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Abstract

Protein-ligand scoring is an important step in a structure-based drug design pipeline. Selecting a 

correct binding pose and predicting the binding affinity of a protein-ligand complex enables 

effective virtual screening. Machine learning techniques can make use of the increasing amounts 

of structural data that are becoming publicly available. Convolutional neural network (CNN) 

scoring functions in particular have shown promise in pose selection and affinity prediction for 

protein-ligand complexes.

Neural networks are known for being difficult to interpret. Understanding the decisions of a 

particular network can help tune parameters and training data to maximize performance. 

Visualization of neural networks helps decompose complex scoring functions into pictures that are 

more easily parsed by humans. Here we present three methods for visualizing how individual 

protein-ligand complexes are interpreted by 3D convolutional neural networks. We also present a 

visualization of the convolutional filters and their weights. We describe how the intuition provided 

by these visualizations aids in network design.
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1. Introduction

Protein-ligand scoring is an important computational method in a drug design pipeline [1–6]. 

In structure-based drug design methods, such as molecular docking, scoring is an essential 

subroutine that distinguishes between correct and incorrect binding modes and ranks the 

probability that a candidate molecule is active. Improved scoring methods will result in more 

effective virtual screens that more accurately identify enriched subsets of drug candidates, 

providing more opportunities for success in subsequent stages of the drug discovery 

pipeline.

The wealth of protein-ligand structural and affinity data enables the development of scoring 

functions based on machine learning [7–14]. Of particular interest are methods that use 
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convolutional neural networks (CNNs) [15–21] to recognize potent protein-ligand 

interactions, as CNNs have been remarkably successful at the analogous image recognition 

problem [22–24]. Unlike force field or empirical scoring functions, whose functional form is 

designed to represent known physical interactions such as hydrogen bonding or steric 

interactions, machine learning methods can derive both their model structure and parameters 

directly from the data. However, this increase in model expressiveness comes at the cost of 

reduced model interpretability.

The lack of interpretability of a CNN model presents challenges both when developing a 

scoring function and in understanding its application. Choosing input representations, 

managing training and test data, and determining optimal parameters all depend on 

understanding how the CNN behaves. Simple “black box” treatment of the model is not 

sufficient to guide such decisions. Additionally, visualizations can provide human-

interpretable insights to help guide medicinal chemistry optimization.

In the image classification domain, there are a number of methods that provide insight into 

the inner workings of a trained CNN by projecting network decisions back on the readily 

visualized input image. These methods reveal what parts of an input image are important 

[25, 26] and how the input is represented at different layers in the network [27] Loss 

gradients have also been used to visualize what aspects of its input a model has learned to 

favor for different predicted classes[28]. Here we investigate grid-based CNN scoring of 

protein-ligand complexes and show how network decisions can be projected back to an 

atomistic granularity.

We visualize the convolutional filters of the first layer of the network to gain insight in the 

initial featurization learned. In order to gain atomistic insight into specific network decisions 

(e.g., why a ligand is scored as having a high/low affinity), we introduce and compare three 

methods for projecting the network’s decision onto the molecular input: masking, gradient, 

and conserved layer-wise relevance propagation (CLRP). CLRP is a novel refinement of 

layer-wise relevance propagation (LRP) [29, 30] that better compensates for zero-weight 

activations. This is important since such activations emerge naturally from “empty” space in 

the input where there are no protein or ligand atoms (e.g. implicit solvent). This enables 

visualizations that account for the contributions of solvent to the final prediction of the 

network.

We apply each method to a network that was trained for both pose selection (distinguish 

low-RMSD from high-RMSD poses) and affinity prediction. Convolutional filter 

visualization provides insight into the low-level features identified by the network. We 

compare and contrast the three atomistic visualizations and show how they provide different 

insights and have different properties. Our visualization implementations and CNN models 

are available under an open-source license as part of gnina, our framework for structure-

based deep learning based o of AutoDockVina [31] and Ca e [32], at https://github.com/

gnina.
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2. Methods

After describing the design and training of a CNN model for pose scoring and affinity 

prediction, we describe an approach for analyzing the learned weights of the first layer of a 

grid-based CNN model and three distinct methods for mapping a CNN prediction back onto 

the atomic input.

