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Influenza vaccination and the ‘diversity paradox’
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ABSTRACT
The antigenic evolution of influenza is widely assumed to occur by antigenic drift, in which strains
incrementally acquire mutations in highly variable epitopes under strong immune selective pressure,
such as those in the major influenza antigen haemagglutinin. However, this is not easy to reconcile with
epidemiological observations, which show that each influenza season is dominated by a limited number
of strains. Here, we discuss this paradox in light of recent influenza epidemics that have been char-
acterised by low vaccine effectiveness and dominated by strains of limited antigenic and genetic
diversity.
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Introduction

Influenza is a highly contagious viral respiratory illness.1,2 The
WHO estimates that influenza causes 3 to 5 million cases of
severe illness and 290,000–650,000 deaths worldwide
annually.3 Currently, the H1N1 and H3N2 subtypes of influ-
enza A and Yamagata and Victoria lineages of influenza B
circulate in the human population.4 The burden of influenza
disproportionately affects the elderly and young children,
especially in developing countries.5 Influenza seasons in the
Northern and Southern hemisphere occur in the winter
months and are dominated by a limited number of antigeni-
cally and genetically distinct strains.6

The effectiveness of influenza vaccination in recent
years

The first experimental influenza vaccine was produced in
1933.7 Since 1973, the WHO has issued formal recommen-
dations regarding the composition for the influenza vac-
cine, and since 1999, separate recommendations have been
made for the Northern and Southern hemisphere influenza
seasons. These recommendations are based on the circulat-
ing influenza strains collected by WHO surveillance centres
and their antigenic similarity to the current influenza vac-
cine strains.8

The influenza vaccine is administered either as trivalent vac-
cine (TIV) or a quadrivalent vaccine (QIV).9 The TIV consists of
influenza A H1N1 and H3N2 strains as well as a Victoria lineage
influenza B strain. The QIV consists of an additional Yamagata
lineage influenza B strain.10 The vaccine is produced in an
inactivated or live attenuated form. The circulating influenza
strains change periodically, necessitating updates to the TIV
and QIV every two to three years on average.11

The effectiveness of the influenza vaccine varies between
influenza seasons but is generally low in contrast to other
vaccines.12-14 This has been apparent in recent seasons: the

overall vaccine effectiveness (VE) was estimated to be 53% in
2013–2014,15 19% in 2014–2015,16 48% in 2015–2016,17 43%
in 2016–201718 and 36% in 2017–2018.19 Moreover, the VE
within each season varied between influenza strains and age
groups. In fact, in 2015–2016 the vaccine had no statistically
significant VE against the dominant circulating H3N2
strain.16

Low VE is often attributed to vaccine mismatch: either incor-
rect formulation of the vaccines strains,20,21 or more recently,
mutations due to the egg-based manufacture of the vaccine.22

In the 2014–2015 season, mismatch was stated as a reason
for the ineffectiveness of the vaccine. The 2014–2015 influ-
enza vaccine contained a H3N2 strain from the 3C.1 clade
(A/Victoria/361/2011) but antigenically distinct H3N2 strains
from the 3C.2a and 3C.3a clades dominated that season.21

