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Abstract
Red blood cells (RBCs) are a specialised organ that 

enabled the evolution of multicellular organisms by 
supplying a sufficient quantity of oxygen to cells that 
cannot obtain oxygen directly from ambient air via 
diffusion, thereby fueling oxidative phosphorylation 
for highly efficient energy production. RBCs have 
evolved to optimally serve this purpose by packing 
high concentrations of haemoglobin in their cytosol 
and shedding nuclei and other organelles. During their 
circulatory lifetimes in humans of approximately 120 
days, RBCs are poised to transport oxygen by metabolic/
redox enzymes until they accumulate damage and are 
promptly removed by the reticuloendothelial system. 
These elaborate evolutionary adaptions, however, are 
no longer effective when RBCs are removed from 
the circulation and stored hypothermically in blood 
banks, where they develop storage-induced damages 
("storage lesions") that accumulate over the shelf life 
of stored RBCs. This review attempts to provide a 
comprehensive view of the literature on the subject 
of RBC storage lesions and their purported clinical 
consequences by incorporating the recent exponential 
growth in available data obtained from "omics" 
technologies in addition to that published in more 
traditional literature. To summarise this vast amount 
of information, the subject is organised in figures with 
four panels: i) root causes; ii) RBC storage lesions; 
iii) physiological effects; and iv) reported outcomes. 
The driving forces for the development of the storage 
lesions can be roughly classified into two root causes: i) 
metabolite accumulation/depletion, the target of various 
interventions (additive solutions) developed since the 
inception of blood banking; and ii) oxidative damages, 
which have been reported for decades but not addressed 
systemically until recently. Downstream physiological 
consequences of these storage lesions, derived mainly by 
in vitro studies, are described, and further potential links 
to clinical consequences are discussed. Interventions to 
postpone the onset and mitigate the extent of the storage 
lesion development are briefly reviewed. In addition, 
we briefly discuss the results from recent randomised 
controlled trials on the age of stored blood and clinical 
outcomes of transfusion. 

Keywords: blood transfusion; blood banking; storage 
lesion; clinical sequelae.

Introduction
Approximately 25 trillion red blood cells (RBCs) 

circulate in the bloodstream of an adult individual, each 
one packed with ~260 million haemoglobin molecules. 
To make room for haemoglobin, erythroblasts and 
reticulocytes progressively lose nuclei and organelles 
during maturation, which impairs the erythrocytes' 
capacity to synthesise new proteins during their 120 
days lifespan in the human bloodstream. Indeed, 
haemoglobin occupies 95% of the ~110 fL mean RBC 
volume1, making up ~670 g of the 25 kg dry body weight 
of an average adult individual2. Each alpha and beta 
globin subunit in the haemoglobin tetramer contains one 
ferrous iron, which can bind one molecule of oxygen. 
Evolution has shaped haemoglobin and the RBC as 
a highly specialised carrier of oxygen in the body3, 
enabling large warm-blooded vertebrates to thrive. 
When RBCs are fully oxygenated, concentrations of 
both iron and oxygen approximate 16 mM, a very high 
concentration considering the highly reactive nature of 
ferrous iron and oxygen. To mitigate oxidative stress and 
oxygen consumption, mature RBCs lose mitochondria 
and strengthen their antioxidant systems to specifically 
maintain haemoglobin iron in a reduced state, even in 
the presence of high oxygen concentrations. Oxidised 
(ferric state, +III) haemoglobin (i.e., methaemoglobin) 
can thus be either reduced back to ferrous state (+II) 
by enzymes such as methaemoglobin reductase, or 
denatured/aggregated (Heinz bodies) before removal via 
vesiculation (e.g., aging RBCs shed one microvesicle per 
hour)4. Senescent erythrocytes are usually characterised 
by higher oxidative stress than young erythrocytes 
and are readily removed from the bloodstream via 
phagocytosis by reticuloendothelial system macrophages 
in the liver and spleen.

In blood centers, donated blood is separated into a 
red cell concentrate (RCC) from which white blood cells 
(WBCs) are filtered in most cases, as well as platelets 
(log 2 WBC removal via buffy coat depletion or log 
3.5-4 WBC and log 2.5 removal if leucofiltration is 
performed, respectively). Isolated RBCs are resuspended 
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in an acidic additive solution at approximately 60% 
haematocrit and stored under refrigerated conditions 
(1-6 °C hypothermic storage) for up to 3-7 weeks. In 
cryopreserved RBCs with a shelf life of over 10 years, 
chemical reactions in RBCs are virtually suspended by 
storing at −65 °C with a cryo-protectant. However, the 
latter process is time-consuming and cumbersome, and 
it promotes the lysis of the older, more fragile RBC 
population that was originally frozen5. In contrast, 
during hypothermic storage (1-6 °C), chemical reactions 
proceed - albeit at reduced rates6 - without the full 
benefit of the protective mechanisms that operate in 
the circulation. Thus, gradual degradation of various 
components of RBCs, collectively referred to as the 
"storage lesion", accumulates during hypothermic 
storage resulting in a limited shelf life of up to 7 weeks. 
This contribution provides an overview of the RBC 
storage lesion and its potential clinical implications 
by examining causative elements, damage to RBCs, 
consequences in vitro and in animal models, and finally, 
associated clinical sequelae based on a thorough and 
extensive review of the existing literature.

Elements of the storage lesion and downstream 
consequences

Reviews7-9 of recent randomised controlled trials 
(RCTs)10-15 indicated that transfusion of the freshest 
available blood does not decrease the risk of mortality 
in several categories of recipients (including a small 
number of massively transfused critically ill or sickle 
cell disease patients) when compared to the standard 
of care. Despite reassuring evidence from RCTs, there 
is a burgeoning literature on the potential clinical 
sequelae other than mortality to transfusion of packed 
RBCs16,17 and on the potential etiological link between 
the storage lesion and untoward consequences upon 
transfusion.