2.1. Training

For our CNN model, we extend our previously described architecture [15] as shown in 

Figure 1. The atoms of the input complex are represented using truncated Gaussians and 35 

distinct atom types, shown in Table 1. This continuous representation is discretized onto a 

cubic grid that is 23.5Å on each side and has a resolution of 0.5Å. The input is fed through 

three units of max pooling and convolution with rectified linear unit (ReLU) activation 

functions. Each convolutional layer applies a 3×3×3 convolutional filter across its input with 

a stride of one to generate an output feature map with the same dimension as the input. The 

result of the convolutional layers is mapped to the network outputs with two separate fully 

connected layers, with no hidden layers. One fully connected layer is trained to score poses 

by generating a probability distribution over the two pose classes, low (< 2Å) RMSD and 

high (> 4Å) RMSD poses, using a softmax layer (which scales predictions to be between 

zero and one and sum to one) and a logistic loss function:

σ y i = e
yi

j = 1

K
e

yi
(1)

Lpose y, y = −
i = 1

K
1 y = i log σ y i (2)

The other fully connected layer is trained to predict the binding affinity in log units using a 

pseudo-Huber loss function. This loss interpolates between an L2 and L1 loss according to a 

parameter δ to reduce outlier bias:

Lpseudo − Huber y, y = δ2 1 + y − y
δ

2
− δ2 (3)

As the training set includes incorrect (> 4Å RMSD) poses, for which the correct binding 

affinity is not well-defined, a hinge loss is used so that the affinity prediction loss is only 

incurred on high RMSD poses if the affinity is predicted to be too high. The complete model 

used for training is available at https://github.com/gnina/models.
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For training data we use a set of poses generated by redocking the ligands of the the 2016 

PDBbind refined set [33] Poses were generated using the AutoDock Vina scoring function 

[31] as implemented in smina [13]. The binding site for docking was defined using the 

pocket residues specified in the PDBbind. The input ligand conformation was generated 

from 2D SMILES using RDKit [34]. To increase the number of low RMSD poses in the 

training set, the docked poses were supplemented by energy minimized crystal poses. To 

avoid introducing training artifacts related to the creation of crystal structures (e.g. bond 

lengths or angles unique to crystal poses), these crystal ligands were optimized 

independently of the receptor using the UFF forcefield of RDKit to replicate the conformer 

generation process and then minimized with respect to the receptor using smina. The 

training set was then further expanded by three rounds of iteratively training a model, using 

the trained model to refine the docked poses [35], and adding these refined poses to the 

training set. This iterative processes extends the training set to include poses and 

conformations that are not biased to the Vina energy potential. The final training set contains 

255,035 ligand-receptor complexes, of which 15,814 are less than 2Å RMSD from the 

crystal pose.

Using this training set, we trained our model for 150,000 iterations with a batch size of 50 

using our customized version of the GPU-optimized Ca e deep learning framework [32]. 

Each batch was balanced to contain an equal number of positive and negative examples (low 

and high RMSD poses) as well as stratified by receptor so that every receptor target was 

uniformly sampled, regardless of the number of docked structures. At each iteration, a 

random rotation and translation (relative to the ligand center) is applied to every input 

complex in order to prevent the network from learning coordinate-frame dependent features.

The performance of the trained model on docked poses created from the high-quality and 

compact CSAR set [6] is shown in Figure 2. The docked poses of the CSAR set were 

generated using the binding site defined by the cognate ligand and smina. CNN scoring 

performs substantially better than Vina scoring at distinguishing between low and high 

RMSD poses, with an area under the ROC curve of 0.89. CNN scoring also exhibits better 

correlation with binding affinity, with a Pearson correlation coefficient of 0.74. This is 

comparable to the best performing scoring functions in the original CSAR evaluation [6], 

although our evaluation is performed on an expanded benchmark and uses docked, instead of 

crystal, poses. We emphasize our purpose in this evaluation is not to robustly measure 

generalization error; 60% of the CSAR complexes are duplicated in the PDBbind refined 

training set and this results in an overly optimistic assessment of general model 

performance. In a rigorous clustered cross-validation [36] of the PDBbind refined training 

set, the Pearson correlation is 0.57 with an RMSE of 1.69. We utilize the CSAR set as a test 

set here due to its smaller size, validated ligand structures, and because our focus is to 

demonstrate that the trained model generates meaningful results for the test set, as this is a 

prerequisite for achieving our primary goal of meaningful visualizations. This also more 

faithfully represents typical usage, where the target is not completely unrelated to the 

training set.
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2.2. Convolutional Filter Visualization

