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Abstract

While Shannon’s mutual information has widespread applications in many disciplines, for 

practical applications it is often difficult to calculate its value accurately for high-dimensional 

variables because of the curse of dimensionality. This article focuses on effective approximation 

methods for evaluating mutual information in the context of neural population coding. For large 

but finite neural populations, we derive several information-theoretic asymptotic bounds and 

approximation formulas that remain valid in high-dimensional spaces. We prove that optimizing 

the population density distribution based on these approximation formulas is a convex 

optimization problem that allows efficient numerical solutions. Numerical simulation results 

confirmed that our asymptotic formulas were highly accurate for approximating mutual 

information for large neural populations. In special cases, the approximation formulas are exactly 

equal to the true mutual information. We also discuss techniques of variable transformation and 

dimensionality reduction to facilitate computation of the approximations.

1 Introduction

Shannon’s mutual information (MI) provides a quantitative characterization of the 

association between two random variables by measuring how much knowing one of the 

variables reduces uncertainty about the other (Shannon, 1948). Information theory has 

become a useful tool for neuroscience research (Rieke, Warland, de Ruyter van Steveninck, 

& Bialek, 1997; Borst & Theunissen, 1999; Pouget, Dayan, & Zemel, 2000; Laughlin & 

Sejnowski, 2003; Brown, Kass, & Mitra, 2004; Quiroga & Panzeri, 2009), with applications 

to various problems such as sensory coding problems in the visual systems (Eckhorn & 

Pöpel, 1975; Optican & Richmond, 1987; Atick & Redlich, 1990; McClurkin, Gawne, 

Optican, & Richmond, 1991; Atick, Li, & Redlich, 1992; Becker & Hinton, 1992; Van 

Hateren, 1992; Gawne & Richmond, 1993; Tovee, Rolls, Treves, & Bellis, 1993; Bell & 

Sejnowski, 1997; Lewis & Zhaoping, 2006) and the auditory systems (Chechik et al., 2006; 

Gourévitch and Eggermont, 2007; Chase & Young, 2005).
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One major problem encountered in practical applications of information theory is that the 

exact value of mutual information is often hard to compute in high-dimensional spaces. For 

example, suppose we want to calculate the mutual information between a random stimulus 

variable that requires many parameters to specify and the elicited noisy responses of a large 

population of neurons. In order to accurately evaluate the mutual information between the 

stimuli and the responses, one has to average over all possible stimulus patterns and over all 

possible response patterns of the whole population. This averaging quickly leads to a 

combinatorial explosion as either the stimulus dimension or the population size increases. 

This problem occurs not only when one computes MI numerically for a given theoretical 

model but also when one estimates MI empirically from experimental data.

Even when the input and output dimensions are not that high, an MI estimate from 

experimental data tends to have a positive bias due to limited sample size (Miller, 1955; 

Treves & Panzeri, 1995). For example, a perfectly flat joint probability distribution implies 

zero MI, but an empirical joint distribution with fluctuations due to finite data size appears 

to suggest a positive MI. The error may get much worse as the input and output dimensions 

increase because a reliable estimate of MI may require exponentially more data points to fill 

the space of the joint distribution. Various asymptotic expansion methods have been 

proposed to reduce the bias in an MI estimate (Miller, 1955; Carlton, 1969; Treves & 

Panzeri, 1995; Victor, 2000; Paninski, 2003). Other estimators of MI have also been studied, 

such as those based on k-nearest neighbor (Kraskov, Stögbauer, & Grassberger, 2004) and 

minimal spanning trees (Khan et al., 2007). However, it is not easy for these methods to 

handle the general situation with high-dimensional inputs and high-dimensional outputs.

For numerical computation of MI for a given theoretical model, one useful approach is 

Monte Carlo sampling, a convergent method that may potentially reach arbitrary accuracy 

(Yarrow, Challis, & Series, 2012). However, its stochastic and inefficient computational 

scheme makes it unsuitable for many applications. For instance, to optimize the distribution 

of a neural population for a given set of stimuli, one may want to slightly alter the 

population parameters and see how the perturbation affects the MI, but a tiny change of MI 

can be easily drowned out by the inherent noise in the Monte Carlo method.

An alternative approach is to use information-theoretic bounds and approximations to 

simplify calculations. For example, the Cramér-Rao lower bound (Rao, 1945) tells us that 

the inverse of Fisher information (FI) is a lower bound to the mean square decoding error of 

any unbiased decoder. Fisher information is useful for many applications partly because it is 

often much easier to calculate than MI (see e.g., Zhang, Ginzburg, McNaughton, & 

Sejnowski, 1998; Zhang & Sejnowski, 1999; Abbott & Dayan, 1999; Bethge, Rotermund, & 

Pawelzik, 2002; Harper & McAlpine, 2004; Toyoizumi, Aihara, & Amari, 2006).

A link between MI and FI has been studied by several researchers (Clarke & Barron, 1990; 

Rissanen, 1996; Brunel & Nadal, 1998; Sompolinsky, Yoon, Kang, & Shamir, 2001). Clarke 

and Barron (1990) first derived an asymptotic formula between the relative entropy and FI 

for parameter estimation from independent and identically distributed (i.i.d.) observations 

with suitable smoothness conditions. Rissanen (1996) generalized it in the framework of 

stochastic complexity for model selection. Brunel and Nadal (1998) presented an asymptotic 
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relationship between the MI and FI in the limit of a large number of neurons. The method 

was extended to discrete inputs by Kang and Sompolinsky (2001). More general discussions 

about this also appeared in other papers (e.g., Ganguli & Simoncelli, 2014; Wei & Stocker, 

2015). However, for finite population size, the asymptotic formula may lead to large errors, 

especially for high-dimensional inputs, as detailed in sections 2.2 and 4.1.

In this article, our main goal is to improve FI approximations to MI for finite neural 

populations especially for high-dimensional inputs. Another goal is to discuss how to use 

these approximations to optimize neural population coding. We will present several 

information-theoretic bounds and approximation formulas and discuss the conditions under 

which they are established in section 2, with detailed proofs given in the appendix. We also 

discuss how our approximation formulas are related to other statistical estimators and 

information-theoretic bounds, such as Cramér-Rao bound and van Trees’ Bayesian Cramér-

Rao bound (see section 3). In order to better apply the approximation formulas in high-

dimensional input space, we propose some useful techniques in section 4, including variable 

transformation and dimensionality reduction, which may greatly reduce the computational 

complexity for practical applications. Finally, in section 5, we discuss how to use the 

approximation formulas for optimizing information transfer for neural population coding.

2 Bounds and Approximations for Mutual Information in Neural Population 

Coding

2.1 Mutual Information and Notations.

Suppose the input x is a K-dimensional vector, x = (x1, x2, …, xK)T, and the outputs of N 
neurons are denoted by a vector, r = (r1, r2, …, rN)T. In this article, we denote random 

variables by uppercase letters (e.g., random variables X and R) in contrast to their vector 

values x and r. The MI I(X; R) (denoted as I below) between X and R is defined by Cover 

and Thomas (2006):

I = ∫
𝒳
∫

ℛ
p(r ∣ x)p(x) ln p(r ∣ x)

p(r) drdx, (2.1)

where x ∈ 𝒳 ⊆ ℝK, r ∈ ℛ ⊆ ℝN, dx = ∏k = 1
K dxk, dr = ∏n = 1

N drn, and the integration symbol 

∫ is for the continuous variables and can be replaced by the summation symbol ∑ for 

discrete variables. The probability density function (p.d.f.) of r, p(r), satisfies

p(r) = ∫
𝒳

p(r ∣ x)p(x)dx . (2.2)

The MI I in equation 2.1 may also be expressed equivalently as
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I = H(X) − ln p(r)
p(r ∣ x)p(x) r, x

= H(X) − H(X ∣ R), (2.3)

where H(X) is the entropy of random variable X,

H(X) = − ln p(x) x, H(X ∣ R) = − ln p(x ∣ r) r, x, (2.4)

and ⟨·⟩ denotes expectation:

⋅
x

= ∫
𝒳

p(x)( ⋅ )dx, (2.5)

⋅
r ∣ x

= ∫
ℛ

p(r ∣ x)( ⋅ )dr, (2.6)

⋅
r, x

= ∫
𝒳
∫

ℛ
p(r, x)( ⋅ )drdx . (2.7)

Next, we introduce the following notations,

l (r ∣ x) = ln p (r ∣ x), (2.8)

L (r ∣ x) = ln (p (r ∣ x) p (x)), (2.9)

q (x) = ln p (x), (2.10)

and

IF = 1
2 ln det J(x)

2πe x
+ H(X), (2.11)
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IG = 1
2 ln det G(x)

2πe x
+ H(X), (2.12)

where det (·) denotes the matrix determinant, and

J(x) = l′(r ∣ x)l′(r ∣ x)T
r ∣ x, (2.13)

G(x) = J(x) + P(x), (2.14)

P(x) = − q″(x) . (2.15)

Here J(x) is the FI matrix, which is symmetric and positive-semidefinite, and ′ and ″ 
denote the first and second derivative for x, respectively; that is, l′(r∣x) = ∂l (r∣x) /∂x and q″
(r∣x) = ∂2 ln p (x)/∂x∂xT. If p(r∣x) is twice differentiable for x, then

J(x) = l′(r ∣ x)l′(r ∣ x)T
r ∣ x = − l″(r ∣ x) r ∣ x ⋅ (2.16)

We denote the Kullback-Leibler (KL) divergence as

D (x x) = ∫
ℛ

p (r ∣ x) ln p (r ∣ x)
p (r ∣ x)dr, (2.17)

and define

𝒳ω(x) = x̆ ∈ ℝK : (x̆ − x)TG(x) (x̆ − x) < Nω2 , (2.18)

as the ω neighborhoods of x and its complementary set as

𝒳‾ ω(x) = 𝒳 − 𝒳ω(x), (2.19)

where ω is a positive number.

2.2 Information-Theoretic Asymptotic Bounds and Approximations.

In a large N limit, Brunei and Nadal (1998) proposed an asymptotic relationship I ~ IF 

between MI and FI and gave a proof in the case of one-dimensional input. Another proof is 
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given by Sompolinsky et al. (2001), although there appears to be an error in their proof when 

a replica trick is used (see equation B1 in their paper; their equation B5 does not follow 

directly from the replica trick). For large but finite N, I ≃ IF is usually a good approximation 

as long as the inputs are low dimensional. For the high-dimensional inputs, the 

approximation may no longer be valid. For example, suppose p(r∣x) is a normal distribution 

with mean ATx and covariance matrix IN and p(x) is a normal distribution with mean μ and 

covariance matrix ∑,

p(r ∣ x) = 𝒩(ATx, IN), p(x) = 𝒩(μ, Σ), (2.20)

where A = [a1, a2, …, aN] is a deterministic K × N matrix and IN is the N × N identity 

matrix. The MI I is given by (see Verdu, 1986; Guo, Shamai, & Verdu, 2005, for details)

I = 1
2 ln det Σ1 ∕ 2AATΣ1 ∕ 2 + IK . (2.21)

If rank (J(x)) < K, then IF = −∞. Notice that here, J(x) = AAT. When a = a1 = … = aN and 

∑ = Ik, then by equation 2.21 and a matrix determinant lemma, we have

I = 1
2 ln det NaaT + IK = 1

2 ln NaTa + 1 ≥ 0, (2.22)

and by equation 2.11,

IF = 1
2 ln det NaaT = − ∞, (2.23)

which is obviously incorrect as an approximation to I. For high-dimensional inputs, the 

determinant det (J(x)) may become close to zero in practical applications. When the FI 

matrix J(x) becomes degenerate, the regularity condition ensuring the Cramér-Rao paradigm 

of statistics is violated (Amari & Nakahara, 2005), in which case using IF as a proxy for I 
incurs large errors.

In the following, we will show that IG is a better approximation of I for high-dimensional 

inputs. For instance, for the above example, we can verify that

IG = 1
2 ln det 1

2πe (AAT + Σ−1) + 1
2 ln (det (2πeΣ))

= 1
2 ln (det (Σ1 ∕ 2AATΣ1 ∕ 2 + IK)) = I,

(2.24)

which is exactly equal to the MI I given in equation 2.21.
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2.2.1 Regularity Conditions.—First, we consider the following regularity conditions 

for p(x) and p(r∣x):

C1: p(x) and p(r∣x) are twice continuously differentiable for almost every x ∈ 𝒳, where 𝒳 is 

a convex set; G(x) is positive definite, and ∥ G−1 (x)∥ = O(N−1), where ∥·∥ denotes the 

Frobenius norm of a matrix. The following conditions hold:

q′(x) < ∞, (2.25a)

q″(x) < ∞, (2.25b)

N−1l′(r ∣ x)Tl′(r ∣ x) 2
r ∣ x

= O(1), (2.25c)

N−1 l″(r ∣ x) − l″(r ∣ x) r ∣ x
2

r ∣ x
= O(N−1), (2.25d)

and there exists an ω = ω (x) > 0 for ∀x̆ ∈ 𝒳ω(x) such that

N−1 l″(r ∣ x̆) − l″(r ∣ x) = O(1), (2.25e)

where O indicates the big-O notation.