In Figure 1 we summarise elements of the RBC 
storage lesion - from causes to associated clinical 
sequelae - in four vertical panels, including root 
causes (Panel I); effects on RBCs (i.e., storage 
lesions) (Panel II); physiological consequences 
deduced from in vitro experiments or animal models 
(Panel III); and finally, potential clinical sequelae 
of RBC transfusion as gleaned from retrospective 
or prospective studies (Panel IV). Representative 
references for each of the elements in Figure 1 are 
provided. Our categorisations, though helpful from a 
systematic perspective, may at times appear arbitrary, 
owing to the labile boundary between cause and effect 
for some of the extensively reported lesions. For 
example, ion homeostasis is controlled by energy-
dependent mechanisms, which are in turn affected by 
redox and energy metabolism. Nonetheless, storage 

temperature alone negatively affects proton pumps, 
and dysregulation of ion homeostasis (e.g. calcium18) 
affects kinase activity and metabolic signalling, 
making it difficult to conclude whether some of the 
proposed connections (if any) are only unidirectional. 
Nonetheless, we firmly believe that such a systematic 
overview of the storage lesion is unprecedented and 
will, at least, fuel further debate on the most relevant 
etiological factors to be targeted by next generation 
storage strategies/additives designed to improve 
RBC storage quality, as well as analytical strategies 
to provide pre-clinical insights regarding RBC safety 
and efficacy.

Root causes [Figure 2, Panel I]
For hypothermic storage, RBCs are isolated 

from plasma and suspended in an acidic solution 
containing a high concentration of glucose. During 
storage, RBCs are exposed to plasticisers in the 
storage bag as well as oxygen diffusing in from 
ambient air, while accumulating metabolic waste 
resulting in further acidification throughout the 
shelf life. RBCs have evolved to cope with oxidative 
and mechanical stresses they encounter while 
performing their vital function as oxygen carriers 
in vivo. However, during their isolated state under 
hypothermic storage ex vivo, RBCs face a different 
set of chemical and mechanical stresses. Since 
RBCs were never exposed to evolutionary pressure 
to cope with such conditions, no physiological 
countermeasures evolved to address the stresses 
that create the storage lesions. The root causes of 
the development of the RBC storage lesion can be 
roughly classified into two categories: (i) arising 
from isolation of RBCs, dilution of plasma with an 
additive solution, and extended hypothermic storage 
in a closed bag; and (ii) arising from storage ex vivo 
in the presence of oxygen, resulting in oxidative 
stress and loss of biochemical countermeasures that 
were functional in vivo. Both causes result in physical 
damage and biochemical impairment to stored RBCs.

Oxidative damage as a cause for RBC storage 
lesions [Figure 2, Panel Ia] 

Chemical oxidation of iron in haemoglobin is 
the central reaction that initiates oxidative stress, 
the major element for the development of the 
storage lesion, in stored RBCs. RBCs contain high 
concentrations of reactive ferrous iron in the haeme 
prosthetic group of haemoglobin together with 
a high concentration of dissolved oxygen. Four 
iron moieties (ferrous state) in haemoglobin react 
chemically with oxygen to form methaemoglobin 
(ferric state). As a byproduct, superoxide anion 
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is generated, which is converted by superoxide 
dismutase to form H2O2, a major reactive oxygen 
species (ROS) and a substrate for hydroxyl radical 
(OH•) generation. In vivo, methaemoglobin is reduced 
back to haemoglobin by reductase enzymes, but these 
enzyme activities are curtailed under hypothermic 
storage conditions. Coupled with higher dissolved 
oxygen concentrations stemming from increased 
solubility at low temperature, this phenomenon 
results in enhanced production of methaemoglobin 
and superoxide anion. However, methaemoglobin 
does not accumulate to high levels in stored RBCs, 
and instead denatures into globin and haemin or 
free haeme due to its instability at hypothermic 
temperature. Ferric iron in haeme is reduced by 
the superoxide derived from methaemoglobin 
formation. The resulting ferrous ion then reacts 
with H2O2 by the Fenton reaction to produce net 
OH• by the Haber-Weiss reaction19. H2O2 also 
reacts with oxyhaemoglobin to produce ferryl (+IV) 
haemoglobin. Both OH• and ferryl haemoglobin 
are highly reactive, and oxidise nearby enzymes 
and lipids. The occurance of this cascade of events 
exponentially increases after two weeks of storage 
in the SAGM additive, resulting in reversible and 
irreversible oxidationsa of structural (e.g. ankyrin and 
spectrin20), functional (band 320 and haemoglobin21), 
and metabolic enzymesb, exacerbating metabolic 
impairments22. These events lead to the exposure of 
phosphatidylserine on RBC surfaces (a phenomenon 
counteracted through the expenditure of high 
energy phosphate compounds, such as adenosine 
triphosphate (ATP), and imbalances in K+ and 
Ca2+ ions23. Oxidised proteins, including denatured 
haemoglobin, bind to the cytoskeleton and disrupt 
its network structure causing morphological changes 
and reduced in deformability24,25. Oxidised and 
denatured proteins aggregate and precipitate in/on 
the RBC membrane. ROS also oxidises haemoglobin 
at the critical amino acid residue, β-92 histidine, 
destroying its ability to bind oxygen21. Another 
critical aspect of haemoglobin oxidation/ROS 
generation is lipid oxidation. Ferryl-haemoglobin 
and OH• are powerful ROS that can initiate the 
lipid peroxidation cycle26, which is sustained by 
the availability of oxygen, thereby disrupting the 
membrane bilayer and producing biologically active, 
oxidised polyunsaturated fatty acids (oxylipins)27. 
Of note, in a murine model, lipid peroxidation is 

aFor example, beta-elimination of cysteine thiols to generate 
dehydroalanine or carbonylation on side chains of lysine, arginine, 
proline and threonine residues20,44,45,314-316.
bFor example, glyceraldehyde 3-phosphate dehydrogenase44 and 
peroxiredoxin286,314,317.

a predictor of post-transfusion recovery; that is, 
the percentage of transfused erythrocytes that still 
circulate at 24 h from transfusion, a minimum but 
not sufficient condition for transfused RBCs to exert 
their function28.