Convolutional layers of a CNN consist of filters that are applied to the layer input to produce 

feature maps that represent the presence of specific learned local features of the input. As the 

filters are linear functions of the input, the weights, Wf of the filter and an additive bias, bf , 

dictate the contribution of the input, x, to the activation function, σ, that generates the 

output:

output f = σ W f x + b f (4)

These weights are only amenable to interpretation in the first convolutional layer, where the 

input corresponds directly to atom type densities. In our network (Figure 1), there are 32 

convolutional filters in the first layer, each consisting of 35×3×3×3 weights corresponding to 

35 atom types and a 3×3×3 grid. Analysis of these initial filters provides insight into how the 

network interprets different atom types and demonstrates that the initial layer of the network 

is conditioned to identify certain patterns.

2.3. Masking

Masking evaluates the sensitivity of the model to changes in the input by removing 

(masking) part of the input and computing the difference in the predicted output score 

between the original and masked input [37]. For our molecular inputs, this is accomplished 

for the ligand both by removing individual atoms, as illustrated in Figure 3 and molecular 

fragments. Fragments are generated with the RDKit [34] cheminformatics package by 

enumerating all heavy-atom subgraphs of the ligand containing up to six bonds. The score 

difference with the fragment removed is evenly distributed among the constituent atoms of 

the fragment. These fragment atomic averages are summed to compute a fragment masking 

value for each atom. For both atom and fragment removals, atom types are not recomputed 

(e.g., removing an atom from an aromatic ring will not cause the remaining atoms to be 

represented as aliphatic). Individual atom masking results in a granular assessment of atomic 

contributions to the final score, while fragment masking accounts for the contributions of 

entire functional groups and, by averaging across groups of atoms, results in a smoother 

distribution of atomic contributions. To get the best of both approaches, our masking 

visualization uses the average of individual atom masking and fragment masking.

Masking-based visualization of the receptor is performed by removing entire residues and 

distributing the score difference evenly among the atoms of the residue. A residue 

granularity is used since the number of receptor atoms in a typical binding site makes finer-

grained masking computationally demanding and because residues are natural building 

blocks for analyzing contributions to binding in proteins.

Masking is computationally demanding because the number of neural network evaluations 

needed grows linearly in the size of the receptor and polynomially in the size of the ligand 

(due to the fragment generation). In contrast, the gradient and LRP approaches that follow 

require only a single backwards pass through the neural network.
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2.4. Atomic Gradient

Neural network training typically involves gradient-based optimization in order to minimize 

a loss function, which necessitates the computation of the loss gradient on the network 

parameters–that is, the partial derivatives of the loss function with respect to those 

parameters–through backpropagation. This method can be extended to compute the gradient 

on the network input as well, allowing visualization of the gradient as three-dimensional 

vectors on each atom. This gradient on atom coordinates can give insight into how the input 

should be changed in order to more fully activate the desired class label (e.g., a low-RMSD 

pose). To calculate the gradients, a forward pass is performed, the loss is calculated with 

respect to the desired class label (e.g. a true label for pose classification), and a backward 

pass then computes the loss gradient on atomic coordinates. The negative of this gradient 

can be visualized as the direction in atomic coordinate space to move the atom to minimize 

the loss for the class, increasing the probability that the network classifies the pose as a true 

binding pose. This approach works just as well with an affinity prediction CNN, in which 

case the atomic gradient is computed to indicate the direction affinity.

We designed our CNN scoring function to be fully differentiable with respect to atomic 

coordinates by using a custom atomic grid input representation with an analytic derivative. 

Formally, the CNN is a function f that takes as input atomic coordinates and atom types and 

maps to an output value that can be a probability distribution on class labels or a real-valued 

a nity prediction. Atom coordinates are discretized to a four-dimensional grid, G, that is a 

vector of three-dimensional grids of atom density (channels), one for each atom type. The 

density of a particular atom at a grid point g in the grid channel corresponding to its atom 

type is given as a function of the atom’s Van der Waals radius r and the distance d between 

the atom and the grid point:

g d, r =

e
− 2d2

r2
0 ≤ d < r

4
e2r2d2 − 12

e2r
d + 9

e2 r ≤ d < 1.5r

0 d ≥ 1.5r

(5)

This function is differentiable with respect to distance as follows:
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∂g
∂d =

− 4d

r2 e
− 2d2

r2
0 ≤ d < r

8
e2r2d2 − 12

e2r
r < d < 1.5r

0 d ≥ 1.5r

(6)