C2: The following condition is satisfied,

N−1 l″(r ∣ x) − l″(r ∣ x) r ∣ x
2(m + 1)

r ∣ x
= O(N−1), (2.26a)

for m ∈ ℕ, and there exists η > 1 such that

ℙr ∣ x det (G(x))1 ∕ 2∫
𝒳‾ ω(x)

p(x ∣ r)dx > ϵ p(x ∣ r) = O(N−η) (2.26b)

for all ϵ ∈ (0,1/2), ω ∈ (0, ω) and x ∈ 𝒳 with p(x) > 0, where ℙr ∣ x{ ⋅ } denotes the 

probability of r given x.

The regularity conditions C1 and C2 are needed to prove theorems in later sections. They are 

expressed in mathematical forms that are convenient for our proofs, although their meanings 
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may seem opaque at first glance. In the following, we will examine these conditions more 

closely. We will use specific examples to make interpretations of these conditions more 

transparent.

Remark 1. In this article, we assume that the probability distributions p(x) and p(r∣x) are 

piecewise twice continuously differentiable. This is because we need to use Fisher 

information to approximate mutual information, and Fisher information requires derivatives 

that make sense only for continuous variables. Therefore, the methods developed in this 

article apply only to continuous input variables or stimulus variables. For discrete input 

variables, we need alternative methods for approximating MI, which we will address in a 

separate publication.

Conditions 2.25a and 2.25b state that the first and the second derivatives of q(x) = ln p(x) 

have finite values for any given x ϵ 𝒳. These two conditions are easily satisfied by 

commonly encountered probability distributions because they only require finite derivatives 

within 𝒳, the set of allowable inputs, and derivatives do not need to be finitely bounded.

Remark 2. Conditions 2.25c to 2.26a constrain how the first and the second derivatives of 

l(r∣x) = ln p(r∣x) scale with N, the number of neurons. These conditions are easily met when 

p(r∣x) is conditionally independent or when the noises of different neurons are independent, 

that is, p(r ∣ x) = ∏n = 1
N p(rn ∣ x).

We emphasize that it is possible to satisfy these conditions even when p(r∣x) is not 

independent or when the noises are correlated, as we show later. Here we first examine these 

conditions closely, assuming independence. For simplicity, our demonstration that follows is 

based on a one-dimensional input variable (K = 1). The conclusions are readily generalizable 

to higher-dimensional inputs (K > 1) because K is fixed and does not affect the scaling with 

N.

Assuming independence, we have l(r ∣ x) = ∑n = 1
N l(rn ∣ x) with l(rn∣x) = ln p(rn∣x), and the 

left-hand side of equation 2.25c becomes

N−2 l′(r ∣ x)4
r ∣ x

= N−2 ∑
n1, …, n4 = 1

N
l′(rn1

∣ x)l′(rn2
∣ x)l′(rn3

∣ x)l′(rn4
∣ x)

rn1
, rn2

, rn3
, rn4

∣ x

= N−2 ∑
n ≠ m

l′(rn ∣ x)2

rn ∣ x
l′(rm ∣ x)2

rm ∣ x
+ ∑

n = 1

N
l′(rn ∣ x)4

rn ∣ x
,

(2.27)

where the final result contains only two terms with even numbers of duplicated indices, 

while all other terms in the expansion vanish because any unmatched or lone index k (from 

n1, n2, n3, n4) should yield a vanishing average:
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l′(rk ∣ x)
rk ∣ x

= ∫
ℛ

p(rk ∣ x)l′(rk ∣ x)drk = ∂
∂x ∫

ℛ
p(rk ∣ x)drk = 0 . (2.28)

Thus, condition 2.25c is satisfied as long as ⟨l′(rn∣x)2⟩rn∣x and ⟨l′(rn∣x)4⟩rn∣x
 are bounded by 

some finite numbers, say, a and b, respectively, because now equation 2.27 should scale as N
−2 (aN(N – 1) + bN) = O(1). For instance, a gaussian distribution always meets this 

requirement because the averages of the second and fourth powers are proportional to the 

second and fourth moments, which are both finite. Note that the argument above works even 

if ⟨l′(rn∣x)4⟩rn∣x is not finitely bounded but scales as O(N).

Similarly, under the assumption of independence, the left-hand side of equation 2.25d 

becomes

N−2 l″(r ∣ x) − l″(r ∣ x) r ∣ x
2

r ∣ x

= N−2 ∑
n, m = 1

N
l″(rn ∣ x) − l″(rn ∣ x) rn ∣ x l″(rm ∣ x) − l″(rm ∣ x) rm ∣ x)

rn, rm ∣ x

= N−2 ∑
n = 1

N
l″(rn ∣ x) − l″(rn ∣ x) rn ∣ x

2

rn ∣ x

= N−2 ∑
n = 1

N
l″(rn ∣ x)2

rn ∣ x − l″(rn ∣ x) rn ∣ x
2 ,

(2.29)

where, in the second step, the only remaining terms are the squares, while all other terms in 

the expansion with n ≠ m have vanished because ⟨l″(rn∣x) – ⟨l″(rn∣x)⟩rn∣x⟩rn∣x = 0. Thus, 

condition 2.25d is satisfied as long as ⟨l″(rn∣x)⟩rn∣x and ⟨l″(rn∣x)2⟩rn∣x are bounded so that 

equation 2.29 scales as N−2N = N−1.

Condition 2.25e is easily satisfied under the assumption of independence. It is easy to show 

that this condition holds when l″(rn∣x) is bounded.

Condition 2.26a can be examined with similar arguments used for equations 2.27 and 2.29. 

Assuming independence, we rewrite the left-hand side of equation 2.26a as
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N−z l″(r ∣ x) − l″(r ∣ x) r ∣ x
z

r ∣ x

= N−z ∑
n1, …, nz = 1

N
l″(rn1

∣ x) − l″(rn1
∣ x)

rn1
∣ x

⋯ l″(r1 ∣ x) − l″(rnz
∣ x)

rnz
∣ x

rnz
∣ x

= N−z ∑
n1, …, nm + 1 = 1

N
∏
i = 1

m + 1
l″(rni

∣ x) − l″(rni
∣ x)

rni
∣ x

2

rni
∣ x

+ ⋯

(2.30)

where z = 2(m + 1) ≥ 4 is an even number. Any term in the expansion with an unmatched 

index nk should vanish, as in the cases of equations 2.27 and 2.29. When ⟨l″ (rn∣x)⟩rn∣x and 

⟨l″(rn∣x)2⟩rn∣x are bounded, the leading term with respect to scaling with N is the product of 

squares, as shown at the end of equation 2.30, because all the other nonvanishing terms 

increase more slowly with N. Thus equation 2.30 should scale as N−zNm+1 = N−m−1, which 

trivially satisfies condition 2.26a.

In summary, conditions 2.25c to 2.26a are easy to meet when p(r∣x) is independent. It is 

sufficient to satisfy these conditions when the averages of the first and second derivatives of 

l(r∣x) = ln p(r∣x), as well as the averages of their powers, are bounded by finite numbers for 

all the neurons.

Remark 3. For neurons with correlated noises, if there exists an invertible transformation 

that maps r to r such that p(r ∣ x) becomes conditionally independent, then conditions C1 

and C2 are easily met in the space of the new variables by the discussion in remark 2. This 

situation is best illustrated by the familiar example of a population of neurons with 

correlated noises that obey a multivariate gaussian distribution:

p(r ∣ x) = 1
det (2π Σ) exp − 1

2(r − g)T Σ−1(r − g) , (2.31)

where ∑ is an N × N invertible covariance matrix, and g = (g1(x; θ1),…, gN(x; θN)) 

describes the mean resp onses with θn being the parameter vector. Using the following 

transformation,

r = Σ−1 ∕ 2r = (r 1, r 2, …, r N)T, (2.32)
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g = Σ−1 ∕ 2g = (g1, g2, …, gN)T, (2.33)

we obtain the independent distribution:

p(r ∣ x) = ∏
n = 1

N 1
2π

exp − 1
2(r n − gn)2 . (2.34)

In the special case when the correlation coefficient between any pair of neurons is a constant 

c, −1 < c < 1, the noise covariance can be written as

Σ = a (1 − c)IN + cuuT , (2.35)

where a > 0 is a constant, IN is the N × N identity matrix, and u = (1, 1, …, 1)T ∈ ℝN × 1. The 

desired transformation in equations 2.32 and 2.33 is given explicitly by

Σ−1 ∕ 2 = b0 IN − b1uuT , (2.36)

where

b0 = 1
a(1 − c) , b1 = 1

N 1 ± 1 − c
(N − 1)c + 1 . (2.37)

The new response variables defined in equations 2.32 and 2.33 now read:

r n = b0 rn − b1 ∑
m = 1

N
rm , (2.38)

gn = b0 gn − b1 ∑
m = 1

N
gm . (2.39)

Now we have the derivatives:

l′(r n ∣ x) = (r n − gn)
∂gn
∂x , (2.40)
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l″(r n ∣ x) = l″(r n ∣ x)
rn ∣ x

= (r n − gn)
∂2gn

∂x2 , (2.41)

where ∂gn ∕ ∂x and ∂2gn ∕ ∂x2 are finite as long as ∂gn/∂x and ∂2gn/∂x2 are finite. Conditions 

C1 and C2 are satisfied when the derivatives and their powers are finitely bounded as shown 

before.

The example above shows explicitly that it is possible to meet conditions C1 and C2 even 

when the noises of different neurons are correlated. More generally, if a nonlinear 

transformation exists that maps correlated random variables into independent variables, then 

by similar argument, conditions C1 and C2 are satisfied when the derivatives of the log 

likelihood functions and their powers in the new variables are finitely bounded. Even when 

the desired transformation does not exist or is unknown, it does not necessarily imply that 

conditions C1 and C2 must be violated.

While the exact mathematical conditions for the existence of the desired transformation are 

unclear, let us consider a specific example. If a joint probability density function can be 

morphed smoothly and reversibly into a flat or constant density in a cube (hypercube), which 

is a special case of an independent distribution, then this morphing is the desired 

transformation. Here we may replace the flat distribution by any known independent 

distribution and the argument above should still work. So the desired transformation may 

exist under rather general conditions.

For correlated random variables, one may use algorithms such as independent component 

analysis to find an invertible linear mapping that makes the new random variables as 

independent as possible (Bell & Sejnowski, 1997) or use neural networks to find related 

nonlinear mappings (Huang & Zhang, 2017). These methods do not directly apply to the 

problem of testing conditions C1 and C2 because they work for a given network size N and 

further development is needed to address the scaling behavior in the large network limit N 
→ ∞.

Finally, we note that the value of the MI of the transformed independent variables is the 

same as the MI of the original correlated variables because of the invariance of MI under 

invertible transformation of marginal variables. A related discussion is in theorem 3, which 

involves a transformation of the input variables rather than a transformation of the output 

variables as needed here.

Remark 4. Condition 2.26b is satisfied if a positive number δ and a positive integer m exist 

such that

det (G(x))1 ∕ 2∫
𝒳‾ ω̂(x)

∫
ℬm, δ(x)

p(r ∣ x)p(x)drdx = O (N−η) (2.42)
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for all x ∈ 𝒳‾ ω(x), where

ℬm, δ (x) = r ∈ ℛ: − δN
η − 1
2m G(x) < l″(r ∣ x) − l″(r ∣ x)

r ∣ x
< δN

η − 1
2m G(x) , (2.43)

and A < B means that the matrix A – B is negative definite. A proof is as follows.

First note that in equation 2.43, if η → 1 or m → ∞, then N
η − 1
2m 1. Following Markov’s 

inequality, condition C2 and equation A.19 in the appendix, for the complementary set of 

ℬm, δ(x), ℬ‾ m, δ(x), we have

ℙr ∣ x ℬ‾ m, δ(x) ≤ ℙr ∣ x B0

2

≥ δ2N
η − 1

m

≤ δ−2mN−(η − 1) B0
2m

r ∣ x

= O (N−η),

(2.44)

where

B0 = G−1 ∕ 2(x) l″(r ∣ x) − l″(r ∣ x) r ∣ x G−1 ∕ 2(x) . (2.45)

Define the set

𝒜ω(x) = r ∈ ℛ :∫
𝒳‾ ω(x)

p(x ∣ r)
p(x ∣ r) dx > det (G(x))−1 ∕ 2ϵ . (2.46)

Then it follows from Markov’s inequality and equation 2.42 that

ℙr ∣ x 𝒜ω(x) ∩ ℬm, δ(x)

≤ ϵ−1det (G(x))1 ∕ 2∫
ℬm, δ(x)

∫
𝒳‾ ω(x)

p(r ∣ x)p(x)
p(x) dxdr

= O (N−η) .

(2.47)

Hence, we get

ℙr ∣ x 𝒜ω(x) ≤ ℙr ∣ x 𝒜ω(x) ∩ ℬm, δ(x) + ℙr ∣ x ℬ‾ m, δ(x) = O (N−η),
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which yields condition 2.26b.

Condition 2.42 is satisfied if there exists a positive number ς such that

ln p(r ∣ x)
p(r ∣ x) ≥ Nς (2.48)

for all x ∈ 𝒳‾ ω(x) and r ∈ ℬm, δ(x). This is because

det (G(x))1 ∕ 2∫
𝒳‾ ω(x)

∫
ℬm, δ(x)

p(r ∣ x)p(x)drdx

= det (G(x))1 ∕ 2∫
𝒳‾ ω(x)

p(x)∫
ℬm, δ(x)

p(r ∣ x) exp − ln p(r ∣ x)
p(r ∣ x) drdx

≤ det (G(x))1 ∕ 2exp ( − Nς) = O (NK ∕ 2e
−Nς) .