Metabolic impairments as a cause for storage lesion 
development [Figure 2, Panel Ib] 

Metabolic impairments of stored RBCs occur as 
a consequence of removing RBCs from a donor's 
circulation, isolating them from plasma, and storing 
them in acidic solution, with a limited solution volume, 
at hypothermic temperature. Depletion of critical 
substrates (i.e., extracellular nutrients, such as glucose 
and intracellular purine derivatives, such as urate29) and 
accumulation of metabolic waste products, dominated 
by lactic acid, occur in component processing and 
storage. The consequences of glycolysis are reduced 
pH and impaired activities of critical enzymes that 
supply energy and antioxidant defense30, as reported 
since the 1940s31. Several metabolic pathways not 
expected in RBCs because of their lack of organelles 
have been discovered during the last two decades, 
especially with the advancement provided by "omics" 
sciences32-35. Down- and up-regulated pathways were 
quantified in MAP and phosphate-adenine-glucose-
guanosine-gluconate-mannitol (PAGGGM) additive 
solutions with differences between the 0-7 day and 8-35 
day periods36,37, and a three-phase temporal evolution 
in metabolic pathways was reported in saline-adenine-
glucose-mannitol (SAGM) and AS-36,38-43. 

Low pH additive solutions (5.5-6.0) reduce the 
activities of the rate-limiting enzymes of glycolysis, the 
pentose phosphate pathway (PPP), and the Rapoport-
Luebering shuntc, and contribute to the rapid depletion 
of 2,3-diphosphoglycerate (2,3-DPG) and a gradual 
reduction of ATP during storage. Glycolytic enzymes 
are reversibly and irreversibly oxidised progressively 
during storage44-46, and 2,3-DPG breakdown fuels ATP 
generation at the expense of haemoglobin capacity to off-
load oxygen, due to the ensuing low 2,3-DPG levels. As 
2,3-DPG is consumed and haemoglobin oxygen saturation 
is increased by storage weeks 2-3, ROS accumulation 
reaches its plateau in classic additives, such as SAGM20. 

It is worth noting that glucose availability is not 
a limiting factor, since all of the currently available 
additives are loaded with glucose to such an extent 
(>50 mM and up to 154 mM in the case of AS-1) that 
glucose autoxidation and non-enzymatic glycation of 
haemoglobin (HbA1c47) and membrane proteins48 are 
observed in end-of-storage RBCs.

cFor example, phosphofructokinase, glucose 6-phosphate 
dehydrogenase and biphosphoglycerate mutase.
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Depletion of ATP and nicotinamide adenine 
dinucleotide phosphate (NADP)+ becomes a limiting 
factor in glutathione synthesis (an ATP-dependent 
process), resulting in reduced glutathione pools during 
storage. As the γ-glutamyl cycle is incomplete in 
mature RBCs, the lack of oxoprolinase activity results 
in 5-oxoproline accumulation in stored RBCs and 
supernatants, representing a key marker of RBC metabolic 
age during storage42. These considerations explain why 
attempts to replenish glutathione reservoirs by feeding 
RBCs in additives supplemented with glutathione 
precursors (e.g. glutamine) have failed to date49,50. 

Of note, redox and energy metabolism in stored 
RBCs are more intertwined than was generally 
assumed for decades. Recent evidence suggests that 
hypoxanthine accumulates in stored RBCs as a result of 
ATP breakdown into adenosine monophosphate (AMP), 
whose deamination to the hypoxanthine-precursor 
inosine monophosphate (IMP) is enzymatically 
catalysed by RBC-specific AMP deaminase 3 in 
response to oxidative stress51. This is relevant in that 
hypoxanthine is a predictor of post-transfusion recovery 
in mice and, preliminary data suggest, in humans51. 
At the end of storage, hypoxanthine in RBCs and 
supernatants are at mM levels; hypoxanthine at ~100 µM 
is a substrate for generating hydrogen peroxide and urate 
in the presence of xanthine oxidase in the circulation of 
transfusion recipients. This prompts the consideration 
that circulating levels of post-transfusion hypoxanthine 
above the 100 µM threshold (i.e., the equivalent of a 
single end of storage ~450 mL unit diluted in 5 L of blood 
in the recipient) may be sufficient to catalyse oxidative 
stress, negatively impacting the recipient including the 
recipient's RBCs52. 

Some of the metabolic lesions that RBCs undergo 
during refrigerated storage are somewhat reversible 
following transfusion. For example, ATP and 2,3-DPG 
levels recover by 7-72 h after circulating in the recipient53, 
though at a rate that may be insufficient to meet the 
sudden and supra-physiological metabolic demand of 
trauma or critically ill recipients. Furthermore, RBCs 
that were near senescent when collected for storage, 
with reduced ATP and enzyme activities, may not be 
able to recover from the metabolic impairment and be 
removed by the recipient's reticuloendothelial system 
after transfusion, as studies on the effect of the storage 
lesion on RBC populations sorted through density 
gradients seem to suggest54. 