The gradient of the scoring function with respect to atom coordinates a, ∂ f
∂a , is computed by 

applying the chain rule and summing over the grid points with the appropriate atom type that 

overlap the atom, Ga:

∂ f
∂a =

g ∈ Ga

∂ f
∂g

∂g
∂d

∂d
∂a (7)

The resulting gradient can then be visualized either as vectors in 3D space or as scalar 

magnitudes on each atom. It can also be used to optimize the pose of the ligand [35]. The 

atom gradient approach provides qualitatively different information than either masking or 

LRP. Since it indicates how changes in spatial relationships affect the output score, this can 

help to understand how the network wants to modify the input. However, this method does 

not try to explain how the network arrived at the current score by assigning relative 

importance to different components. For example, a locally optimal ligand (from the 

perspective of the network) would have all zero gradients, which provides no insight into 

what makes the ligand desirable.

2.5. CLRP

Layer-wise relevance propagation (LRP) [29] maps the output of a neural network, such as a 

classification probability, back to the original input. It introduces a quantity called 

“relevance” that is initialized as the network output. The relevance is then propagated back 

through the network until it reaches the input. The propagation is performed proportionally 

to the input activations (zi j = xiwi j) of each layer, such that the relevance of node i in layer l 

is the sum of the relevances of its successor nodes, j, weighted by the activation value 

generated along the edge zi j during the forward pass:

Ri
l =

j

zi j
Σi′ j

R j
l + 1 (8)
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This construction maintains the invariance that the relevance at each layer is conserved; the 

sum of the relevance assigned to each node d, Rd, at each layer l is exactly the same, so the 

classification decision is distributed across the input by the end of the backward pass:

f x = … =
d ∈ l + 1

Rd
l + 1 =

d ∈ l
Rd

l = … =
d

Rd
1 (9)

Like the gradient approach, this method also has the advantage of requiring a single 

backward pass through the network in order to visualize an example, rather than hundreds or 

thousands of forward passes in the case of the masking algorithm. Unlike the gradient 

approach, LRP is not distributing the gradient of the loss throughout the network; instead it 

is distributing the output value itself as an explanation for why a particular input generated 

that value.

Issues arise with LRP when attempting to propagate through nodes with zero activations. 

Using the basic algorithm, the relevance propagated backwards through those nodes 

becomes unbounded, violating the relevance conservation. Previously, two methods have 

been proposed to compensate for these zero-activation “dead” nodes [29]. The first, alpha-

beta decomposition, is to separate negative and positive pre-activation values, and use the 

proportions of the negative and positive values together to propagate relevance. The second 

is to introduce a stabilizing factor ϵ which draws “dead” nodes away from values close to 

zero. Both approaches violate the conservation property (9).

We propose a third method for conserving relevance in the presence of dead nodes, 

conserved layer-wise relevance propagation (CLRP). Rather than attempt to work around 

dead nodes by either attenuating them (in the case of epsilon stabilization) or artificially 

weighting positive or negative pre-activations (alpha-beta decomposition), relevance directed 

onto dead nodes is instead redistributed proportionally across the remaining nodes in the 

layer. This results in dead nodes passing no relevance backward, as they pass no pre-

activations in the forward pass. The quantity Sl is the total relevance belonging to nodes 

whose pre-activation z j = 0 at layer l:

Sl =
j

0 z j ≠ 0
R j z j = 0 (10)

After computing Sl, the adjusted relevance for node j can be calculated as follows, where Zl 

is the sum of pre-activations across layer l:

R j =
0 z j = 0

R j +
z j
Zl

∗ Sl z j ≠ 0
(11)
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The robustness of CLRP is necessary to meaningfully apply LRP to our discretized 

molecular inputs, since significant portions of the input may have zero atom density values, 

corresponding to implicit solvent. These empty areas generate “dead” nodes in the first 

layer. In addition to compensating for these nodes with CLRP, we retain their contributions 

to Sl (10). In the first convolution layer these values directly map to input Cartesian 

coordinates and we can use them to visualize the contributions of empty space (implicit 

solvent) to the final score.

3. Results

We first present visualizations of the CNN filter weights, which provide insights into what 

low-level features the network is learning, and then provide examples of our three different 

atomic visualizations: masking, gradients, and CLRP. These three visualizations are then 

systematically compared. Finally we demonstrate the unique ability of CLRP to provide 

visualizations of the importance of empty space.