(2.49)

Here notice that det (G (x))1/2 = O (NK/2) (see equation A.23).

Inequality 2.48 holds if p(r∣x) is conditionally independent, namely, 

p(r ∣ x) = ∏n = 1
N p(rn ∣ x), with

ln
p(rn ∣ x)
p(rn ∣ x) ≥ ς, ∀n = 1, 2, …, N, (2.50)

for all x ∈ 𝒳‾ ω(x) and r ∈ ℬm, δ(x). Consider the inequality ln p(rn ∣ x) ∕ p(rn ∣ x) rn ∣ x ≥ 0

where the equality holds when x = x. If there is only one extreme point at x = x for 

x ∈ 𝒳ω(x), then generally it is easy to find a set ℬm, δ(x) that satisfies equation 2.50, so that 

equation 2.26b holds.

2.2.2 Asymptotic Bounds and Approximations for Mutual Information.—Let

ξ = N−1 l″(r ∣ x) − l″(r ∣ x) r ∣ x G−1(x)l′(r ∣ x) 2
r ∣ x

, (2.51)

and it follows from conditions C1 and C2 that

Huang and Zhang Page 14

Neural Comput. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ξ ≤ NG−1(x) 2 N−1 l″(r ∣ x) − l″(r ∣ x) r ∣ x
4

r ∣ x
1 ∕ 2

× N−1l′(r ∣ x)Tl′(r ∣ x) 2
r ∣ x
1 ∕ 2

= O (N−1 ∕ 2) .

(2.52)

Moreover, if p(r∣x) is conditionally independent, then by an argument similar to the 

discussion in remark 2, we can verify that the condition ξ = O (N−1) is easily met.

In the following we state several conclusions about the MI; their proofs are given in the 

appendix.

Lemma 1. If condition C1 holds, then the MI I has an asymptotic upper bound for integer N,

I ≤ IG + O (N−1) . (2.53)

Moreover, if equations 2.25c and 2.25d are replaced by

N−1l′(r ∣ x)Tl′(r ∣ x) 1 + τ

r ∣ x
= O (1), (2.54a)

N−1 l″(r ∣ x) − l″(r ∣ x) r ∣ x
2

r ∣ x
= o (1), (2.54b)

for some τ ∈ (0,1), where o indicates the Little-O notation, then the MI has the following 
asymptotic upper bound for integer N:

I ≤ IG + o (1) . (2.55)

Lemma 2. If conditions C1 and C2 hold, ξ = O (N−1), then the MI has an asymptotic lower 
bound for integer N,

I ≥ IG + O (N−1) . (2.56)

Moreover, if condition C1 holds but equations 2.25c and 2.25d are replaced by 2.54a and 
2.54b, and inequality 2.26b in C2 also holds for η > 0, then the MI has the following 
asymptotic lower bound for integer N:
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I ≥ IG + o (1) . (2.57)

Theorem 1. If conditions C1 and C2 hold, ξ = O (N−1), then the MI has the following 
asymptotic equality for integer N:

I = IG + O (N−1) . (2.58)

For more relaxed conditions, suppose condition C1 holds but equations 2.25c and 2.25d are 
replaced by 2.54a and 2.54b, and inequality 2.26b in C2 also holds for η > 0, then the MI 
has an asymptotic equality for integer N:

I = IG + o (1) . (2.59)

Theorem 2. Suppose J(x) and G(x) are symmetric and positive-definite. Let

ς = Tr(Ψ(x)) x, (2.60)

Ψ(x) = J−1 ∕ 2(x)P(x)J−1 ∕ 2(x) . (2.61)

Then

IG ≤ IF + ς
2, (2.62)

where Tr (·) indicating matrix trace; moreover, if P(x) is positive-semidefinite, then

0 ≤ IG − IF ≤ ς
2 . (2.63)

But if

ς1 = Ψ(x) x = O(N−β) (2.64)

for some β > 0, then
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IG = IF + O(N−β) . (2.65)

Remark 5. In general, we need only to assume that p(x) and p(r∣x) are piecewise twice 

continuously differentiable for x ϵ 𝒳. In this case, lemmas 1 and 2 and theorem 1 can still be 

established. For more general cases, such as discrete or continuous inputs, we have also 

derived a general approximation formula for MI from which we can easily derive formula 

for IG (this will be discussed in separate paper).

2.3 Approximations of Mutual Information in Neural Populations with Finite Size.

In the preceding section, we provided several bounds, including both lower and upper 

bounds, and asymptotic relationships for the true MI in the large N (network size) limit. 

Now, we discuss effective approximations to the true MI in the case of finite N. Here we 

consider only the case of continuous inputs (we will discuss the case of discrete inputs in 

another paper).

Theorem 1 tells us that under suitable conditions, we can use IG to approximate I for a large 

but finite N (e.g., N ⪢ K), that is,

I ≃ IG . (2.66)

Moreover, by theorem 2, we know that if ς ≈ 0 with positive-semidefinite P(x) or ς1 ≈ 0 

holds (see equations 2.60 and 2.64), then by equations 2.63, 2.65, and 2.66, we have

I ≃ IG ≃ IF . (2.67)

Define

G(x) = J(x) + P(x) + Q(x), (2.68)

I G = 1
2 ln det G(x)

2πe x
+ H(X), (2.69)

where G(x) is positive-definite and Q (x) is a symmetric matrix depending on x and ∥Q (x) ∥ 

= O(1). Suppose G−1(x) = O(N−1). If we replace IG by I G in theorem 1, then we can prove 

equations 2.58 and 2.59 in a manner similar to the proof of that theorem. Considering a 

special case where ∥P(x)∥ → 0, det (J(x)) = O(1) (e.g., rank (J(x)) < K) and ∥G−1 (x) ∥ ≠ 

O(N−1), then we can no longer use the asymptotic formulas in theorem 1. However, if we 
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substitute G(x) for G(x) by choosing an appropriate Q (x) such that G(x) is positive-definite 

and G−1(x) = O(N−1), then we can use equation 2.58 and 2.59 as the asymptotic formula.

If we assume G(x) and G(x) are positive-definite and

ζ = Q(x)G−1(x)
x

= O(N−β), β > 0, (2.70)

then similar to the proof of theorem 2, we have

ln (det (G(x))) x

= ln det G(x) x + ln det IK − Q(x)G−1(x) x

= ln det G(x) x + O(N−β)

(2.71)

and

I G = IG + O(N−β) .

For large N, we usually have I G ≃ IG.

It is more convenient to redefine the following quantities:

Q(x) = P+ − P(x), (2.72)

P+ = ∂ ln p(x)
∂x

∂ ln p(x)
∂xT

x
, (2.73)

G+(x) = G(x) = J(x) + P+, (2.74)

and

IG+
= I G = 1

2 ln det
G+(x)

2πe x
+ H(X) . (2.75)

Notice that if p(x) is twice differentiable for x and
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∫
𝒳

∂2 p(x)
∂x∂xT dx = 0, (2.76)

then

P+ = P(x)
x

= 1
p(x)

∂2 p(x)
∂x∂xT

x
− ∂2 ln p(x)

∂x∂xT
x

. (2.77)

For example, if p(x) is a normal distribution, p(x) = 𝒩(μ, Σ), then

P(x) = P+ = Σ−1 . (2.78)

Similar to the proof of theorem 2, we can prove that

0 ≤ IG+
− IF ≤

ς+
2 , (2.79)

where

ς+ = Tr P+J−1(x) x . (2.80)

We find that IG is often a good approximation of MI I even for relatively small N. However, 

we cannot guarantee that P(x) is always positive-semidefinite in equation 2.14, and as a 

consequence, it may happen that det (G(x)) is very small for small N, G(x) is not positive-

definite, and ln (det (G(x))) is not a real number. In this case, IG is not a good approximation 

to I but IG+ is still a good approximation. Generally, if P(x) is always positive-semidefinite, 

then IG or IG+ is a better approximation than IF, especially when p(x) is close to a normal 

distribution.

In the following, we give an example of 1D inputs. High-dimensional inputs are discussed in 

section 4.1.

2.3.1 A Numerical Comparison for 1D Stimuli.—Considering the Poisson neuron 

model (see equation 5.7 in section 5.1 for details), the tuning curve of the nth neuron, f (x; 

θn), takes the form of circular normal or von Mises distribution

f (x; θn) = A exp − T
2πσ f

2
1 − cos 2π

T (x − θn) , (2.81)
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where x ∈ [−T/2, T/2), θn ∈ [−Tθ/2, Tθ/2], n ϵ {1,2, …, N}, with T = π, Tθ = 1, σf = 0.5, 

and A = 20, and the centers θ1, θ2, …, θN of the N neurons are uniformly distributed on 

interval [−Tθ/2, Tθ/2], that is, θn = (n – 1) dθ – Tθ/2, with dθ = Tθ/(N – 1) and N ≥ 2. 

Suppose the distribution of 1D continuous input x (K = 1) p(x) has the form

p(x) = Z−1 exp − T
2πσp

2
1 − cos 2π

T x , (2.82)

where σp is a constant set to π/4 and Z is the normalization constant. Figure 1A shows 

graphs of the input distribution p(x) and the tuning curves f (x; θ) with different centers θ = 

−π/4, 0, π/4.

To evaluate the precision of the approximation formulas, we use Monte Carlo (MC) 

simulation to approximate MI I. For MC simulation, we first sample an input xj by the 

distribution p(x), then generate the neural response rj by the conditional distribution p(rj∣xj), 

where j = 1, 2, …, jmax. The value of MI by MC simulation is calculated by

IMC
∗ = 1

jmax
∑
j = 1

jmax
ln

p(r j ∣ x j)
p(r j)

, (2.83)

where p(rj) is given by

p(r j) = ∑
m = 1

M
p(r j ∣ xm)p(xm) (2.84)

and xm = (m – 1) T/M – T/2 for m ϵ {1,2, …, M}.

To evaluate the accuracy of MC simulation, we compute the standard deviation,

Istd = 1
imax

∑
i = 1

imax
IMC
i − IMC

2, (2.85)

where

IMC
i = 1

jmax
∑
j = 1

jmax
ln

p(rΓ j, i
∣ xΓ j, i

)
p(rΓ j, i

) , (2.86)
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IMC = 1
imax

∑
i = 1

imax
IMC
i , (2.87)

and Γj,i ϵ {1,2, …, jmax} is the (j, i)th entry of the matrix Γ ∈ ℕ
jmax × imax with samples 

taken randomly from the integer set {1, 2, …, jmax} by a uniform distribution. Here we set 

jmax = 5 × 105, imax = 100 and M = 103.

For different N ∈ {2, 3, 4, 6, 10, 14, 20, 30, 50, 100, 200,400, 700, 1000}, we compare IMC 

with IG, IG+, and IF, which are illustrated in Figures 1B to 1D. Here we define the relative 

error of approximation, for example, for IG, as

DIG =
IG − IMC

IMC
, (2.88)

and the relative standard deviation

DIstd =
Istd
IMC

. (2.89)

Figure 1B shows how the values of IMC, IG, IG+, and IF change with neuron number N, and 

Figures 1C and 1D show their relative errors and the absolute values of the relative errors 

with respect to IMC. From Figures 1B to 1D, we can see that the values of IG, IG+, and IF are 

all very close to one another and the absolute values of their relative errors are all very small. 

The absolute values are less than 1% when N ≥ 10 and less than 0.1% when N ≥ 100. 

However, for the high-dimensional inputs, there will be a big difference between IG, IG+, and 

IF in many cases (see section 4.1 for more details).

3 Statistical Estimators and Neural Population Decoding

Given the neural response r elicited by the input x, we may infer or estimate the input x 
from the response. This procedure is sometimes referred to as decoding from the response. 

We need to choose an efficient estimator or a function x = x(r) that maps the response r to 

an estimate x of the true stimulus x. The maximum likelihood (ML) estimator defined by

x(r) = argmax
x

p(r ∣ x) = argmax
x

l(r ∣ x) (3.1)

is known to be efficient in large N limit. According to the Cramér-Rao lower bound (Rao, 

1945), we have the following relationship between the covariance matrix of any unbiased 

estimator Σx and the FI matrix J (x),
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Σx = (x(r) − x)(x(r) − x)T
r ∣ x ≥ J−1(x), (3.2)

where x(r) is an unbiased estimation of x from the response r, and A ≥ B means that matrix 

A – B is positive-semidefinite. Thus,

IF = 1
2 ln det J(x)

2πe x
+ H (X)

≥ 1
2 ln det

Σx
−1

2πe
x

+ H (X) = Ivar .
(3.3)

The MI between X and X is given by

I = H(X) − H(X ∣ X) x, x, (3.4)

where H(X) is the entropy of random variable X and H(X ∣ X) is its conditional entropy of 

random variable X given X. Since the maximum entropy probability distribution is gaussian, 

H(X ∣ X) satisfies

H(X ∣ X) ≤ 1
2 ln (det(2πeΣx)) . (3.5)

Therefore, from equations 3.4 and 3.5, we get

I ≥ 1
2 ln det

Σx
−1

2πe
x

+ H(X) = I var . (3.6)

The data processing inequality (Cover & Thomas, 2006) states that postprocessing cannot 

increase information, so that we have

I ≥ I ≥ I var . (3.7)

Here we can not directly obtain I ≥ IF as in Brunel and Nadal (1998) when H(X) = H(X) and 

Ivar = I var. The simulation results in Figure 1 also show that IF is not a lower bound of I.