Consequences for RBCs - storage lesions [Figure 
2, Panel II]

Extensive metabolomic investigations revealed that 
levels of high-energy compounds, such as ATP and 
2,3-DPG, as well as reducing equivalents, glutathione 

(GSH) and (NAD(P)H), are reduced with a shift in 
the overall metabolic state after approximately two 
weeks of hypothermic storage55. Depleted ATP impacts 
several enzymatic functions and ion pumps, such 
as Ca2+ pumps. Decreased ATP deregulates cation 
homeostasis and disrupts membrane asymmetry, 
triggering the exposure of phosphatidylserine (PS) and 
phosphatidylethanolamine (PE), normally confined 
to the inner bilayer, and leading to microparticle 
formation. ATP depletion also alters the ability of 
kinases to phosphorylate proteins, as revealed by the 
restored membrane protein phosphorylation capacity 
after rejuvenation of long-stored RBCs56. Depleted ATP 
also causes reorganisation of the cytoskeleton, leading 
to echinocytosis57. Depletion of reducing equivalents 
results in reduced anti-oxidant capacity, further 
exacerbating damage from oxidative stress during 
storage and in RBC recipients after transfusion. Rapid 
loss of S-nitrosylation (SNO) of haemoglobin in stored 
RBCs is hypothesised to interfere with vasodilation in 
transfused patients58 by causing insufficient nitric oxide 
bioavailability (INOBA), although SNO-haemoglobin's 
relevance remains controversial59,60. 

A unit of RBC contains a continuum of cell ages 
from those just released into the circulation to those 
that are senescent and at the end of their circulatory 
life. Most in vitro parameters described in this panel 
are averaged values from this inhomogeneous RBC 
population in which the rate of damage accumulation 
may not be linear with storage time nor consistent from 
donor to donor. Thus, a unit of stored RBCs at any 
storage time contains some senescent cells that have 
lost excess membrane area by vesiculation and have 
decreased antioxidant capacity (e.g. glucose 6-phosphate 
dehydrogenase activity decreases in older circulating 
RBCs61). Morphological analyses report 6-9% of RBCs 
with irreversible changes62,63. Additionally, those cells' 
metabolic status may have exhausted their capacity to 
handle oxidative stress during ex vivo storage for an 
extended time54, explaining the average ~17.6% loss of 
potency of end of storage packed RBCs when transfused 
back to a healthy autologous donor64 as gleaned 
from extensive post-transfusion recovery studies65. 
Reorganisation and damage to the RBC membrane and 
cytoskeleton, binding of haemoglobin and oxidised 
proteins, degradation of band 3, and variations in raft 
proteins66,67 are consequences of hypothermic storage. 
Accumulation of denatured methaemoglobin and damage 
caused by ROS result in changing RBC morphology 
from discocytes to echinocytes, then irreversibly to 
spherocytes, by releasing microparticles (MPs), resulting 
in reduced deformability that is not reversible after 
transfusion. Oxidation of membrane lipids and proteins 
exposes inner membrane phospholipids (PS and PE)68-70, 
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contributing to membrane re-organisation and promoting 
MP formation. Proportionally higher loss of membrane 
area compared to volume occurs with MP formation, 
leading to loss of the excess surface area needed to allow 
passage of RBCs through narrow splenic capillaries71. 
Minimisation of surface to volume ratios also increases 
RBC osmotic fragility62. Cross-linking cytoskeleton 
and membrane proteins72, dysregulating cytoskeletal 
protein phosphorylation73, and dehydration caused by 
Ca2+ influx and K+ efflux, also contribute to reduced 
RBC deformability74. Oxidation of the membrane 
cytoskeleton disturbs anchoring between membrane 
proteins and the cytoskeleton, leading to eryptosis signal 
formation by band 3 clustering25. Oxidation of CD47 
leads to eryptosis signal formation75, while storage-
dependent depletion of membrane CD4776,77 - a "do not 
eat me" signal - makes transfused RBCs more prone to 
removal mediated by the recipients' reticuloendothelial 
system. RBCs that are nearly senescent at the time of 
blood collection are therefore likely to comprise the 
majority of cells that haemolyse over the course of the 
storage period, though the occurrence of haemolysis is 
very low, typically less than 0.8%. Biologic response 
modifiers (BRMs), such as cytokines, chemokines, 
bioactive lipids, and metabolites, accumulate during 
storage52,79,80; most of these BRMs function as pro-
inflammatory agents for transfusion recipients. 

Finally, processing methods and additive solutions 
used to prepare RCC impact the storage lesion. 
The buffy-coat process leads to lower haemolysis 
at the end of the storage period than whole blood 
filtration81, and apheresis techniques generally 
generate more platelet-derived MPs as compared to 
whole blood donation82.

Physiological consequences of transfusing RBC with 
storage lesions [Figure 3]

When stored RBCs are transfused to autologous 
healthy volunteers, a significant fraction (median 
17.6%) of RBCs is cleared from circulation within 
24-hr65. Although a small fraction of mechanically 
damaged cells may haemolyse intravascularly 
after transfusion, the majority of non-viable RBCs 
display eryptosis markers and are phagocytosed 
extravascularly by macrophages in the recipient's 
reticuloendothelial system83,84. Mechanisms of 
programmed cell death may activate during storage 
in parallel, resulting in eryptosis, which is induced 
by calcium influx and K+ efflux23,85, cell shrinkage, 
exposure of PS86 and PE68 from inner membrane 
bilayer, vesiculation of MPs with loss of excess 
surface area87, activation of calpains and caspases88, 
and reduced deformability89-92. In general, the portion 
of removed cells increases linearly with storage 

duration starting from over 6% after 1 week to 
11% after 6 weeks93 in healthy volunteers, though 
non-linear exponential increases are observed after 
storage day 35, especially with respect to circulating 
iron metabolites, such as non-transferrin bound iron 
(NTBI) originating from cleared RBCs93. 