3.1. Convolutional Filter Visualization

The first layer of convolutional filters of the CNN reveal what low-level features of the input 

the CNN is recognizing for propagation to successive layers. As the weights of these first 

filters are applied directly to the input, they can be interpreted in terms of atom densities and 

spatial relationships. In our network, there are 32 filters in the first convolutional layer, each 

of which has 3×3×3×35 weights, corresponding to a uniformly spaced points from a 3Å 

cube across all 35 atom types. These filters are visualized in terms of the average weight 

within each atom type channel in Figure 4, that is, the average of the 3×3×3 weights that are 

applied to a single atom type. This visualization shows what atom types maximally activate 

each filter, but spatial relationships are averaged out. The average weight may be either 

positive or negative; the significance of the sign depends on the additive bias, also shown in 

Figure 4. Since the network uses ReLU activation functions, if applying the weights and bias 

to an input results in a negative number, the output of the filter will be zero.

Several informative patterns are present in Figure 4. Some filters focus on receptor types, 

others on ligand types, but most have a mix of positive and negative weights across multiple 

different atom types. Several atom types (e.g. metals) have low average weights across all 

filters. These correspond to relatively rare atom types. The lack of strong activations for rare 

atom types implies the network isn’t overfitting to rare events and that it might be beneficial 

to merge these atom types into a single generic type. While less precise, a generic type 

would reduce the dimensions of the input, resulting in faster classification. There are nine 

filters (21 through 29) that have mostly negative weights, focused on common receptor atom 

types, and a negative bias. Although it is possible these filters are recognizing subtle spatial 

features that are exclusive of the receptor, an alternative explanation is that these filters 

consistently generate a negative input to the activation function, resulting in a zero output. 

That is, the network has learned to turn o these filters. This suggests that reducing the 

number of initial filters may result an an equally accurate, but simpler, model.

The full weight vector of each filter is shown in Figure 5. The spatial patterns of individual 

filters, partitioned by atom type, provide some insights into the structural features learned by 
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the CNN. Low-activation filters appear as washed-out noise. Within an atom type, some 

filters are largely uniform, merely registering the presence of an atom, while others have 

distinctive variations, both symmetric and asymmetric, that will respond differently to 

different spatial arrangements of atoms. As an example, several of the hydrogen bonding 

atom types, both in the receptor in ligand, demonstrate banding patters where weights vary 

between positive and negative values. A number of filters have a large central weight and 

surrounding weights of opposite signs, corresponding to the pattern of an edge detection 

filter.

Visualizing the initial convolutional filters provides insights into the low-level features 

recognized by the trained network. However, since filter weights are intrinsic to the trained 

network itself and do not vary for different inputs, they do not provide insights as to why the 

network scored a given protein-ligand pose the way it did or how the compound could be 

modified to improve its score. In the next sections, we describe multiple methods for 

projecting the neural network score back onto the molecular input at an atomistic 

granularity.

3.2. Atomistic Visualizations

Three examples of complexes visualized with masking, gradient, and LRP methods are 

shown in Figures 7–8. PyMOL session files are available at http://bits.csb.pitt.edu/files/

vizpaper_complexes.zip. Examples were chosen to represent a range of scores and to have 

partially exposed binding sites to enable clear visualization. Poses are maintained across the 

figures for ease of comparison. Color gradients are normalized separately for each 

visualization method of each protein-ligand complex. Negative (unfavorable) values are 

shown as red and positive (favorable) as green. As gradient magnitudes are unsigned, they 

are shown as purple. The crystal poses are scored after removing the water from the crystal 

structure. Figure 6 shows the three evaluated complexes colored by atom type.

Figure 7 shows a complex, ribonuclease A with 5’-ADP, that has a low score in both affinity 

prediction and pose scoring. The experimental affinity of this ligand is 1.2 M. In the shown 

pose, the left side of the molecule consists of phosphate groups that make a network of 

hydrogen bond interactions with the protein, the middle ribose group is largely solvent 

exposed, and the aromatic adenine group on the right forms a network of hydrogen bonds 

and stacks with a histidine. Pose scoring and affinity prediction show similar visualizations 

in this case. The hydrogen bonding atoms are favored, but the adenine is mostly disfavored. 

The gradients show that the network wants to move this aromatic group away from the 

histidine, indicating that the network likely has not learned to correctly value aromatic 

interactions, which may explain why this micromolar compound was scored so poorly. As 

the pose is low scoring, there is less relevance of the CLRP visualization to display. 