For biased estimators, the van Trees’ Bayesian Cramér-Rao bound (Van Trees & Bell, 2007) 

provides a lower bound:
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Σx x = (x(r) − x)(x(r) − x)T
r ∣ x x

≥ ( J(x) x + P+)−1 = G+(x) x
−1 . (3.8)

It follows from equations 2.75, 3.6, and 3.8 that

IG+
≤ 1

2 ln det
G+(x) x

2πe + H(X) = IVT, (3.9)

IVT ≥ 1
2 ln det

Σx x
−1

2πe + H(X) = I var, (3.10)

Ivar ≥ I var . (3.11)

We may also regard decoding as Bayesian inference. By Bayes’ rule,

p(x ∣ r) = p(r ∣ x)p(x)
p(r) . (3.12)

According to the Bayesian decision theory, if we know the response r, from the prior p(x) 

and the likelihood p(r∣x), we can infer an estimation of the true stimulus x, x(r)—for 

example,

x(r) = argmax
x

p(x ∣ r) = argmax
x

L(r ∣ x), (3.13)

which is also called maximum a posteriori (MAP) estimation.

Consider a loss function φ(x(r) ∣ x) for estimation,

φ(x(r) ∣ x) = − ln p(x ∣ r), (3.14)

which is minimized when p(x∣r) reaches its maximum. Now the conditional risk is

R(x(r) ∣ r) = φ(x(r) ∣ x) x ∣ r, (3.15)

and the overall risk is

Huang and Zhang Page 23

Neural Comput. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ro = R(x(r) ∣ r) r = φ(x(r) ∣ x) x ∣ r r = − ln p(x ∣ r) x, r . (3.16)

Then it follows from equations 2.3 and 3.16 that

I = ln p(x ∣ r) r, x + H(X) = − Ro + H(X) . (3.17)

Comparing equations 2.12, 2.66, and 3.17, we find

Ro ≃ − 1
2 ln det G(x)

2πe x
. (3.18)

Hence, maximizing MI I (or IG) means minimizing the overall risk Ro for a determinate 

H(X). Therefore, we can get the optimal Bayesian inference via optimizing MI I (or IG).

By the Cramér-Rao lower bound, we know that the inverse of FI matrix J−1(x) reflects the 

accuracy of decoding (see equation 3.2). P(x) provides some knowledge about the prior 

distribution p(x); for example, P−1 (x) is the covariance matrix of input x when p(x) is a 

normal distribution. ∥P(x)∥ is small for a flat prior (poor prior) and large for a sharp prior 

(good prior). Hence, if the prior p(x) is flat or poor and the knowledge about model is rich, 

then the MI I is governed by the knowledge of model, which results in a small ς1 (see 

equation 2.64) and I ≃ IG ≃ IF. Otherwise, the prior knowledge has a great influence on MI 

I, which results in a large ς1 and I ≃ IG ≄ IF.

4 Variable Transformation and Dimensionality Reduction in Neural 

Population Coding

For low-dimensional input x and large N, both IG are IF are good approximations of MI I, 
but for high-dimensional input x, a large value of ς1 may lead to a large error of IF, in which 

case IG (or IG+ ) is a better approximation. It is difficult to directly apply the approximation 

formula I ≃ IG when we do not have an explicit expression of p (x) or P (x). For many 

applications, we do not need to know the exact value of IG and care only about the value of 

⟨ln (det (G(x)))⟩x (see section 5). From equations 2.12, 2.22, and 2.78, we know that if p (x) 

is close to a normal distribution, we can easily approximate P (x) and H(X) to obtain ⟨ln (det 

(G(x)))⟩x and IG. When p (x) is not a normal distribution, we can employ a technique of 

variable transformation to make it closer to a normal distribution, as discussed below.

4.1 Variable Transformation.

Suppose T:𝒳 𝒳 is an invertible and differentiable mapping:

x = T(x) = (T1(x), T2(x), …, TK(x))T, (4.1)
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x = T−1(x), and x ∈ 𝒳 ⊆ ℝK. Let p(x) denote the p.d.f. of random variable X and

p(r ∣ x) = p(r ∣ x)
x = T−1(x)

. (4.2)

Then we have the following conclusions, the proofs of which are given in the appendix.

Theorem 3. The MI is equivariant under the invertible transformations. More specifically, 
for the above invertible transformation T, the MI I(X; R) in equation 2.1 is equal to

I(X; R) = ln p(r ∣ x)
p(r) r, x

. (4.3)

Furthermore, suppose p(x ) and p(r ∣ x ) fulfill the conditions C1, C2 and ξ = O (N−1). Then 
we have

I(X; R) = I G + O(N−1), (4.4)

I G = 1
2 ln det G(x)

2πe x
+ H(X)

= 1
2 ln det G(x)

2πe x
+ H(X)

= IG,

(4.5)

where H(X) is the entropy of random variable X and satisfies

H(X) = − ln p(x) x = H(X) + ln ∣ det (DT(x)) ∣ x, (4.6)

and DT (x) denotes the Jacobian matrix of T (x),

(DT(x))i, j =
∂T i(x)

∂x j
, ∀i, j = 1, 2, …, K . (4.7)

Corollary 1. Suppose p(r∣x) is a normal distribution,

p(r ∣ x) = 𝒩(AT y, IN), (4.8)
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where y = f (BT x) = (y1, y2, …, yK)T, yk = f k(bk
T x) for k = 1, 2, …, K, A is a deterministic K 

× N matrix, B = [b1, b2, …, bK] is a deterministic invertible matrix, and fk is an invertible 
and differentiable function. If Y has also a normal distribution, p(y) = 𝒩(μ f , Σ f ), then

IG = IG+
= I(X; R) = I(Υ ; R)

= 1
2 ln det 1

2πe AAT + Σ f
−1 + H(Υ)

= 1
2 ln det 1

2πe (J(x) + P(x))
x

+ H(X),

(4.9)

where

H(Υ) = 1
2 ln (det (2πe Σ f )) = H(X) + ln ∣ det (D(x)) ∣ x, (4.10)

D(x) = ( f 1′ (b1
T x)b1, f 2′ (b2

T x)b2, …, f K′ (bK
T x)bK)T, (4.11)

f k′(bk
Tx) =

∂ f k(yk)
∂yk yk = bk

Tx
, ∀k = 1, 2, …, K . (4.12)

Remark 6. From corollary 1 and equation 2.78, we know that the approximation accuracy 

for IG ≃ I(X; R) is improved when we employ an invertible transformation on the input 

random variable X to make the new random variable Y closer to a normal distribution (see 

section 4.3).

Consider the eigendecompositions of AAT and ∑f as given by

AAT = UAΣUA
T , (4.13)

Σf = UfΣUf
T, (4.14)

where UA and Uf are K × K orthogonal matrices; Σ = diag (σ1
2, σ2

2, …, σK
2 ) and 

Σ = diag (σ1
2, σ2

2, …, σK
2 ) are K × K eigenvalue matrices; and σ1 ≥ σ2 ≥ ⋯ ≥ σK > 0 and 

σ1 ≥ σ2 ≥ ⋯ ≥ σK > 0. Then by equations 2.11 and 4.9, we have
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IG = IG+
= I(X; R) = I(Υ ; R)

= 1
2 ln det 1

2πe (UAΣUA
T + UfΣ

−1Uf
T) + H(Υ),

(4.15)

IF = 1
2 ln det Σ

2πe + H(Υ), (4.16)

and

IF − IG = − 1
2 ln (det (IK + Σ−1 ∕ 2UA

T UfΣ
−1Uf

TUAΣ−1 ∕ 2)) . (4.17)

Now consider two special cases. If Σ = IK, then by equation 4.17, we get

IF − IG = − 1
2 ∑

k = 1

K
ln (1 + σk

−2) . (4.18)

If UA = Uf, then

IF − IG = − 1
2 ∑

k = 1

K
ln (1 + σk

−2σk
−2) . (4.19)

Here J(x) = UAΣUA
T , P−1(x) = UfΣUf

T. The FI matrices J(x) and P−1(x) become degenerate 

when σK
2 0 and σK

2 0.

From equations 4.18 and 4.19, we see that if either J(x)or P−1 (x) becomes degenerate, then 

(IF – IG) → −∞. This may happen for high-dimensional stimuli. For a specific example, 

consider a random matrix A defined as follows. Here we first generate K × N elements Ak,n, 

(k = 1, 2, …, K; n = 1, 2, …, N) from a normal distribution 𝒩 (0,1). Then each column of 

matrix A is normalized by Ak, n Ak, n ∕ ∑k = 1
K Ak, n

2 . We randomly sample M (set to 2 × 

104) image patches with size ω × ω from Olshausen’s nature image data set (Olshausen & 

Field, 1996) as the inputs. Each input image patch was centered by subtracting its mean: 

xm xm − 1
K ∑k = 1

K xk, m. Then let xm xm − 1
M ∑m′ = 1

M xm′ for ∀m ϵ {1, 2, …, M}. Define 

matrix X = [x1, x2, …, xM] and compute eigendecomposition
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1
M XXT = UxΣUx

T, (4.20)

where Ux is a K × K orthogonal matrix and Σ = diag σ1
2, σ2

2, …, σK
2  is a K × K eigenvalue 

matrix with σ1 ≥ σ2 ≥ ⋯ ≥ σK > 0. Define

y = Ux
Tx . (4.21)

Then

1
M ∑

m = 1

M
ymym

T = Σ . (4.22)

The distribution of random variable Y can be approximated by a normal distribution (see 

section 4.3 for more details). When p(y) = 𝒩(μ, Σ), we have

IG = IG+
= I(X; R) = I(Υ; R), (4.23)

IG = 1
2 ln det 1

2πe (AAT + Σ−1) + H(Υ)

= 1
2 ln det 1

2πe (Σ1 ∕ 2AATΣ1 ∕ 2 + IK) ,
(4.24)

IF = 1
2 ln det AAT

2πe + H(Υ) . (4.25)

The error of approximation IF is given by

dIF = IF − I(X; R) = IF − IG

= − 1
2 ln (det (IK + (AAT)−1Σ−1)),

(4.26)

and the relative error for IF is
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DIF =
dIF
IG

. (4.27)

Figure 2A shows how the values of IG and IF vary with the input dimension K = ω × ω and 

the number of neurons N (with ω = 2, 4, 6, …, 30 and N = 104, 2 × 104, 5 × 104, 105). The 

relative error DIF is shown in Figure 2B. The absolute value of the relative error tends to 

decrease with N but may grow quite large as K increases. In Figure 2B, the largest absolute 

value of relative error ∣DIF∣ is greater than 5000%, which occurs when K = 900 and N = 104. 

Even the smallest ∣DIF∣ is still greater than 80%, which occurs when K = 100 and N = 105. 

In this example, IF is a bad approximation of MI I, whereas IG and IG+ are strictly equal to 

the true MI I across all parameters.

4.2 Dimensionality Reduction for Asymptotic Approximations.

Suppose x = (x1, … xK)T is partitioned into two sets of components, x = (x1
T, x2

T)T with

x1 = (x1, x2, …, xK1
)T, (4.28)

x2 = (xK1 + 1, xK1 + 2, …, xK)T, (4.29)

where x1 ∈ 𝒳1 ⊆ ℝ
K1, x2 ∈ 𝒳2 ⊆ ℝ

K2, K1 + K2 = K, K ≥ 2, K1 ≥ 1 and K2 ≥ 1.

Then by Fubini’s theorem, the MI I in equation 2.1 can be written as

I = ∫
𝒳2

∫
𝒳1

∫
ℛ

p(r ∣ x1, x2)p(x1, x2) ln
p(r ∣ x1, x2)

p(r) dr dx1dx2, (4.30)

where p(x1, x2) = p(x) and p(r∣x1, x2) = p(r∣x).

First define

G(x) =
G1, 1(x) G1, 2(X)
G2, 1(x) G2, 2(x) , (4.31a)

Gi, j(x) = Ji, j(x) + Pi, j(x), (4.31b)
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where i, j ϵ {1, 2}, and

Ji, j(x) = ∂ ln p(r ∣ x)
∂ xi

∂ ln p(r ∣ x)
∂ x j

T
r ∣ x

, (4.32a)

Pi, j(x) = − ∂2 ln p(x)
∂xi∂x j

T . (4.32b)

Then we have the following results, their proofs are given in the appendix.