Free iron in the circulation is tightly regulated in 
the body not only due to its catalytic activity in ROS 
production, but also as the major nutrient constraining 
growth of siderophilic bacteria94, a consideration 
relevant in patients with sepsis or bacteremia. In 
vivo, RBCs haemolysed in the circulation release iron 
from haeme but sequestered quickly by transferrin95. 
However, with transfusion of one unit of RBCs in 
healthy volunteers, up to 60 mL of damaged RBCs (25% 
of a unit) are removed extravascularly within 24 hours 
and iron is recycled. Since only 1 mL of senescent RBCs 
are removed hourly normally, transfusion of one unit can 
overwhelm both the reticuloendothelial system and the 
capacity of transferrin, thereby releasing NTBI into the 
circulation, which can result in bacterial proliferation96. 
The harmful consequences of uncontrolled NTBI in the 
circulation are magnified with multiple-unit transfusions 
and long-stored RBC units with a higher portion of non-
viable cells. Additionally, for chronically transfused 
patients, the recipient's capacity to handle the excess iron 
from non-viable RBCs included in every transfused unit 
is overwhelmed, resulting in iron overload of tissues and 
subsequent organ dysfunction97,98. Ferryl-haemoglobin, 
an oxidation product of methaemoglobin by ROS, is 
also a proinflammatory agonist that can also cause 
endothelial damage99.

NO is a signal for vasodilation that is generated 
by endothelial nitric oxide synthase (eNOS) near 
pre-capillary arterioles. Dysregulation of blood 
flow by disrupting NO-mediated vasoregulation is 
another major physiological effect of transfusing 
stored RBCs. Free haeme and MPs scavenge NO100, 
causing INOBA and disrupting signals for increasing 
flow for higher oxygen delivery to hypoxic tissues. 
Less deformable RBCs are also implicated in causing 
INOBA by scanvenging NO, resulting from their 
tendency to flow closer to the endothelial wall, as 
compared to normal RBC101. Additionally, RBCs play 
a direct role in regulating their flow in capillaries 
via NO: RBC haemoglobin reduces nitrite in plasma 
to produce NO102,103 and endothelial eNOS can be 
stimulated by RBC-released ATP104-107. Storage 
under conventional conditions alters the latter 
mechanism and the reduced glucose concentration 
in additive solution enables better NO production 
from endothelial cells stimulated by ATP release107. 

Transfused stored RBCs can provoke a pro-
inflammatory response108,109 by the cytokines, 
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eicosanoids, and free haeme within a unit, as well 
as the NTBI produced by extravascular haemolysis 
in the recipient110. Storage lesions also promote 
adhesion to endothelial cells111,112, complement system 
activation113,114, and changes in coagulability115-117 in 
studies in vitro and in animal models. These effects 
also damage the endothelial lining to cause capillary 
leakage. In addition to the pro-inflammatory nature 
of stored RBCs, immune modulatory effects are also 
reported, attributed to NTBI118, RBC phagocytosis, 
and interaction with T-cells119.

Potential clinical sequelae and upstream linkages 
[Figure 4]

Panel IV of Figure 1 summarises numerous clinical 
outcomes suggested to be linked to transfusion of stored 
RBCs. Figure 4 illustrates possible linkages between 
elements of the three left panels to these reported clinical 
sequelae. It should be noted that RBC transfusion cannot 
be directly implicated, outside of a few exceptional cases 
for the entries in panel IV. Exceptions where a causal 
relationship can be established between a transfused 
RBC unit and clinical outcomes include: pathogen 
transmission, host vs graft disease, intravascular 
haemolytic reactions arising from mismatched RBCs, 
febrile responses, and some transfusion-related acute 
lung injury (TRALI) cases involving blood components 
containing incompatible plasma. For these cases, 
causal links to transfusion outcomes can be proven by 
pathogens in the donor RBCs, a high leucocyte burden, 
and antibodies or other BRMs in the transfused RBC 
unit. On the other hand, links can be only inferred 
between potential sequelae and transfusion of RBCs with 
accumulated storage lesions. The literature on this topic 
can be classified into four types of studies depending on 
how they are linked to the transfusion of stored RBCs: 
A)	retrospective or prospective studies examining 

transfusion triggers in different settings; incidences 
of specific morbidity are recorded as a function of 
a high or low transfusion trigger-where the quantity 
or absence of RBC transfusion is compared with 
specific morbidity or severity of negative outcome. 
A classical example is the TRICC study120.

B)	Retrospective studies in which the age of stored 
RBCs, as a surrogate for the extent of the storage 
lesion, is compared to specific morbidity or 
mortality outcomes. A classical example is Koch's 
study in cardiac patients121 or the meta-analysis of 
retrospective studies conducted by a group at the 
NIH122.

C)	Mechanistic in vitro studies, where consequences of 
specific storage lesions are examined on suspected 
target cell types107,123.

D)	Animal model studies where RBCs with specific 

storage lesions or RBCs stored for extended time are 
infused into an animal prepared to simulate specific 
recipient conditions and overall mortality or organ-
specific parameters are examined. Murine110,119,124, 
canine125, and ovine126 models are classical examples.
Multiple organ dysfunction or individual organ 

failure are potential sequelae of RBC transfusion in 
complex surgery or in critical illness and are often 
used as the primary outcome measures for numerous 
RCTs studying the effects of transfusion trigger or 
storage age, a surrogate for the level of the accumulated 
storage lesion14,127. Impaired tissue oxygenation, 
hypercoagulability, and endothelial damage are 
attributed to physiological consequences of transfusing 
storage-damaged RBCs. Although transfusion of RBCs 
with storage lesions could exacerbate critical illness, it 
is virtually impossible to pinpoint one unit of transfused 
RBCs with a specific storage lesion as the major 
culprit. However, there is abundant literature drawing 
specific inferences between transfusion of stored RBCs 
and clinical sequelae based on clinical observations 
combined with results from in vitro experiments or 
animal model studies (link from Panel III to Panel IV).
-	 Specific organ damage, such as to the liver and 

heart, are attributed to iron overload in chronically 
transfused patients97,128,129. Massive intravascular 
haemolysis from transfusion of mismatched RBC 
to alloimunised patients can cause acute kidney 
failure121,130-137.