Interestingly, LRP focuses on the central ribose (unfavored) which interacts with a 

hydrophobic valine (favored) and does not highlight the hydrogen bonding or aromatic 

interactions. This may be consistent with the behavior of LRP in image recognition, where it 

is observed that LRP tends to highlight decision boundaries. For example, LRP will 

highlight the outline of an object rather than the entirety of the object. In this case, the 
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network may find the interaction between the hydrophilic ribose and the hydrophobic valine 

to be the determining feature of the complex.

Figure 8 shows a complex, ribonuclease A bound to a nonnatural nucleotide that contains a 

furanose in place of a ribose, with a relatively low affinity prediction score and a very high 

pose score. This ligand has a reported experimental binding affinity of 6 M. Although the 

phosphate group is in the same place, the rest of the nucleotide extends in the opposite 

direction compared to Figure 7. This pose is scored highly with much of the relevance 

coming from the phosphate and uracil groups. T45, which interacts with uracil and whose 

mutant, T45G, is known to reduce binding affinity [38], is one of the interacting residues 

highlighted as important by the affinity masking visualization. Masking also highlights the 

importance of a number of the hydrogen bonding atoms, although, interestingly and contrary 

to CLRP, not the phosphate oxygens.

Figure 9 shows a complex, BACE bound to an inhibitor, with a middling affinity prediction 

score and a good pose score. This ligand has an experimental binding affinity of 0.19 M. The 

gradient visualizations show interesting patterns. The arrows on the aromatic groups in the 

affinity prediction visualization point to the ring center, perhaps indicating the network 

would prefer a smaller functional group in these locations. The arrows on the pose scoring 

visualization indicate a preference for a slight translation, which matches with the masking 

visualization, which dis-favors many of the aromatic ring atoms. Most of the visualizations 

strongly indicate the solvent exposed carbonyl to be important, although with sometimes 

conflicting interpretations of its desirability. These inconsistencies may be an artifact of 

decomposing the score into individual atom contributions, as, particularly with CLRP, the 

carbon and oxygen of the carbonyl counter-balance each other.

3.3. Additivity Analysis

Additivity analysis evaluates the extent that the individual atomic scores constructed during 

masking visualization sum to the total score. This provides a means of assessing whether or 

not extended atomic relationships that can’t be easily decomposed into individual atomic 

contributions are being considered by the network. Each atom score calculated by masking, 

either through single atom removal or fragment removal, is summed to a single score sum 

per complex. These score sums are plotted relative to the full molecular score for the 

complex in Figure 10. A linear relationship implies that the score can be decomposed into 

individual atomic contributions without loss of accuracy. The analysis was carried out 

structures docked to the CSAR[6, 39] data set. A non-linear relationship may indicate the 

network is learning more complex features of the input.

Pose scoring and affinity prediction exhibit different additivity relationships due to 

differences in the last layers (the convolutional layers are shared between the two). Pose 

scoring imposes a softmax layer that flattens predictions between zero and one with a 

sigmoid function. This results in a clustering of pose scores close to each end of the allowed 

range, corresponding to high and low confidence predictions. As a result, extremely high-

scoring or extremely low-scoring complexes are often unaffected by removing single atoms 

resulting in near-zero sums. The effect is less pronounced with fragment removal, as this 

evaluates more significant modifications to the molecule. However, for high-confidence 
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poses, even large changes to the molecule do not reduce the perceived quality of the pose of 

the remaining structure. For poses with an intermediate confidence, there is a weak 

correlation between score sums and scores. Affinity prediction exhibits a higher correlation 

with score sums, which improves when fragment masking is used. This indicates that the 

network is using information about larger grouping of atoms to arrive at its predictions.

3.4. Visualization Method Comparison

In order to compare the scores produced by each scoring method, correlations were 

generated between per-atom scores in each complex for each method and are shown in 

Figure 11. In most cases, the correlations are centered around zero with a normal 

distribution. However, there does appear to be some agreement between the gradient and 

CLRP methods, which both address the effect of changing a structure. The general lack of 

correlation between methods suggests that each method presents a different interpretation of 

the neural network score and all three methods may provide useful insight.