Theorem 4. Suppose matrices G (x), G1, 1 (x), and G2,2 (x) are positive-definite. If the 

matrix Ax ∈ ℝK × K satisfies

Tr( Ax x
) ⪡ 1 (4.33)

with

Ax = G2, 2
−1 ∕ 2(x) G2, 1(x)G1, 1

−1 (x)G1, 2(x)G2, 2
−1 ∕ 2, (4.34)

then we have

IG ≃ IG1
(4.35)

with strict equality if and only if

G2, 1 (x) G1, 1
−1 (x)G1, 2(x) = 0, (4.36)

where

IG1
= 1

2 ln det
G1, 1(x)

2πe x
+ 1

2 ln det
G2, 2(x)

2πe x
+ H(X) . (4.37)

Theorem 5. Suppose matrices G (x), G1,1 (x) and P2,2 (x) are positive-definite. If the matrix 

Bx ∈ ℝ
K2 × K2 is positive-semidefinite and satisfies
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0 ≤ Tr( Bx x
) ⪡ 1 (4.38)

with

Bx = P2, 2
−1 ∕ 2(x) CxP2, 2

−1 ∕ 2(x), (4.39)

Cx = J2, 2 (x) − G2, 1(x)G1, 1
−1 (x) G1, 2(x), (4.40)

then we have

IG ≃ IG2
, (4.41)

with strict equality if and only if

Cx = 0, (4.42)

where

IG2
= 1

2 ln det
G1, 1(x)

2πe x
+ 1

2 ln det
P2, 2(x)

2πe x
+ H(X) . (4.43)

Corollary 2. If the random variables X1 and X2 are independent so that 
p(x) = p(x1)p(x2), p(x2) = 𝒩(μ2, Σx2

) is a normal distribution, and G (x), G1,1 (x), P1,1 (x) 

and P2,2 (x) are all positive-definite and satisfy equation 4.38, then we have

IG ≃ IG1′
, (4.44)

IG1′
= 1

2 ln det
G1, 1 (x)

2πe x
+ H(X1), (4.45)

with strict equality if and only if
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Cx = J2, 2 (x) − J2, 1 (x) G1, 1
−1 (x) J1, 2 (x) = 0, (4.46)

where

H(X1) = − ln p(x1)
x1

, (4.47a)

G1, 1 (x) = J1, 1 (x) + P1, 1 (x), (4.47b)

P1, 1 (x) = −
∂2 ln p(x1)
∂x1 ∂x1

T . (4.47c)

Remark 7. Sometimes we are concerned only with calculating the determinant of matrix 

G(x) with a given p(x). Theorems 3 and 4 provide a dimensionality reduction method for 

computing G (x) or det (G (x)), by which we need only to compute G1,1 (x) and G2,2 (x) 

separately. To apply the approximation 4.35, we do not need to strictly require ∣Tr (⟨Ax⟩x)∣ 
⪡ 1. Instead we need to require only

Tr ( Ax x) ⪡ ln (det (G1, 1 (x)) det (G2, 2 (x))) x . (4.48)

Similarly, the inequality ∣Tr (⟨Bx⟩x)∣ ⪡ 1 can be substituted by

Tr ( Bx x) ⪡ ln (det (G1, 1 (x)) det (P2, 2 (x))) x . (4.49)

By equation 4.44 and the second mean value theorem for integrals, we get

IG1′
= 1

2 ln det
G1, 1 (x1, ẍ2)

2πe x1

+ H(X1) (4.50)

for some fixed ẍ2 ∈ 𝒳2. When ∥∑x2∥ is small, ẍ2 should be close to the mean: ẍ2 ≈ μ2. It 

follows from theorem 1 and corollary 2 that the approximate relationship I ≃ IG1′  holds. 

However, equation 4.50 implies that IG1′  is determined only by the first component x1. 

Hence, there is little impact on information transfer by the minor component (i.e., x2) for the 
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high-dimensional input x. In other words, the information transfer is mainly determined by 

the first component x1, and we can omit the minor component x2.

4.3 Further Discussion.

Suppose x is a zero-mean vector; if it is not, then let x ← x – ⟨x⟩x. The covariance matrix of 

x is given by

Σx = xxT
x = UΣUT, (4.51)

where U is a K × K orthogonal matrix whose kth column is the eigenvector uk of ∑x and ∑ is 

a diagonal matrix whose diagonal elements are the corresponding eigenvalues—

Σ = diag σ1
2, σ2

2, …, σK
2  with σ1 ≥ σ2 ≥ … ≥ σK > 0. With the whitening transformation,

x = Σ−1 ∕ 2UTx, (4.52)

the covariance matrix of x becomes an identity matrix:

Σx = xxT
x = Σ−1 ∕ 2UT xxT

xUΣ−1 ∕ 2 = IK . (4.53)

By the central limit theorem, the distribution of random variable X should be closer to a 

normal distribution than the distribution of the original random variable X; that is, 

p(x) ≃ 𝒩(0, IK). Using Laplace’s method asymptotic expansion (MacKay, 2003), we get

P(x) = − ∂2 ln p(x)
∂x∂xT ≃ Σx

−1 = IK, (4.54)

P+ = P(x) x ≃ Σx
−1 = IK . (4.55)

In principal component analysis (PCA), the data set is modeled by a multivariate gaussian. 

By a PCA-like whitening transformation equation 4.52, we can use the approximation 4.55 

with Laplace’s method, which requires only that the peak be close to the mean and the 

random variable X does not need to be an exact gaussian distribution.

By theorem 3, we have

I(X; R) ≃ IG = 1
2 ln det G(x)

2πe x
+ H(X), (4.56)
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where

G(x) = J(x) + IK, (4.57)

J(x) = ∂ ln p(r ∣ x)
∂x

∂ ln p(r ∣ x)
∂xT

r ∣ x
(4.58)

= Σ1 ∕ 2UT ∂ ln p(r ∣ x)
∂x

∂ ln p(r ∣ x)
∂xT

r ∣ x
UΣ1 ∕ 2 (4.59)

= Σ1 ∕ 2UTJ(x)UΣ1 ∕ 2, (4.60)

H(X) = − ln p(x) x = H(X) − 1
2 ln (det(Σ)) . (4.61)

Given a K × K orthogonal matrix B ∈ ℝK × K, we define

y = BTx . (4.62)

Then it follows from equations 4.56 to 4.62 that

I(Υ; R) ≃ IG = 1
2 ln det G(y)

2πe y
+ H(Υ), (4.63)

where

G(y) = J(y) + IK, (4.64)

J(y) = BTJ(x)B, (4.65)

H(Υ) = H(X) . (4.66)
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Suppose y is partitioned into two sets of components, y = (y1
T, y2

T)T and

y1 = (y1, y2, …, yK1
)T, (4.67)

y2 = (yK1 + 1, yK1 + 2, …, yK)T, (4.68)

where K1 + K2 = K, K ≥ 2, K1 ≥ 1 and K2 ≥ 1. Let

G(y) =
J1, 1(y) + IK1

J1, 2(y)

J2, 1(y) J2, 2(y) + IK2
, (4.69)

where

Ji, j(y) = ∂ ln p(r ∣ y)
∂yi

∂ ln p(r ∣ y)
∂y j

T
r ∣ y

, ∀i, j = 1, 2 . (4.70)

When K ⪢ 1, suppose we can find an orthogonal matrix B and K1 that satisfy condition 4.38 

in theorem 5 or condition 4.49—that is,

0 ≤ Tr (By) y ⪡ γ, (4.71)

By = J2, 2(y) − J2, 1(y) (J1, 1(y) + IK1
)−1J1, 2(y), (4.72)

γ = ln (det (J1, 1(y) + IK1
))

y
. (4.73)

Here matrix By is positive-semidefinite because

J2, 2(y) − J2, 1(y) (J1, 1(y) + IK1
)−1J1, 2(y) = ρ(r ∣ y)ρ(r ∣ y)T

r ∣ y, (4.74)

where
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ρ(r ∣ y) = ∂ ln p(r ∣ y)
∂y2

− J2, 1(y) (J1, 1(y) + IK1
)−1 ∂ ln p(r ∣ y)

∂y1
+ a(r) (4.75)

and a (r) is a K1-dimensional random vector that satisfies

∂ ln p(r ∣ y)
∂y2

a (r)T

r ∣ y
= ∂ ln p(r ∣ y)

∂y2 r ∣ y
a (r)T

r ∣ y = 0, (4.76)

a (r) a (r)T
r ∣ y = IK1

. (4.77)

Assuming that J1,1 (y) is positive-definite, J1, 1
−1 (y) = O (N−1) and ∥J1,2(y)∥ = ∥J2,1(y)∥ = O 

(N), we have

(J1, 1(y) + IK1
)−1 = J1, 1

−1 (y) − J1, 1
−2 (y) + O J1, 1

−3 (y) (4.78)

and

Tr (Cx) = Tr J2, 2(y) − J2, 1(y)J1, 1
−1 (y)J1, 2(y)

+Tr J2, 1(y)J1, 1
−2 (y)J1, 2(y) + O(N−1) .

(4.79)

Hence, if

Tr J2, 2(y) − J2, 1(y)J1, 1
−1 (y)J1, 2(y) ⪡ γ, (4.80)

Tr J2, 1(y)J1, 1
−2 (y)J1, 2(y) ≪ γ, (4.81)

then equation 4.71 holds. Notice that the matrix (J2, 2(y) − J2, 1(y)J1, 1
−1 (y)J1, 2(y)) is positive-

semidefinite, which is similar to equation 4.74 and 0 ≤ Tr(J2, 1(y)J1, 1
−1 (y)J1, 2(y)) ≤ Tr (J2, 2(y)). 

Hence, if

Tr (J2, 2(y)) ≪ γ, (4.82)
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then equations 4.80 and 4.81 hold so does equation 4.71.

5 Optimization of Information Transfer in Neural Population Coding –

5.1 Population Density Distribution of Parameters in Neural Populations.

If p(r∣x) is conditional independent, we can write

p(r ∣ x) = ∏
n = 1

N
p(rn ∣ x; θn), (5.1)

where θn ∈ ℝK denotes a K-dimensional vector for parameters of the nth neuron, and p(rn∣x; 

θn) is the conditional p.d.f. of the output rn given x. With the definition in equation 2.13, we 

have following proposition.

Proposition 1. If p(r∣x) is conditional independent as in equation 5.1, we have

J(x) = N∫
Θ

p(θ)S(x; θ)dθ, (5.2)

where

S(x; θ) = ∫
ℜ

p(r ∣ x; θ)∂ ln p(r ∣ x; θ)
∂x

∂ ln p(r ∣ x; θ)
∂xT dr, (5.3)

r ∈ ℜ ⊆ ℝ, θ ∈ Θ ⊆ ℝK, and p(θ) is the population density function of parameter vector θ:

p(θ) = 1
N ∑

n = 1

N
δ(θ − θn), (5.4)

with δ (·) being the Dirac delta function.

Proof.
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J(x) = ∫
ℛ

p(r ∣ x)∂ ln p(r ∣ x)
∂x

∂ ln p(r ∣ x)
∂xT dr

= ∑
n = 1

N ∫
ℜ

p(rn ∣ x; θn)
∂ ln p(rn ∣ x; θn)

∂x
∂ ln p(rn ∣ x; θn)

∂xT drn

= ∫
Θ

∑
n = 1

N
δ(θ − θn) ∫

ℜ
p(r ∣ x; θ)∂ ln p(r ∣ x; θ)

∂x
∂ ln p(r ∣ x; θ)

∂xT dr dθ

= N∫
Θ

p(θ)S(x; θ)dθ .

(5.5)

□

Remark 8. Proposition 1 shows that J(x) can be regarded as a function of the population 

density of parameters, p(θ). If the p.d.f. of the input p(x) is given, we can find an appropriate 

p(θ) to maximize MI I.

For neuron model with Poisson spikes, we have

p(r ∣ x) = ∏
n = 1

N
p(rn ∣ x; θn), (5.6)

p(rn ∣ x; θn) =
f (x; θn)

rn

rn! exp( − f (x; θn)), (5.7)

where f (x; θn) is the tuning curve of the nth neuron, n = 1, 2, …, N. Now we have

S(x; θ) = ∫
ℜ

p(r ∣ x; θ)∂ ln p(r ∣ x; θ)
∂x

∂ ln p(r ∣ x; θ)
∂xT dr

= 1
f (x; θ)

∂ f (x; θ)
∂x

∂ f (x; θ)
∂xT

= ∂g(x; θ)
∂x

∂g(x; θ)
∂xT ,

(5.8)

g(x; θ) = 2 f (x; θ) . (5.9)

Similarly, for a neuron response model with gaussian noise, we have
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p(r ∣ x) = ∏
n = 1

N
p(rn ∣ x; θn), (5.10)

p(rn ∣ x; θn) = 1
σ 2π

exp −
(rn − f (x; θn))2

2σ2 , (5.11)

where σ is a constant standard deviation. Now we get

S(x; θ) = 1
σ2

∂ f (x; θ)
∂x

∂ f (x; θ)
∂xT . (5.12)

5.2 Optimal Population Distribution for Neural Population Coding.

Suppose p(x) and p(r∣x) fulfill conditions C1 and C2 and equation 5.1. Following the 

discussion in section 2.2, we define the following objective for maximizing MI I,

maximize IG[p(θ)] = 1
2 ln det G(x)

2πe x
+ H(X), (5.13)

or, equivalently,

minimize QG[p(θ)] = − 1
2 ln (det (G(x))) x, (5.14)

where

G(x) = J(x) + P(x), (5.15)

J(x) = N∫
Θ

p(θ)S(x; θ)dθ, (5.16)

S(x; θ) = ∂ ln p(r ∣ x; θ)
∂x

∂ ln p(r ∣ x; θ)
∂xT

r ∣ x; θ
. (5.17)

Here P (x) is given in equation 2.15, and it generally can be substituted by P+ (see equation 

2.78).
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When ς1 ≈ 0 (see equation 2.64), the object function, equation 5.13, can be reduced to

maximize IF[p(θ)] = 1
2 ln det J(x)

2πe x
+ H(X), (5.18)

or, equivalently,

minimize QF[p(θ)] = − 1
2 ln (det (J(x))) x . (5.19)

The constraint condition for p(θ) is given by

subject to∫
Θ

p(θ)dθ = 1, p(θ) ≥ 0 . (5.20)

However, without further constraints on the neural populations, especially a limit on the 

peak firing rate, the capacity of the system may grow indefinitely: I(X; R) → ∞. The most 

common limitation on neural populations is the energy or power constraint. For neuron 

models with Poisson noise or gaussian noise, a useful constraint is a limitation on the peak 

power,

∣ f (x; θn) ∣ ≤ Emax, ∀x ∈ 𝒳 and ∀n = 1, 2, …, N, (5.21)

where Emax > 0 is the peak power. Under this constraint, maximizing IG[p(θ)] or IF[p(θ)] for 

independent neurons will result in maxx ∣ f (x; θn)∣ = Emax for ∀n = 1,2, …, N.