-	 Free iron concentration in circulation is limited 
and tightly controlled as iron is a major limiting 
substrate for bacterial proliferation. Transfusing 
a large quantity of non-viable RBCs can easily 
overwhelm a recipient's ability to process excess 
iron, resulting in the release of NTBI into the 
circulation. Thus, increased infection125,135,138-155 
and sepsis94,121,125,149,156,157 in transfused patients are 
attributed to bacterial proliferation arising from 
the availability of NTBI. Of note, extravascular 
haemolysis, not intravascular haemolysis, was 
recently associated with the transfusion of RBCs 
(an increased level of transferrin saturation as a 
hallmark) in cardiac surgery (the age of RCCs was 
not recorded in this observational study158).

-	 RBC transfusion reduces rate of graft rejection by 
recipients of organ transplants159,160, and exhibits 
immunosuppressive effects, termed transfusion-
telated immune modulation (TRIM)161. In vitro 
studies demonstrated suppression of monocyte 
function when incubated with stored RBCs162,163. 
Suppression of innate immunity was observed when 
critically ill children were transfused with RCC 
stored more than 21 days164. Those observations 
demonstrate immunomodulatory effects of stored 
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RBCs, and link RBC transfusion to increased rate 
of recurring malignancy as well as infections165.

-	 Transfusion of stored RBCs may exacerbate the 
occurrences of post-operative delirium and confusion 
that may be caused by impaired brain tissue perfusion 
and oxygen delivery148,166-171.

-	 Hypercoagulabil i ty109,115,172,173,  endothel ial 
adhesion112,173-181, and endothelial damage attributed182 
to stored RBCs may contribute to thromboembolism 
in RBC transfusion recipients142,183-185.

-	 TRALI involves pulmonary inflammation and can be 
caused by BRMs in stored RBCs, such as oxidised 
lipids186-193. The blood processing methods might 
have an impact since various levels of residual 
plasma were reported.

-	 Haemolytic reactions may be caused by complement 
activation and alloimmunisation in which neo-
antigens formed in stored RBCs may contribute194-197; 
this may lead to acute kidney injury121,130,134.

-	 TACO (transfusion-associated circulatory overload) 
is attributed to fluid overload in patients with 
underlying morbidity198,199. No links between stored 
RBCs quality and the incidence of TACO is apparent.

-	 Alloimmunisation119,195,200-215 is often caused 
by transfusion of RBCs with a mismatch of 
minor antigens in chronically transfused 
patients200,202,206-208,216, which may result in delayed 
haemolytic reactions194,209. Enhanced inflammation, 
stemming from transfusion of RCCs, can enhance 
alloimmunisation responses203,205,217. Additionally, 
modification of the RBC surface during hypothermic 
storage could result in erythrophagocytosis218, which 
may promote alloimmunisation.

Countermeasures to reduce storage lesion
Efforts to retard haemolysis during hypothermic 

storage and to extend the shelf life were started at the same 
time as the blood banking infrastructure was established. 
Anticoagulant/storage solutions for whole blood were 
explored, culminating in approval of CPDA-1 for storage 
of whole blood up to 35 days. When blood component 
separation became the mainstay, additive solutions to 
replace plasma in RBC units were developed. A review 
by Hogman and Meryman219 summarises efforts in the 
period leading up to late 1980s in which the volume, 
osmolality, inorganic phosphate and non-permeable ion 
content of additive solutions were examined to yield the 
additive solutions commonly used today, such as SAGM, 
PAGGSM, MAP, AS-1, AS-5, and AS-3. Since then, in 
addition to haemolysis, ATP, and 2,3-DPG levels, new 
parameters were increasingly measured to evaluate the 
quality of stored RBCs, such as microparticle release, 
deformability, membrane fluctuations, PS exposure, 
and osmotic fragility63,220,221. Since 2000, "omics" 

technologies were introduced into the field, starting 
with proteomics222,223, followed by metabolomics55,224,225, 
genomics226,227 and lipidomics28, and accompanied by 
system biology or in-silico modelling36,228-232, greatly 
expanding the scope of understanding of the mechanisms 
underlying storage lesion progression and its genetic 
and epigenetic effects228-231, as reviewed recently55,233. 
Research into better additive solutions continues to the 
present day in order to maintain high 2,3-DPG and ATP 
levels while minimising haemolysis during storage by 
manipulating RBC intracellular pH, either with high pH 
additive solution containing bicarbonate or with Donnan 
equilibrium employing hypotonic solution with non-
permeant ions234. These new additive solutions remain 
experimental except for AS-7235-237, which gained US FDA 
approval but is not available commercially. The additive 
solutions described above were formulated to reduce 
storage lesions arising from metabolic impairments; the 
subsequent consequences that are suggested in Figure 
4. In parallel to developing RBC additive solutions, 
rejuvenation solutions based on pyruvate, inosine, 
phosphate and adenine, yielding levels of 2,3-DPG 
and ATP comparable to freshly collected RBCs when 
processed at the end of storage238,239, are available. More 
recently, adding such solutions was shown to be effective 
during hypothermic storage240,241 by reactivating critical 
metabolic pathways of stored RBCs241.