Consequently, for the 2016–2017 season, the vaccine was
updated to include a 3C.2a clade strain, A/Switzerland/
9,715,293/2013.23 It has been well documented since that
the 3C.2a clade strain, A/Switzerland/9,715,293/2013, dis-
played attenuated growth in eggs. Consequently, the egg-
based manufacture of the 2016–2017 vaccine facilitated the
selection of a K160 reversion mutation due to its enhanced
growth. This mutation disrupted the glycosylation site motif
present in the vaccine strains antigenic site B, creating a
mismatch between the vaccine strain and the strains circu-
lating in the 2016–2017 season. Subsequent studies of sera
taken prior to the 2016–2017 season from individuals aged
18–49 showed that the majority of antibodies bound to the
non-glycosylated antigenic site B and were unable to bind
the glycosylated form.22 Consequently, it has been suggested
that vaccination with the mismatched vaccine strain contain-
ing the non-glycosylated form of antigenic site B could have
contributed to the reduced VE of the influenza vaccine
during the 2016–2017 season. This reduced VE was found
to be greater in younger adults and has been hypothesised to
be due to exposure history.22,24
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A similar situation arose in the 2013–2014 season, during
which H1N1 influenza was highly prevalent, and adults aged
30 to 59 exhibited increased morbidity and mortality.20 Sera
from individuals within this age range disproportionately
targeted an epitope in the H1 haemagglutinin protein (HA)
containing a K180 residue (linear numbering) within the Sa
antigenic site. A K180Q mutation arose during the 2013–2014
season, and subsequently, this mutation has been suggested as
a possible reason explanation for the increased morbidity and
mortality in 30 to 59 year olds.20,25 The 2013–2014 influenza
vaccine was shown to boost responses to an epitope contain-
ing K180 and so the K180 mutation is likely to have also
contributed to its low VE.20

Original antigenic sin and its impact on vaccination

The recent epidemiological findings relating to low VE
appear at odds with typical experimental measures of anti-
genic drift. The classical serological tests used by surveillance
laboratories involve determining the antigenic similarity of
new circulating viruses to historical viruses using a panel of
ferret anti-sera in haemagglutinin inhibition and virus neu-
tralisation assays.21,26,27

In contrast, recent publications demonstrate that human
sera is dominated by antibodies which bind to regions of
the HA which are similar to those of previously encoun-
tered viruses.20,22,25,27,28 This idea was first proposed in
1960 by Robert Francis and coined ‘original antigenic sin’
and more recently as ‘immune focusing’.29 Other manifesta-
tions of this phenomenon have been demonstrated for
influenza: the antibodies of individuals infected for the
first time with the 2009 pandemic H1N1 virus tended to
target epitopes that were similar to those they had encoun-
tered during childhood.25 Furthermore, studies have shown
that if an individuals first infection was with a H2N2 influ-
enza strain, which circulated between 1957 and 1968, they
were at greater risk of mortality during the 2009 H1N1
pandemic.30 Moreover, Gostic et al 2016 recently demon-
strated an association between the subtype of an individual’s
first infection and the risk of mortality from certain avian
influenza subtypes.31

An understanding is now emerging based on recent stu-
dies: if the HA of a circulating influenza strain has similar
regions to those that certain demographics of the population
have previously encountered, then the immune response of
individuals within those demographics will focus on these
regions and mutation within them will lead to viral escape.24

In fact, it is likely that regions focused by the immune system
will be the first to change, due to the greater immune selective
pressure exerted on them.25 To combat this, several groups
have suggested that sera from humans should be used to
determine vaccine escape instead of, or in addition to, ferret
anti-sera.20,24

The ‘diversity paradox’

The paradox at the centre of influenza research is that whilst
we intrinsically think of influenza as highly variable, we are
able to vaccinate against influenza precisely because influenza

seasons tend to be dominated by a small number of antigeni-
cally and genetically distinct strains.

Theoretical works have been trying to explain this paradox
and elucidate its relevance to vaccine development.32-34 A
prominent example is the ‘antigenic thrift’ model that postu-
lates that this paradox can be resolved by proposing the
existence of multiple immunogenic epiotopes of limited varia-
bility, which cycle in an asynchronous manner as the influ-
enza virus evolves.32,35,36

Our group has recently identified such an epitope of lim-
ited variability in the head domain of the H1 HA. We have
shown that it cycles over time between a limited number of
conformations as host population immunity changes37 – in
line with the antigenic thrift theory. It is likely that such
epitopes are the same ones targeted by the human immune
system due to their capacity to mutate more slowly.
Furthermore, if these epitopes are targeted preferentially,
they could explain age-dependent VE (see Figure 1 for illus-
tration of this process).22