Another constraint is a limitation on average power. For Poisson neurons given in equation 

5.7,

1
N ∑

n = 1

N
rnp(rn ∣ x; θn)

rn ∣ x x
≤ Eavg, (5.22)

which can also be written as

f (x; θ) x θ ≤ Eavg, (5.23)

and for gaussian noise neurons given in equation 5.11,

f (x; θ)2
x θ

≤ Eavg, (5.24)
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where Eavg > 0 is the maximum average energy cost.

In equation 5.15, we can approximate the continuous integral by a discrete summation for 

numerical computation,

J(x) = N ∑
k = 1

K1
αkS(x; θk), (5.25)

where the positive integer K1 ≤ N denotes the number of subclasses in the neural population 

and

∑
k = 1

K1
αk = 1, αk > 0, ∀k = 1, 2, …, K1 . (5.26)

If we do not know the specific form of p(x) but have M samples, x1, x2, …, xM, which are 

i.i.d. samples drawn from the distribution p(x), then we can approximate the integral in 

equation 5.13 by the sample average:

ln (det (G(x))) x ≃ 1
M ∑

m = 1

M
ln (det (G(xm))) . (5.27)

Optimizing the objective 5.13 or 5.18 is a convex optimization problem (see the appendix 

for a proof).

Proposition 2. The functions IG[p(θ)] and IF [p(θ)] are concave about p(θ).

Remark 9. For a low-dimensional input x, we may use equation 5.18 or 5.19 as the 

objective. Since IG[p(θ)] and IF[p(θ)] are concave functions of p(θ), we can directly use 

efficient numerical methods to get the optimal solution for small K. However, for high-

dimensional input x, we need to use other methods (e.g., Huang & Zhang, 2017).

5.3 Necessary and Sufficient Conditions for Optimal Population Distribution.

Applying the method of Lagrange multipliers for the optimization problems 5.13 and 5.20 

yields

L[p(θ)] = IG[p(θ)] − λ1 ∫
Θ

p(θ)dθ − 1 + ∫
Θ

λ2(θ)p(θ)dθ, (5.28)

where λ1 is a constant and λ2(θ) is a function of θ. According to Karush-Kuhn-Tucker 

(KKT) conditions (Boyd & Vandenberghe, 2004), we have
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λ2(θ)p(θ) = 0, λ2(θ) ≥ 0, (5.29)

and the necessary condition for optimal population density,

∂L[p(θ)]
∂ p(θ) = 1

2 Tr NG(x)−1S(x; θ) x − λ1 + λ2(θ) = 0 . (5.30)

It follows from equations 5.29 and 5.30 that

1
2 Tr NG(x)−1S(x; θ) x = λ1, p(θ) ≠ 0, (5.31)

1
2 Tr NG(x)−1S(x; θ) x = λ1 − λ2(θ), p(θ) = 0 . (5.32)

Since IG[p(θ)] is a concave function of p(θ), equations 5.31 and 5.32 are the necessary and 

sufficient conditions for the optimization problems 5.13 and 5.20.

5.4 Channel Capacity for Neural Population Coding.

If p(x) is unknown, then by Jensen’s inequality, we have

I ≃ IG[p(x)] = ∫
𝒳

p(x) ln p(x)−1det G(x)
2πe

1 ∕ 2
dx

≤ ln∫
𝒳

det G(x)
2πe

1 ∕ 2
dx,

(5.33)

and the equality holds if and only if p(x)−1 det (G(x))1/2 is a constant. Thus,

IG[p∗(x)] = max
p(x)

(IG[p(x)]) = ln∫
𝒳

det G(x)
2πe

1 ∕ 2
dx, (5.34)

p∗(x) = det(G(x))1 ∕ 2

∫ Xdet(G(x))1 ∕ 2dx
, (5.35)

assuming ∫ 𝒳det (G(x))1 ∕ 2dx < ∞.
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Let us consider a specific example. Suppose J(x) = J0 is a constant matrix; then it follows 

from equation 2.12 that

IG = 1
2 ln det

J0 + P(x)
2πe x

+ H(X) . (5.36)

According to the maximum entropy probability distribution, we know that maximizing H(X) 

results in a uniformly distributed p(x). Hence we have G(x) = J0, and p*(x) coincides with 

the uniform distribution (see equation 5.35). In this case, the maximum IG[p*(x)] can be 

regarded as the channel capacity for this neural population.

If we consider a constraint on random variables X and assume that the covariance matrix of 

X is ∑0 and satisfies

Σ0
−1 = P(x), (5.37)

then it follows from the maximum entropy probability distribution that

H(X) ≤ 1
2(det (2πeΣ0)), (5.38)

and the equality holds if and only if the p.d.f. of the input is a normal distribution: 

p(x) = 𝒩(μ, Σ0). Hence,

IG = 1
2ln det

J0 + Σ0
−1

2πe + H(X)

≤ 1
2ln (det (Σ0J0 + IK)) = IG[p∗(x)],

(5.39)

where IG[p*(x)] is the channel capacity of neural population. Here the equality holds if and 

only if p∗(x) = 𝒩(μ, Σ0), which is consistent with equation 5.37.

Furthermore, if ς1 ≈ 0 (see equation 2.64), we have

I ≃ IG[p(x)] ≃ IF[p(x)] = ∫
𝒳

p(x) ln p(x)−1det J(x)
2πe

1 ∕ 2
dx . (5.40)

Similarly, we also get
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IF[p∗(x)] = max
p(x)

(IF[p(x)]) = ln∫
𝒳

det J(x)
2πe

1 ∕ 2
dx, (5.41)

p∗(x) = det(J(x))1 ∕ 2

∫ 𝒳det(J(x))1 ∕ 2dx
, (5.42)

assuming ∫ 𝒳det (J(x))1 ∕ 2dx < ∞. Here IF[p*(x)] is the channel capacity of the neural 

population. The distribution p*(x) coincides with the Jeffrey’s prior in Bayesian probability 

(Jeffreys, 1961). In this case, if we suppose the covariance matrix of X is ∑0, then similar to 

equations 5.38 and 5.39, we can get the channel capacity

IF[p∗(x)] = 1
2ln (det (Σ0J0)) (5.43)

with p∗(x) = 𝒩(μ, Σ0).

For another example, consider the Poisson neuron model given in equation 5.7 and suppose 

the input x is one dimension, K = 1. It follows from equations 5.8 and 5.42 that

p∗(x) =
∫ Θ p(θ) ∂g(x; θ)

∂x
2
dθ

1 ∕ 2

∫ 𝒳 ∫ Θ p(θ) ∂g(x; θ)
∂x

2
dθ

1 ∕ 2
dx

. (5.44)

If p(θ) = δ(θ – θ0), equation 5.44 becomes

p∗(x) =

∂g(x; θ0)
∂x

∫ 𝒳
∂g(x; θ0)

∂x dx
. (5.45)

Atick and Redlich (1990) presented a redundancy measure to approximate Barlow’s 

optimality principle:

ℛ = 1 − I(X; R)
C(R) , (5.46)

where C(R) is the channel capacity. Here for neural population coding, we have C(R) ≃ 
IG[p*(x)] and I(X; R) ≃ IG (or C(R) – IF[p*(x)] and I(X; R) ≃ IF). Hence, we can minimize 
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ℛ by choosing an appropriate J(x) to maximize IG (or IF) and simultaneously satisfy 

equation 5.35 (or 5.42) (see Huang & Zhang, 2017, for further details).

6 Discussion

In this article, we have derived several information-theoretic bounds and approximations for 

effective approximation of MI in the context of neural population coding for large but finite 

population size. We have found some regularity conditions under which the asymptotic 

bounds and approximations hold. Generally these regularity conditions are easy to meet. 

Special examples that satisfy these conditions include the cases when the likelihood function 

p(r∣x) for the neural population responses is conditionally independent or has correlated 

noises with a multivariate gaussian distribution. Under the general regularity conditions, we 

have derived several asymptotic bounds and approximations of MI for a neural population 

and found some relationships among different approximations.

How to choose among these different asymptotic approximations of MI in a neural 

population with finite size N? For a flat prior distribution p(x), we have IG ≃ IF; that is, the 

two approximations IG and IF are about equally valid. For a sharply peaked prior distribution 

p(x), IG is generally a better approximation to MI I than IF. Under suitable conditions (e.g., 

cases C1 and C2) for low-dimensional inputs, IG and IF are good approximations of MI I not 

only for large N but also for small N. For high-dimensional inputs, the FI matrix J(x) (see 

equation 2.11) or matrix P−1(x) (see equation 2.15) often becomes degenerate, which causes 

a large error between IF and MI I. Hence, in this situation, IG is a better approximation to MI 

I than IF. For more convenient computation of the approximation, we have also introduced 

the approximation formula IG+ which may substitute for IG as a proxy of MI I. For some 

special cases (see corollary 1), IG and IG+ are strictly equal to the true MI I. Our simulation 

results for the one-dimensional case show that the approximations IG, IG+, and IF are all 

highly precise compared with the true MI I, even for small N (see Figure 1).

These approximation formulas satisfy additional constraints. By the Cramér-Rao lower 

bound, we know that IF is related to the covariance matrix of an unbiased estimator (see 

equation 3.3). By van Trees’ Bayesian Cramér-Rao bound, we get a link between IG+ and 

the covariance matrix of a biased estimator (see equation 3.9). From the point of view of 

neural population decoding and Bayesian inference, there is a connection between MI (or 

IG) and MAP (see equation 3.17).

For more efficient calculation of the approximation IG (or IG+ ) for high-dimensional inputs, 

we propose to apply an invertible transformation on the input variable so as to make the new 

variable closer to a normal distribution (see section 4.1). Another useful technique is 

dimensionality reduction, which effectively approximates MI by further reducing the 

computational complexity for high-dimensional inputs. We found that IF could lead to huge 

errors as a proxy of the true MI I for high-dimensional inputs even when IG and IG+ are 

strictly equal to the true MI I.

These approximation formulas are potentially useful for optimization problems of 

information transfer in neural population coding. We have proven that optimizing the 
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population density distribution of parameters p(θ) is a convex optimization problem and 

have found a set of necessary and sufficient conditions. The approximation formulas are also 

useful for discussion of the channel capacity of neural population coding (see section 5.4).

Information theory is a powerful tool for neuroscience and other disciplines, including 

diverse fields such as physics, information and communication technology, machine 

learning, computer vision, and bioinformatics. Finding effective approximation methods for 

computing MI is a key for many practical applications of information theory. Generally the 

FI matrix is easier to evaluate or approximate than MI. This is because calculation of MI 

involves averaging over both the input variable x and the output variable r (see equation 

2.1), and typically p(r) also needs to be calculated from p(r∣x) by another average over x 
(see equation 2.2). By contrast, the FI matrix J(x) involves averaging over r only (see 

equation 2.13). Furthermore, it is often easier to find analytical forms of FI for specific 

models such as a population of tuning curves with Poisson spike statistics. Taking into 

account the computational efficiency, for practical applications we suggest using IG or IG+ as 

a proxy of the true MI I for most cases. These approximations could be very useful even 

when we do not need to know the exact value of MI. For example, for some optimization 

and learning problems, we only need to know how MI is affected by the conditional p.d.f. or 

likelihood function p(r∣x). In such situations, we may easily solve for the optimal parameters 

using the approximation formulas (Huang & Zhang, 2017; Huang, Huang, & Zhang, 2017). 

Further discussions of the applications will be given in separate publications.
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Appendix: The Proofs

We consider a Taylor expanding of L(r ∣ x) around x. If L(r ∣ x) is twice differentiable for 

∀x ∈ 𝒳ω(x), then by condition C1 we get

L(r ∣ x) − L(r ∣ x)

= (x − x)TL′(r ∣ x) + 1
2(x − x)TL″(r ∣ x̆)(x − x)

= yTv − 1
2yTy + 1

2yTBy,

(A.1)

where

y = G1 ∕ 2(x)(x − x), (A.2)

v = v + v1, v = G−1 ∕ 2(x)l′(r ∣ x), v1 = G−1 ∕ 2(x)q′(x), (A.3)
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x̆ = x + t (x − x) ∈ 𝒳ω(x), t ∈ (0, 1), (A.4)

B = G−1 ∕ 2(x) CG−1 ∕ 2(x) = B0 + B1 + B2,
C = C0 + C1 + C2,

(A.5)

and

B0 = G−1 ∕ 2(x) C0G−1 ∕ 2(x),

B1 = G−1 ∕ 2(x) C1G−1 ∕ 2(x),

B2 = G−1 ∕ 2(x) C2G−1 ∕ 2(x),
C0 = l″(r ∣ x) − l″(r ∣ x) r ∣ x,
C1 = l″(r ∣ x̆) − l″(r ∣ x),
C2 = q″(x̆) − q″(x) .