3.5. Empty Space Visualization

Any atom-based visualization method has the limitation that it will not visualize the 

contribution of the implicit solvent to the final score. However, during the computation of 

the CLRP algorithm we record the relevance that would be absorbed by “dead nodes” with a 

pre-activation value of zero. We find that, on average, more than 99% of dead nodes are in 

the first layer. This suggests that they are a consequence of implicit solvent features directly 

encoded in the input, rather than higher order features that are found later in the network. By 

mapping the relevance values of dead nodes of this first layer onto the input grid, we can see 

where in the input dead nodes are occurring, and how the network treats them. We find these 

nodes are almost exclusive the result of empty space, areas with no atom density 

corresponding to the implicit solvent.

Two examples of empty space visualization are shown in Figures 12 and 13. In Figure 12, an 

HIV protease inhibitor, both the affinity and pose score view the empty space immediately 

outside the binding site negatively. This implies that a complex would be scored more 

favorably if either the ligand or receptor were to fill this space. It is worth noting that some 

HIV protease inhibitors do extend into this area (e.g. PDB 5ivr). Farther from the binding 

site, the empty space contributes positive relevance, indicating leaving this area solvent 

exposed is preferred. Figure 13 shows a BACE1 inhibitor. In this case the relevance of the 

empty areas is significantly different between affinity and pose scoring and suggests that 

extending the ligand out of the pocket would improve affinity, but would not necessarily 

increase the confidence in the correctness of the current pose.

4. Discussion

Each visualization method provides a different insight into how the CNN is scoring different 

inputs. Masking is the most intuitive approach, and arguably produces the most 

understandable results. It approaches the CNN from an external perspective, as it operates 

outside the network itself by manipulating the input. However, masking incurs a significant 

computational cost. In contrast, gradient and CLRP visualizations can be generated with a 
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single for-wards/backwards pass through the network. Masking has the advantage of being 

analogous to experimental methods in determining important interactions in protein-ligand 

complexes, and thus may be the best suited for interpreting the results produced by the 

CNN.

Gradient visualizations are a useful tool in determining what the network “wants” for a 

particular input to be better. Because the gradients can be generated on a per-atom basis, 

they provide a more specific breakdown of how the network is interpreting the input. 

Gradients have the benefit of providing directional information and can be used to refine 

poses [35].

CLRP has the advantage of preserving relevance all the way to the input, which is not the 

case with the epsilon or alpha-beta stabilization of LRP. It also does not have parameters that 

can produce different results, as is the case with both epsilon and alpha-beta stabilization. It 

does have a drawback, in that the “dead” nodes are completely ignored. This can be partially 

rectified by dead node analysis, which provides information about how the network 

considers empty space.

The described visualization methods are primarily intended to map values back onto an 

easy-to-interpret spatial input such as a grid. However, they could also be used in 

cheminformatic models that compute properties from 2D ligand structures [17, 21] to assign 

values to individual atoms. Masking is straightforward to apply, while gradients and CLRP 

may require modification depending on the molecular representation used.

On the whole, the pose scoring and affinity prediction networks evaluate complexes 

similarly. Figures 7–8 compare the two networks, and the masking and gradient 

visualizations correlate. The CLRP visualization are more contrasted, and often are more di 

cult to interpret, possibly because it focuses on highlighting the decision boundary of the 

network. This could mean that CLRP has limited usefulness in this domain, or that it is 

showing relationships that are beyond our current ability to interpret. Either way, it has the 

most utility in analyzing the effect of empty space in the input.

Visualization serves two main purposes: to guide medicinal chemistry optimization and to 

inform the construction and training of the network. All three visualization techniques 

clearly highlight important atoms of the ligand, which can then be targeted for modification 

by medicinal chemistry. On the flip side, the described visualizations only provide hints as to 

why given atoms are considered important; there is still more work to be done in “cracking 

open” the black box of neural network potentials. Nonetheless, combined with convolutional 

filter visualization, atomic visualizations provide different ways of interpreting the network 

and improving performance. For example, Figure 7 illustrates that the network puts little 

value on an aromatic interaction. Assuming this observation is replicated in additional 

incorrectly scored molecules, this insight could be leveraged to retrain the network with a 

training set enriched in aromatic interactions. We also note that the visualizations described 

here should generalize to other molecular deep learning methods. A complete 

implementation, gninavis, is available under an open-source license as part of the gnina 

project (http://github.com/gnina.
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Figure 1: 
Architecture of the network used to evaluate visualization methods. The input is a voxelized 

grid of Gaussian atom type densities.
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Figure 2: 
CNN model performance. (a) Discriminative ability of CNN scoring and AutoDock Vina 

scoring to distinguish between low (< 2Å RMSD) and high (> 4Å RMSD) docked poses 

across the entire CSAR evaluation set. The AUC, area under the ROC curve, which plots the 

true positive rate (TPR) with respect to the false positive rate (FPR) as the classification 

threshold is increased, is substantially better for the CNN model. (b) Affinity prediction 

performance. The best score of all generated poses for each target is used. Values are log 

affinity units, as provided in the CSAR data set. Vina energies are Boltzmann scaled 

appropriately (T = 298K).
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Figure 3: 
Simplified visual of the masking algorithm
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Figure 4: 
The average weight within each atom type channel of the first 32 convolutional filters of the 