Addressing metabolic impairments by adjusting 
additive composition and pH positively affected 
maintenance of RBC energetics as well as levels 
of some antioxidant metabolites. However, since 
biochemical reactions are limited during hypothermic 
storage, reducing metabolic impairments alone may 
not fully reduce storage lesions caused by oxidative 
stress. Diffusion of oxygen from ambient air through the 
storage bag coupled with its higher solubility at storage 
temperature leads to an increase in oxygen concentration, 
the main reactant in oxidative reactions. Thus, in addition 
to addressing metabolic impairments, provisions to reduce 
the direct sources of oxidative damage should be included 
in comprehensive solutions to reduce the development 
of the RBC storage as illustrated in Figure 4, where 
oxidative damage due to O2 (Panel Ia) affects every item 
downstream (Panel II-IV). 

Two general approaches were proposed to reduce 
oxidative damage during hypothermic storage: i) inclusion 
of anti-oxidants in the additive solution; and ii) reduction of 
pro-oxidants in stored RBCs by hypoxic storage. Chemicals 
such as nicotinic acid242, melatonin243, L-carnosine244, 
ascorbic acid245,246, quercetin247, iron chelators248, and 
N-acetylcysteine249,250 have been suggested as antioxidants 
to be included in additive solutions, but the improvements 
appeared insufficient and none has been tested extensively 
for commercial production. Supplementation with 
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antioxidants, such as ascorbic acid (which can only be up 
taken by RBCs in its oxidised form, dehydroascorbate) 
and/or N-acetylcysteine, while boosting RBC antioxidant 
capacity246,250,251, ended up depleting glutathione pools by 
favoring reduced glutathione conversion to disulfide during 
storage250 and limiting energy metabolism. The latter is 
attributed to the competitive uptake of dehydroascorbate 
by RBCs via the transporter GLUT1 at the expense of 
glucose51. Alternative additives, including non-glucose 
sugars such as fructose and mannose225, in the formulation 
may obviate this problem. Lipophilic antioxidants, such 
as vitamin E, may be valuable alternatives to specifically 
mitigate lipid peroxidation252,253, but they also induce 
morphological changes.

Hypoxic storage, where the oxygen content of 
RBC units is reduced to low levels (e.g., less than 4% 
oxy-haemoglobin [%SO2]

254) prior to refrigeration 
and maintained throughout storage, was proposed as 
an alternative to antioxidant-based additive solutions 
to reduce oxidative stress during hypothermic RBC 
storage254-259. The rationale for implementing hypoxic 
storage is to reduce oxygen, the essential substrate for 
haemoglobin oxidation that generates a multitude of 
ROS as byproducts. Additionally, oxygen is required for 
sustaining the lipid peroxidation cycle catalysed by ROS. 

Hypoxic storage was shown to counteract some 
metabolic impairments without requiring novel additive 
ingredients256 independent of the reduction in oxidative 
stress. During pre-storage processing to reduce oxygen 
content in the RCC, carbon dioxide is also reduced. 
Carbon dioxide depletion increases cytosolic pH that 
was lowered from its physiological level by exposure 
to acidic anticoagulant and additive solutions. The 
resulting more neutral pH in the early phase of storage 
results in sustained flux through the glycolytic pathway 
and elevated 2,3-DPG levels, which are highly sensitive 
to pH and normally depleted early during hypothermic 
storage256,260. Additionally, deoxyhaemoglobin causes 
metabolic modulation to release glycolytic enzymes, 
such as phosphofluctokinase and glyceraldehyde 
dehydrogenase, sequestered at the band 3 binding 
domain, thereby enhancing overall glycolytic flux 
during hypoxic storage44,261,262. Under reduced oxygen 
concentration, hexokinase output to the PPP is partially 
blocked due to metabolic modulation as well as limiting 
the concentration of NADP+ (limiting substrate for PPP), 
which may have resulted in curtailed glutathione levels260. 

Factors affecting storage lesion development: 
donor characteristics and RCC preparation 
methods 

RBC responses to hypothermic storage, such as 
maintenance of glutathione levels and the extent of 
haemolysis, are heritable traits and depend on genetic 

makeup of the donors227,263-265. Evolutionary selection 
pressure in different geographical environments 
resulted in multiple strategies to optimise human 
survival, which included subtle differences in RBC 
physiology, resulting in a wide variation of RBCs in 
the current-day blood donors. For example, selection 
against malaria resulted in various mutations providing 
a survival advantage in heterozygous carriers, but 
their RBCs may be less suitable for hypothermic 
storage266-268 or less efficacious for transfusion in specific 
patient categories269. An additional large variability is 
the oxygen saturation of the collected whole blood, 
resulting in a wide distribution of oxygen content in the 
prepared RCCs prior to hypothermic storage. Although 
RCC preparation procedures, donor gender, and the 
elevation of blood donation sites affect median percent 
haemoglobin oxygen saturation (%SO2), a very wide 
%SO2 distribution ranging from below 20% to above 
80% was observed270,271. This variation in the initial 
oxygen content of RCCs could contribute to overall 
variability of stored RCC quality, since oxygen is the 
major substrate for oxidative reactions resulting in 
oxidative storage lesions, and oxygen concentration 
profoundly affects RBC metabolism during hypothermic 
storage44,51,261.