The existence of other epitopes of limited variability is
evident from analysis of the literature: Raymond et al 2018
and Huang et al 2015 have purified monoclonal antibodies
that bind to an epitope that includes position 180 (linear
numbering). Collectively, these antibodies neutralise viruses
that last circulated in 2009, 1977 and 1918 but not viruses
that circulated in 2006, 1999 and 1934. As mentioned pre-
viously, population immunity directed at this epitope was
further characterised by Linderman et al 2014.20 Other
broadly neutralising antibodies could indicate the location
of further epitopes of limited variability. More recently, an
monoclonal antibody named ‘KPF1ʹ was identified, which
binds to a region inclusive of position 129 (linear number-
ing, Nogales et al. 2018). This antibody appears to bind to
influenza viruses that circulated in 2009, 1999, 1991 and
1918 but not 1977, and only weakly to the A/PR/8/1934
strain, which was collected in 1934. The 5j8 and CH65
broadly neutralising antibodies also bind to distinct confor-
mations of the epitope of limited variability that we have
identified.39,40

Influenza vaccines in development

To circumvent the problems associated with the TIV and QIV
vaccines outlined here and the intrinsic variation of the influ-
enza virus, a number of groups are developing ‘universal’
influenza vaccines. These vaccines target conserved regions
within the influenza virus and can induce a humeral and/or
cellular immune response.

One such method that has proven popular is targeting
the stem of HA, as it is more conserved than the head
domain of HA. Doud et al 2018 have also shown that the
stem is more recalcitrant to mutation and antibody escape
than the head.41,42 Several approaches which enable the
stem to be targeted by stabilising it or targeting it through
a prime and boost regimen using chimeric HAs are cur-
rently moving through pre-clinical and Phase I clinical
trials.43-45 Recent studies have shown that many of the
antibodies targeting the stem act via antibody-dependent
cellular cytotoxicity (ADCC).46
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T-cell vaccines have been developed as another innovative
methods of targeting conserved influenza epitopes.47,48 One of
the most advanced T-cell vaccines uses a Adenovirus/MVA
prime-boost strategy to target the immune response against
conserved epitopes of in the viral internal proteins NP and
M1.47 Individuals vaccinated with vaccine show increased
levels of IFNγ-producing CD8+ T cells and a corresponding
increase in protection against influenza virus infection.47-49

This vaccine is currently undergoing Phase II clinical trials in
individuals over the age of 65.

One further vaccine at an advanced stage, which targets con-
served epitopes, is developed by BiondVax Pharmaceuticals. It
consists of a synthetic peptide, named M-001, containing con-
served epitopes from HA, NP and M1. Consequently, it is
reported to stimulate both humeral and cellular immunity.50 In
2018, M-001 will begin Phase III clinical trials.

Importantly, most vaccines seek to capture the intrinsic
variation of influenza by targeting conserved regions but
bypass the way in which it evolves. Whilst initial results are
promising placing previously conserved regions of the virus
under greater selective pressure may yet produce escape
mutants. A potential alternative was recently suggested by
our group37: not using inactivated or attenuated viruses to
target highly variable epitopes, or targeting conserved epi-
topes, but instead targeting those highly immunogenic epi-
topes which are limited in variability and likely to be the
natural focus of humeral immunity.

Summary

Despite decades of research, many aspects of the biology
of influenza remain elusive. However, the way in which
original antigenic sin impacts the evolution of influenza
and vaccine design is becoming more apparent. As a
consequence, a coherent narrative regarding how influ-
enza history affects the focus of human immunity and
how regions targeted by the immune system change over
time is becoming established. Hopefully, this route will
eventually lead to more efficient and broad influenza
vaccines.
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Figure 1. Illustration of Influenza Immunity Over Time.
The diagram shows how the immunity of three individuals changes (horizontal black lines) over a period of years. Three epitopes are represented on the
haemagglutinin (HA) structure (protein structures overlaid with purple, yellow and green shapes), which vary through time (different shapes). After an encounter
with a specific strain, individuals acquire immunity to the encountered epitopes, which is represented by the presence of different shapes for each individual.
Immunity is commutative through time and can increased by multiple encounters (stacked shapes). Similar epitopes are encountered periodically. This leads to a
different immunity profile of individuals based on their year of birth.
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