CNN. Filters are shown clustered by Euclidean distance so that similar filters are grouped 

together. The bias is divided by 27 to match the scaling of the weight averages.
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Figure 5: 
The full weight vector of each filter, segmented by atom type. Within each atom type, the 27 

weights of the 3×3×3 filter are shown flattened to a single dimension such that the center of 

the 1D array is the center of the 3D cube. Filters are shown in the same clustered ordering as 

in Figure 4.
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Figure 6: 
Complexes colored by atom type shown with their affinity/pose score. The receptor is shown 

with a transparent surface and thin sticks. Hydrogen bonds are shown as yellow dashes.
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Figure 7: 
PDB 1o0h. The atom scores calculated with the CLRP and masking algorithms are shown as 

a red-white-green gradient, with green corresponding to a more favorable score. As the 

gradient norms are unsigned, they are visualized as a purple gradient.
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Figure 8: 
PDB 1w4o. The atom scores calculated with the CLRP and masking algorithms are shown 

as a red-white-green gradient, with green corresponding to a more favorable score. As the 

gradient norms are unsigned, they are visualized as a purple gradient.
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Figure 9: 
PDB 4djv. The atom scores calculated with the CLRP and masking algorithms are shown as 

a red-white-green gradient, with green corresponding to a more favorable score. As the 

gradient norms are unsigned, they are visualized as a purple gradient.
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Figure 10: 
Additivity analysis. The sum of the individual atomic scores are compared to the overall 

score for (a) pose scoring with individual atom masking, (b) pose scoring with fragment 

masking, (c) affinity scoring with individual atom masking, and (d) affinity scoring with 

fragment masking.
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Figure 11: 
Histograms of atomic score correlations between different scoring methods. For each docked 

complex, the scores assigned by two visualization algorithms were compared and the 

correlation computed. The distribution of scores across all the complexes is shown.
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Figure 12: 
Visualization of relevance generated by empty space (implicit solvent) for (a) pose scoring 

and (b) affinity scoring for PDB 2qnq. Red volumes are negative relevance, and green 

volumes are positive relevance. In this example, both the pose and affinity prediction 

networks generally agree on their interpretation of space outside the pocket. This complex 

has a predicted affinity of 6.476 and a pose score of 0.988.
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Figure 13: 
Visualization of relevance generated by empty space (implicit solvent) for (a) pose scoring 

and (b) affinity scoring for PDB 3udh. Red volumes are negative relevance, and green 

volumes are positive relevance. The pose and affinity networks diverge, with the front 

opening of the pocket having high relevance to affinity prediction, but not for pose scoring. 

This complex has a predicted affinity of 5.023 and a pose score of 0.881.
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Table 1:

The 35 atom types used in gnina. Carbon atoms are distinguished by aromaticity and adjacency to polar atoms 

(“NonHydrophobe”). Polar atoms are distinguished by hydrogen bonding propensity.

Receptor Atom Types Ligand Atom Types

AliphaticCarbonXSHydrophobe AliphaticCarbonXSHydrophobe

AliphaticCarbonXSNonHydrophobe AliphaticCarbonXSNonHydrophobe

AromaticCarbonXSHydrophobe AromaticCarbonXSHydrophobe

AromaticCarbonXSNonHydrophobe AromaticCarbonXSNonHydrophobe

Calcium Bromine

Iron Chlorine

Magnesium Fluorine

Nitrogen Nitrogen

NitrogenXSAcceptor NitrogenXSAcceptor

NitrogenXSDonor NitrogenXSDonor

NitrogenXSDonorAcceptor NitrogenXSDonorAcceptor

OxygenXSAcceptor Oxygen

OxygenXSDonorAcceptor OxygenXSAcceptor

Phosphorus OxygenXSDonorAcceptor

Sulfur Phosphorus

Zinc Sulfur

SulfurAcceptor

Iodine

Boron
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