The specific method used to prepare RCCs from 
donated whole blood for hypothermic storage, 
independent of donor-dependent factors (gender, 
donor age, iron status etc.), affects the characteristics 
of stored RBCs81,272,273,500 and may contribute to 
non-uniform clinical outcomes274. There are various 
procedures in blood donation (whole blood or apheresis), 
leucocyte filtration (whole blood, RBC, no filtration), 
component preparation (buffy coat, hard or soft spin), 
additive solutions (AS-1, AS-3, AS-5, SAGM, MAP, 
PAGGSM), and process time before refrigeration (8 
hours or 24 hours after overnight room temperature 
hold). Leucocyte filtration could positively affect the 
quality of stored RBC by reducing ROS produced in 
leucocytes275. Gamma irradiation276-281 and pathogen 
inactivation processes282-286 generate ROS, causing 
oxidative damage and exacerbating the rate of storage 
lesion development during subsequent hypothermic 
storage. Washing RCCs removes damaged RBCs and 
other potentially harmful byproducts, such as potassium, 
MPs, and cytokinesd,178,287-289. Aliquoting a single RCC 
unit throughout its shelf life for repeated transfusion in 
neonates is acceptable in order to limit multiple donor 
exposure290. Cryopreservation overcomes the 6-7 week 
storage limit of refrigerated RCCs by deep-freezing 
RBC in cryoprotectant solutions containing glycerol291. 

d Negative outcome was reported with washing older RCCs, presumably 
from inflicting mechanical damage on older fragile RBCs during the 
process155.
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This technology was developed in 1950s-1980s, as 
summarised in early292 and more recent293 reviews. 
Subsequent development of a closed deglycerolisation 
system allows for extended storage duration of post-thaw 
RCC from 24 hours to 14 days294. Numerous publications 
provide a detailed characterisation of thawed RBCs 
including rheologic properties295, microvesiculation296, 
and their potential superiority over conventionally 
stored RBCs in trauma settings297. Cryopreserved RCC 
is routinely used for rare blood types and in military 
settings in the United States of America and Europe. 

Quality of stored RBCs: results from randomised 
controlled trials on age of blood and their 
implications

In nearly all cases, the damage RBCs sustain while 
stored hypothermically ex vivo accumulates throughout 
the storage period, albeit at different rates depending 
on the genetic makeup, and possibly, the dietary and 
environmental exposure of each donor. Therefore, 
to evaluate the clinical consequences of transfusing 
RBCs with storage lesions, numerous RCTs have taken 
place, including five large scale ones in the past five 
years10-14 and two smaller trials earlier15,298, all using 
the age of stored RBCs as a surrogate for the extent 
of the accumulated storage lesion. These large studies 
compared fresh (6-12 days on average) to standard-issue 
or moderately aged RBC units (~3 weeks; except for one 
study at 5 weeks12) under various patient conditions and 
found no differences in mortality or the development of 
selected morbidities, indicating that there is no inferiority 
in transfusing RBCs using standard practice (oldest units 
available) when compared to transfusing fresher RBCs 
(freshest available). For details, readers are referred to 
the original reports, several meta-analyses8,9,299-301, and 
recent commentaries7,302. These results dispelled blood 
establishments' potentially critical safety concerns for 
recipients of their products. However, the debate is still 
open on transfusion of end-of-storage RCCs (older than 
28 or 35 days)16,303-305, since the outcomes of patients 
receiving a large quantity of old RCCs on one occasion 
or those receiving transfusions chronically over an 
extended period of time have not been examined by 
RCTse. Additionally, different RBC manufacturing 
methods or donor factors could affect the quality of 
stored RBCs81,274,285,306,307, potentially confounding the 
results of multicentered RCTs. Therefore, questions of 
safety remain for vulnerable patient populations receiving 
transfusions of RCCs with a high storage lesion burden.

eA secondary analysis of data from an RCT (PROPPR trial on trauma) 
suggested an association between transfusion of 10 or more units of 
RCCs older than 22 days, and an increased liklihood of mortality within 
24 hours501.

Conclusions and future directions
Placed outside of the donor's circulation and stored 

in a blood bank refrigerator, RBCs incur storage lesions. 
The recent application of "omics" technologies has made 
available vast quantities of new information, providing 
new paths to formulate, reduce, and test hypotheses on 
the mechanisms of storage lesion development. However, 
even with the current relative abundance of data, such 
an undertaking would not be easy as there is wide 
genetic variability of performance in donors' RBC under 
hypothermic storage conditions29,81,306,308,309. "Omics" 
studies scopes need to expand from a small number of 
subjects currently examined in detail to a much larger 
and diverse population. Different blood processing 
strategies need to be considered to optimise the function 
of donors' characteristics and patients' needs, keeping in 
mind the economic, technical, and logistical issues, and 
that our donors are of primary importance to sustain the 
transfusion chain310,311. As reviewed in previous sections, 
a body of evidence exists in animal models and humans 
suggesting that physiological responses to transfusion 
of damaged RBCs are adversely affecting the recipients. 
However, a direct link between transfusion of RBCs 
with specific storage lesions and observed negative 
outcomes in diverse recipients with different reasons 
for requiring transfusion therapy is difficult to establish 
unequivocally. This challenge is further complicated by 
pre-existing comorbidity as well as genetic variability 
in recipient responses to transfusion. 

A large number of individuals will still receive 
stored RBCs (e.g. 4-5 million patients annually in 
the USA alone), even though RCC consumption 
is steadily decliningf,312, and the potential harmful 
effects of transfusions with high storage lesion burden 
remains a concern. Additionally, selected categories of 
patients are potentially more vulnerable: patients with 
less common blood groups (e.g. AB) often receive 
older RCCs as compared to other groups, and patients 
who are massively or chronically transfused receive 
a disproportionately large fraction of RBC units that 
may include older RCC. Especially for the latter 
patients, the potential sequelae of transfusion could be 
amplified because of high levels of exposure to RBCs 
stored over an extended period. The published large-
scale RCTs on "age of RBC" do not provide objective 
evidence to assure safety of exposure to RBCs with high 
storage lesion burden in massive or chronic transfusion 
recipients. Because of these considerations, continued 
efforts to improve RBC processing/storage methods 
in order to reduce the storage lesion should benefit 
recipients and improve the overall cost-effectiveness 
of the patient-care system. 

fShifing demographics might change this trend in a decade313.
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