(A.6)

By condition C1, we know that the matrix B1 + B2 is continuous and symmetric for x ∈ 𝒳ω

and ∥B1 + B2∥ = O(1). By the definition of continuous functions, we can prove the 

following: for any ϵ ∈ (0, 1), there is an ε ∈ (0, ω) such that for all 𝒴 ∈ 𝒴ε,

−ϵIK ≤ B1 + B2 ≤ ϵIK, (A.7)

where

𝒴ε = y ∈ ℝK : y < ε N . (A.8)

Hence,

yT(B1 + B2) y < ϵ y 2 . (A.9)

Here x = x + tG−1 ∕ 2(x)y, ε is a function of r, ε = ε (r) = O (1), and

𝒴ε ⊆ 𝒴ω = y ∈ ℝK : y < ω N . (A.10)

We define the sets
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𝒴‾ ε = y ∈ ℝK : y ≥ ε N ,

𝒵ε = z ∈ ℝK : ∣ zk ∣ < ε N ∕ K, ∀k = 1, 2, …, K ,

𝒵‾ ε = z ∈ ℝK : ∣ zk ∣ ≥ ε N ∕ K, ∀k = 1, 2, …, K ,

𝒵ε = z ∈ ℝK : z + v1ℛε
< ε N ,

(A.11)

where

ε = ε ∕ 2, (A.12)

1(·) denotes an indicator random variable,

1ℛε
=

1, r ∈ ℛε(x)
0, r ∉ ℛε(x) , 1ℛ‾ ε

=
1, r ∈ ℛ‾ ε(x)

0, r ∉ ℛ‾ ε(x)
, (A.13)

and

ℛε(x) = r ∈ ℛ: v < ε N ,

ℛ‾ ε(x) = r ∈ ℛ: v ≥ ε N .
(A.14)

For all z ∈ 𝒵ε, we have z + v1ℛε 2
≤ z

2
+ v1ℛε 2

< ε N;; then

𝒵ε ⊆ 𝒵ε . (A.15)

It follows from equations A.3 and A.6 that

v r ∣ x = 0, B0 r ∣ x = 0 (A.16)

and
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vTv r ∣ x x
= L′(r ∣ x)TG−1(x)L′(r ∣ x) r ∣ x x

= Tr L′(r ∣ x)L′(r ∣ x)T
r ∣ xG−1(x)

x
= K + ζ

= K + O(N−1),

(A.17)

and it follows from condition C1 that

ζ = Tr 1
p(x)

∂2 p(x)
∂x∂xT G−1(x)

x

= Tr q′(x)Tq′(x) + q″(x) G−1(x) x

= N−1 q′(x)Tq′(x) + q″(x) NG−1(x) x

= O(N−1) .

(A.18)

Combining conditions C1 and C2 and equations A.3, A.4, and A.6, we find

B0
2m

r ∣ x
≤ N−1C0

2m NG−1(x) 2m
r ∣ x x

= O(N−1),

B0
2m + 1

r ∣ x
≤ NG−1(x) 2m + 1 N−1C0

2
r ∣ x
1 ∕ 2 N−1C0

4m
r ∣ x
1 ∕ 2

x

= O(N−1),

v
2m0

r ∣ x
≤ ∣ N−1l′(r ∣ x)Tl′(r ∣ x) ∣

m0
r ∣ x

NG−1(x)
m0

= O(1),

v1

2m0
≤ N−1q′(x)Tq′(x)

m0 NG−1(x)
m0

= O(N
−m0),

(A.19)

together with the power mean inequality,

vTv
m0

r ∣ x
≤ ( v + v1 )

2m0
r ∣ x

≤ 2
2m0 − 1

v
2m0

+ v1

2m0

r ∣ x
= O(1),

(A.20)

where m ∈ ℕ, m0 ∈ {1, 2}. Notice that ∣G−1 (x)∥ = O (N−1). Here we note that for all 

conformable matrices A and B,

Huang and Zhang Page 49

Neural Comput. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∣ Tr (AB) ∣ ≤ A B ,
AB ≤ A B . (A.21)

By equation 2.25c, we have

Tr N−1J(x) 2 = N−1l′(r ∣ x)Tl′(r ∣ x) r ∣ x
2

≤ N−1l′(r ∣ x)Tl′(r ∣ x) 2
r ∣ x

= O(1) .
(A.22)

Then it follows from equations 2.25b and A.22 that

det (G(x)) = O(NK) . (A.23)

A.1 Proof of Lemma 1. It follows from equation A.1 that

Γω = ln∫
𝒳ω(x)

exp (L(r ∣ x) − L(r ∣ x))dx
r ∣ x x

= − 1
2 ln (det (G(x)))

x

+ ln ∫
𝒴ω

exp yTv − 1
2yTy + 1

2yTBy dy
r ∣ x x

Γω

.

(A.24)

For y ∈ 𝒴ε, according to the definitions in equations A.13 and A.14, we have

∣ yTv1ℛ‾ ε
∣ ≤ y v1ℛ‾ ε

≤ (Nε2)1 ∕ 2 v1ℛ‾ ε

≤ 2vTv1ℛ‾ ε
.

(A.25)

Then by condition C1, we get
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vTv1ℛ‾ ε r ∣ x
≤ v 4

ε N 2
r ∣ x

≤ N−1(ε0)−2 v 4
r ∣ x = O(N−1),

(A.26)

where ε0 is a positive constant and ε0 ∈ [min ε (r), max ε (r)]. By equations A.9, A.17, and A.

24, we get

Γω ≥ ln ∫
𝒴ε

exp yTv − 1
2 (1 + ϵ) yTy + 1

2yTB0y dy
r ∣ x x

≥ ln ∫
𝒵ε

exp 1
2 z +

v1ℛε
1 + ϵ

T

B0 z +
v1ℛε
1 + ϵ ϕε(z)dz

r ∣ x x

+ ln (Ψε) + vTv
2(1 + ϵ)2 −

5vTv1ℛε

2(1 + ϵ)2
r ∣ x x

≤ 1
2 ∫

𝒵ε
z +

v1ℛε
1 + ϵ

T

B0 z +
v1ℛε
1 + ϵ ϕε(z)dz

r ∣ x x

+ ln (Ψε) r ∣ x x + K + ζ
2(1 + ϵ)2 + O(N−1),

(A.27)

where z = y − v1ℛε(x), the last step in equation A.27 follows from Jensen’s inequality, and

ϕε(z) = Ψε
−1exp − 1 + ϵ

2 zTz ,

Ψε = ∫
𝒵ε

exp − 1 + ϵ
2 zTz dz .

(A.28)

Integrating by parts yields

1𝒵‾ ε z
∫

𝒵‾ ε

1 + ϵ
2π

K ∕ 2
exp − 1 + ϵ

2 zTz dz = O(N−K ∕ 2e−Nδ) (A.29)

and
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2π
1 + ϵ

K ∕ 2
≥ Ψε ≥ 2π

1 + ϵ
K ∕ 2

(1 − O (N−K ∕ 2e−Nδ)) (A.30)

for some δ > 0.

Then from equation A.27, we get

∫
𝒵ε

z +
v1ℛε
1 + ϵ

T

B0 z +
v1ℛε
1 + ϵ ϕε(z)dz

r ∣ x x

= 2π
1 + ϵ

K ∕ 2
Ψε

−1 zTB0z1𝒵ε
z

+
vTB0

2v1𝒵ε
1ℛε

(1 + ϵ)2

r ∣ x x

≥ 2π
1 + ϵ

K ∕ 2
Ψε

−1 zTB0z1𝒵ε z r ∣ x x
≥ O(N−1),

(A.31)

where

⋅
z

= ∫
ℝK ( ⋅ )ϕ0(z)dz,

ϕ0(z) = 1 + ϵ
2π

K ∕ 2
exp − 1 + ϵ

2 zTz .
(A.32)

Here, notice that

2π
1 + ϵ

K ∕ 2
Ψ ε

−1 = 1 + O (N−K ∕ 2e−Nα) (A.33)

and

zTB0z1𝒵‾ ε z r ∣ x x
= − zTB0z1𝒵ε z r ∣ x x

≥ − B0
2

r ∣ x

1 ∕ 2
z 41𝒵‾ ε z r ∣ x

1 ∕ 2

x

= O (N−1) .

(A.34)

Hence, from the consideration above, we find
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Γω ≥ K
2 ln 2π

1 + ϵ + K
2(1 + ϵ)2 + O (N−1) . (A.35)

Since ϵ is arbitrary, let it go to zero. Thus, combining equations A.24 and A.35 yields

Γω = − 1
2 ln det G(x)

2πe x
+ O (N−1) . (A.36)

Considering

ln p(r)
p(r ∣ x) p(x) r ∣ x x

≥ Γω, (A.37)

and combining equations 2.3 and A.36, we immediately get equation 2.53.

On the other hand, by conditions 2.54a and 2.54b, we have

vTv1ℛ‾ ε r ∣ x
≤

v 2
2 + 2τ

ε N 2τ ≤ N−τ(ε0)−2τ v 2 + 2τ
r ∣ x = o(1),

zTB0z1𝒵ε z r ∣ x x
≥ − B0

2
r ∣ x

1 ∕ 2
z 41𝒵‾ ε z r ∣ x

1 ∕ 2

x
= o(1) .

(A.38)

Similarly we can get equation 2.55. This completes the proof of lemma 1. □

A.2 Proof of Lemma 2. Define the sets

Ωϵ(x) = r ∈ ℛ :yTB0y < ϵ y 2, ∀y ∈ ℝK (A.39)

and

Θϵ(x) = r ∈ ℛ :∫
𝒳‾ ε(x)

p(r ∣ x) p(x)
p(r ∣ x) p(x) dx′ < ϵ det (G(x))−1 ∕ 2 , (A.40)

where 𝒳‾ ε(x) = 𝒳 − 𝒳ε(x), assuming ϵ ∈ (0, 1/2) and p(x) > 0.

Then by Markov’s inequality, we have
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1Ω‾ϵ r ∣ x
≤ ℙr ∣ x B0

2 ≥ ϵ2 ≤ ϵ2 B0
2

r ∣ x = O (N−1), (A.41)

and by equation 2.26b,

1Θ‾ϵ r ∣ x
= ℙr ∣ x ∫

𝒳‾ ε(x)
p(r ∣ x) p(x)
p(r ∣ x) p(x) dx ≥ ϵ det (G(x))−1 ∕ 2

= ℙr ∣ x det (G(x))1 ∕ 2∫
𝒳‾ ω(x)

p(x ∣ r)dx > ϵ p(r ∣ x)

= O (N−η) .

(A.42)

Consider the following equality:

ln p(r)
p (r ∣ x) p(x) r ∣ x

= 1Θϵ
ln p(r)

p (r ∣ x) p(x) r ∣ x
+ 1Θ‾ϵ

ln p(r)
p (r ∣ x) p(x) r ∣ x

. (A.43)

For the last term in equation A.43, Jensen’s inequality implies that

1Θ‾ϵ
ln p(r)

p (r ∣ x) p(x) r ∣ x x
≤ 1Θ‾ϵ r ∣ x x

ln 1

1Θ‾ϵ r ∣ x x

= o (N−1) . (A.44)

For the first term in equation A.43, it follows from equations A.40 and A.9 that

1Θϵ
ln p(r

p (r ∣ x) p(x r ∣ x

≤ 1Θϵ
ln ∫

𝒳ε(x)
exp (L(r ∣ x) − L(r ∣ x)) dx + ϵ det (G(x))−1 ∕ 2

r ∣ x

≤ − K
2 ln (det (G(x)))

+ 1Θϵ
ln ∫

𝒴ε
exp yTv − 1

2 (1 + ϵ) yTy + 1
2yTB0y dy + ϵ

r ∣ x
.

