Welch P 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on 
time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics 15(2):70–
3.

Yuille AL. 1991 Deformable templates for face recognition. J Cogn Neurosci 3(1):59–70. [PubMed: 
23964805] 

Zaveri H, Pincus S, Goncharova I, Duckrow R, Spencer D, Spencer S. 2009 Localization-related 
epilepsy exhibits significant connectivity away from the seizure-onset area. Neuroreport 20(9):
891–5. [PubMed: 19424095] 

Zhou J, Yao J, Deng J, Dewald J. 2009 EEG-based classification for elbow versus shoulder torque 
intentions involving stroke subjects. Comput Biol Med 39(5):443–52. [PubMed: 19380125] 

Youngblood et al. Page 10

Neuroscientist. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
By combining an intracranial EEG recording, MRI scan, and electrode placement file, an 

icEEG surface rendering can be generated that displays the spatial time course of collected 

data (icEEG = intracranial electro-encephalography)
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Figure 2. 
Computational cortical models can be generated from MRI data using an iterative morphing 

(top panels) or segmentation method (bottom panels)
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Figure 3. 
Common methods for displaying intracranial EEG data on a cortical surface include 

coloration of areas adjacent to each electrode (top), coloration of electrode-defined circles 

(middle), and sizing of electrode-defined circles proportional to signal strength (bottom). All 

three methods show onset of high-frequency beta activity in the right temporal lobe during a 

seizure
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Figure 4. 
Time course of single frames from a three-dimensional color movie showing beta frequency 

(13–25 Hz, warm colors) and delta frequency (0.5–4 Hz, cool colors) power during a seizure 

arising from the right temporal lobe. Arrows indicate time samples for single frames from a 

video representing a moving 10 s window at 1 s increments. Signal power changes are 

normalized relative to 60 s baseline. Lateral (top two rows) and inferior (bottom row) views 

are shown for the right hemisphere at each time point. For video of the full time course see 

Supplementary Video 1 online. Reproduced using data originally published in Englot and 

others (2010), by permission of Oxford University Press
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