(A.45)

The last term, equation A.45, is upper-bounded by
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1Θϵ ∩ Ωϵ
ln ∫

ℝKexp yTv − 1
2 (1 − 2ϵ) yTy dy + ϵ

r ∣ x
(A.46)

+ 1Θϵ ∩ Ω‾ϵ
ln ∫

ℝKexp yTv − 1
2 (1 − ϵ) yTy + 1

2yTB0y dy + ϵ
r ∣ x

. (A.47)

Equation A.46 is equal to

1Θϵ ∩ Ωϵ
ln 2π

1 − 2ϵ
K ∕ 2

exp vTv
2(1 − 2ϵ) + ϵ

r ∣ x

≤ 1Θϵ ∩ Ωϵ

vTv
2(1 − 2ϵ) + ln 2π

1 − 2ϵ
K ∕ 2

+ ϵ
r ∣ x

.
(A.48)

Equation A.47 is equal to

1Θϵ ∩ Ω‾ϵ
ln 2π

1 − ϵ
K ∕ 2

exp 1
2 z + v

1 − ϵ
T

B0 z + v
1 − ϵ + vTv

2(1 − ϵ) z
+ ϵ

r ∣ x

≤ 1Θϵ ∩ Ω‾ϵ

K
2 ln 2π

1 − ϵ + vTv
2(1 − ϵ) +

vTB0
2v

2(1 − ϵ)2 +
vTB0

2v
(1 − ϵ)3

r ∣ x

(A.49a)

+ 1Θϵ ∩ Ω‾ϵ
ln exp 1

2zTB0z +
zTB0v
1 − ϵ −

vTB0
2v

(1 − ϵ)3
z

+ϵ 1 − ϵ
2π

K ∕ 2

r ∣ x
, (A.49b)

where

⋅ z = ∫
ℝK ( ⋅ )ϕ1(z)dz

ϕ1(z) = 1 − ϵ
2π

K ∕ 2
exp − 1 − ϵ

2 zTz
. (A.50)

Notice that
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1Θϵ ∩ Ω‾ϵ r ∣ x
≤ 1Ω‾ϵ r ∣ x

= O(N−1) (A.51)

and

1Θϵ ∩ Ωϵ r ∣ x
= 1 − 1Θ‾ϵ ∪ Ω‾ϵ r ∣ x

= 1 + O(N−1) . (A.52)

Then by equation A.19, we get

1Θϵ ∩ Ω‾ϵ
exp(zTB0z) z

1 ∕ 2 − 1
r ∣ x

≤ 1Θϵ ∩ Ω‾ϵ
∑

m = 0

∞ 1
m! (zTB0z)m

z
r ∣ x

1 ∕ 2
− 1Θϵ ∩ Ω‾ϵ r ∣ x

= O(N−1),
(A.53)

vTv1Θ‾ϵ r ∣ x
≤ v 4

r ∣ x
1 ∕ 2 1Θ‾ϵ r ∣ x

1 ∕ 2
= O(N−1), (A.54)

and by equation 2.51,

0 ≤ vTB0
2v1Θϵ ∩ Ω‾Ω r ∣ x

≤ vTB0
2v r ∣ x + O(N−1)

≤ ξ NG−1(x) + O(N−1) = O(N−1) .
(A.55)

Hence, we have

1Θϵ

K
2 ln 2π

1 − ϵ + vTv
2(1 − ϵ) r ∣ x

= K
2 ln 2π

1 − ϵ + K + ζ
2(1 − ϵ) + O(N−1),

(A.56)

and by Cauchy-Schwarz inequality and equation A.53, the term A.49b is upper-bounded by
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1Θϵ ∩ Ω‾ϵ
ln exp(zTB0z) z

1 ∕ 2 exp
2zTB0v
1 − ϵ −

2vTB0
2v

(1 − ϵ)3
z

1 ∕ 2

+ϵ 1 − ϵ
2π

K ∕ 2

r ∣ x

= 1Θϵ ∩ Ω‾ϵ
ln exp(zTB0z) z

1 ∕ 2 + ϵ 1 − ϵ
2π

K ∕ 2

r ∣ x

≤ 1Θϵ ∩ Ω‾ϵ
exp(zTB0z) z

1 ∕ 2 + ϵ 1 − ϵ
2π

K ∕ 2
− 1

r ∣ x
= O(N−1) .

(A.57)

Since ϵ is arbitrary, we can let it go to zero. Then, taking everything together, we get

ln p(r)
p(r ∣ x)p(r) r ∣ x x

≤ − 1
2ln det G(x)

2πe x
+ O(N−1) . (A.58)

Putting equation A.58 into 2.3 yields 2.56.

On the other hand, we have

ln p(r)
p(r ∣ x) p(x) r ∣ x x

= 1Θϵ ∩ Ωϵ
ln p(r)

p(r ∣ x) p(x) r ∣ x x

(A.59)

+ 1Θϵ ∩ Ω‾ϵ
ln p(r)

p(r ∣ x) p(x) r ∣ x x
+ 1Θ‾ϵ

ln p(r)
p(r ∣ x) p(x) r ∣ x x

. (A.60)

For equation A.60, it fo11ows from Jensen’s inequa1ity that

1Θ‾ϵ
ln p(r)

p(r ∣ x) p(x) r ∣ x x
≤ 1Θ‾ϵ r ∣ x x

ln 1

1Θ‾ϵ r ∣ x x

= o(1) (A.61)

and

Huang and Zhang Page 57

Neural Comput. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1Θϵ ∩ Ω‾ϵ
ln p(r)

p(r ∣ x) p(x) r ∣ x x
≤ 1Θϵ ∩ Ω‾ϵ r ∣ x x

ln 1

1Θϵ ∩ Ω‾ϵ r ∣ x x

= o(1), (A.62)

where

1Ω‾ϵ r ∣ x
≤ P( B0

2 ≥ ϵ2) ≤ ϵ−2 B0
2

r ∣ x = o(1),

1Θϵ ∩ Ω‾ϵ r ∣ x
≤ 1Ω‾ϵ r ∣ x

= o(1) .
(A.63)

Similarly we can get equation 2.57. □

A.3 Proof of Theorem 1. By lemmas 1 and 2, we immediately get equation 2.58. The proof 

of equation 2.59 is similar. □

A.4 Proof of Theorem 2. First, we have

G(x) = J1 ∕ 2(x)(IK + Ψ(x))J1 ∕ 2(x) . (A.64)

Since J(x) and G(x) are symmetric and positive-definite, IK + Ψ(x) is also symmetric and 

positive-definite. The eigendecompositon of Ψ(x) is given by

Ψ(x) = UxΛxUx
T, (A.65)

where Ux ∈ ℝK × K is an orthogonal matrix and the matrix Λx ∈ ℝK × K is a K × K diagonal 

matrix with K nonnegative real numbers on the diagonal, λ1 ≥ λ2 ≥, …, ≥ λK > −1. Then we 

have

Tr (Λx) x = Tr (Ψ(x)) x = Tr (P(x)J−1(x)) x = ς (A.66)

and

ln (det (IK + Ψ(x))) x = Tr (ln (IK + Λx)) x ≤ Tr (Λx) x = ς . (A.67)

Notice that ln(1 + x) ≤ x for ∀x ∈ (−1, ∞). It follows from equations A.64 and A.67 that
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ln (det (G(x))) x = ln (det (J(x))) x = ln (det (IK + Ψ(x))) x ≤ ς . (A.68)

From equations 2.12, 2.11, and A.68, we obtain equation 2.62.

If P(x) is positive-semidefinite, then λ1 ≥ λ2 ≥, …, ≥ λK ≥ 0, ς ≥ 0 and (ln (det ⟨IK + 

Ψ(x)))⟩x ≥ 0. Hence we can get equation 2.63.

On the other hand, it follows from equations 2.64 and A.67 and the power mean inequality 

that

∣ ς ∣ ≤ ∑k = 1
K ∣ λk ∣

x
≤ K ∑k = 1

K λk
2 1 ∕ 2

x

= K Ψ(x) x = Kς1 = O(N−β) .
(A.69)

Let λk
− = min(0, λk) for ∀k ∈ {1, 2, …, K}. Then

∑k = 1
K ln (1 + λk

−)
x

≤ ln (det (IK + Ψ(x))) x . (A.70)

Notice that −1 < λk
− ≤ 0. Then by equation A.69, we have

∑k = 1
K ln (1 + λk

−)
x

= ∑m = 1
∞ −1

m ∑k = 1
K ( − λk

−)m

x
= O(N−β) . (A.71)

From equations 2.12, 2.11, A.68, A.70, and A.71, we immediately get equation 2.65. □

A.5 Proof of Theorem 3. Considering the change of variables theorem, for any real-valued 

function f and invertible transformation T, we have

∫
𝒳

f (x)dx = ∫
𝒳

f (T(x)) ∣ det(DT(x)) ∣ dx, (A.72)

and for p(x) and p(x),

p(x) ∣x = T(x) = det(DT(x)) −1p(x) . (A.73)

Then it follows from equations 4.2, A.72, and A.73 that

Huang and Zhang Page 59

Neural Comput. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p(r) = ∫
𝒳

p(r ∣ x)p(x)dx = ∫
𝒳

p(r ∣ x)p(x)dx,

H(X) = − ∫
𝒳

p(x)ln p(x)dx

= − ∫
𝒳

p(x)ln p(x) ∣ det(DT(x)) ∣−1 dx

= H(X) + ∫
𝒳

p(x)ln ∣ det(DT(x)) ∣ dx,

G(x) = DT(x)TG(x)DT(x) .

(A.74)

Substituting equations A.73 and A.74 into 2.1, we can directly obtain equation 4.3. 

Moreover, if p(x) and p(r ∣ x) fulfill conditions C1, C2 and ξ = O (N−1), then by theorem 1, 

we immediately obtain equation 4.4. □

A.6 Proof of Corollary 1. It follows from equation 2.21 and theorem 3 that

IG = IG + = I(X; R) = I(Y; R)

= 1
2ln det 1

2πe (AAT + Σf
−1) + H(Y)

(A.75)

and

H(Y) = 1
2ln (det (2πeΣf)) = H(X) + ln ∣ det (D(x)) ∣ x . (A.76)

Here notice that

J(x) = ∂ ln p(r ∣ x)
∂x

∂ ln p(r ∣ x)
∂xT

r ∣ x

= ∂yT

∂x
∂ ln p(r ∣ y)

∂y
∂ ln p(r ∣ y)

∂yT
∂y

∂xT
r ∣ y

= D(x)TAATD(x)

(A.77)

and

P(x) = − ∂2ln p(x)
∂x∂xT = − ∂yT

∂x
∂2 ln p(y)

∂y∂yT
∂y

∂xT = D(x)TΣf
−1D(x) . (A.78)

Hence, combining equations A.75 to A.78, we can immediately obtain equation 4.9. □
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A.7 Proof of Theorem 4. First, we have

ln det G(x)
2πe x

= ln det
G1, 1(x)

2πe det 1
2πe (G2, 2(x) − G2, 1(x)G1, 1

−1 (x)G1, 2(x))
x

= ln det
G1, 1(x)

2πe + ln det
G2, 2(x)

2πe + ln(det(IK2
− Ax))

x
.

(A.79)

Then by the eigendecompositon of Ax, we have

Ax = UxΛxUx
T, (A.80)

where Ux and Λx are K2 × K2 eigenvector matrix and eigenvalue matrix, respectively. Since 

G (x), G1,1 (x), and G2,2 (x) are positive-definite, then IK – Ax is also positive-definite and 

Ax is positive-semidefinite, with 0 ≤ (Λx)k,k = λk < 1 for ∀k ∈ {1, 2, …, K2}. Moreover, it 

follows from equation 4.33 that

0 ≤ Tr (Λx) x = Tr (Ax) x ≪ 1,

0 ≤ Tr (Λx
m) x = ∑k = 1

K2 λk
m

x
≤ Tr (Λx) x ≪ 1 .

(A.81)

Then by equation A.81, we have

ln (det (IK2
− Ax))

x
= Tr (ln (IK2

− Λx))
x

= ∑m = 1
∞ −1

m Tr (Λx
m) x ≃ 0 .

(A.82)

Substituting equation A.82 into A.79 and then combining with equation 2.12, we get 

equation 4.35.

If equation 4.36 holds, then Ax = 0 and IG = IG1. Conversely, if IG = IG1, then

0 = ln (det (IK2
− Ax))

x
≤ − Tr (Ax) x ≤ 0, (A.83)

Ax = 0, and equation 4.36 holds. □

A.8 Proof of Theorem 5. Similar to equation A.79, we have
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ln det G(x)
2πe x

= ln det
G1, 1(x)

2πe + ln det
P2, 2(x)

2πe + ln (det (IK2
− Bx))

x
. (A.84)

Similar to equation A.65, the eigendecompositon of Bx is given by

Bx = UxΛxUx
T, (A.85)

where Ux and Λx are K2 × K2 eigenvector matrix and eigenvalue matrix, respectively. If the 

matrix Bx is positive-semidefinite and satisfies equation 4.38, then (Λx)k,k = λk ≥ 0 for ∀k ∈ 
{1, 2, …, K2} and

0 ≤ ln (det (IK2
+ Bx))

x
= ∑k = 1

K2 ln (1 + λk)
x

≤ Tr (Λx) x = Tr ( Bx x) ≪ 1 . (A.86)

Substituting equation A.86 into A.84, we immediately get equation 4.41. If Cx = 0, then ln 

(det(lK2 + Bx)) = 0 and IG = IG2. And if IG = IG2, then ln (det(IK2 + Bx)) = 0, Bx = 0 and Cx 

= 0. □

A.9 Proof of Corollary 2. Notice that

H(X) = H(X1) + H(X2),H(X2) = 1
2 ln (det (2πeΣx2

)),P2, 1(x) = P1, 2(x) = 0,P2, 2(x) = Σx2
−1,

(A.87)

and the matrices

Cx = J2, 2(x) − J2, 1(x)G1, 1
−1 (x)J1, 2(x), (A.88)

Bx = P2, 2
−1 ∕ 2(x)CxP2, 2

−1 ∕ 2(x) (A.89)

are positive-semidefinite, and the proof is similar to equation 4.74. Then by theorem 5, we 

immediately get equation 4.41. Substituting equation A.87 into 4.41 yields equation 4.44 

with strict equality if and only if Cx = 0. □

A.10 Proof of Proposition 2. By writing p(θ) as a sum of two density functions p1(θ) and 

p2(θ),
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p(θ) = αp1(θ) + (1 − α)p2(θ), (A.90)

we have

G(x) = N∫
Θ

p(θ)S(x; θ)dθ + P(x) = αG1(x) + (1 − α)G2(x), (A.91)

where 0 ≤ α ≤ 1 and

G1(x) = N∫
Θ

p1(θ)S(x; θ)dθ + P(x), (A.92)

G2(x) = N∫
Θ

p2(θ)S(x; θ)dθ + P(x) . (A.93)

Using the Minkowski determinant inequality and the inequality of weighted arithmetic and 

geometric means, we find

det(G(x))1 ∕ K = det(αG1(x) + (1 − α)G2(x))1 ∕ K ≥ α det(G1(x))1 ∕ K + (1 − α

)det(G2(x))1 ∕ K ≥ det(G1(x))αdet(G2(x))(1 − α) 1 ∕ K .
(A.94)

It follows from equations A.91 and A.94 that

ln (det (αG1(x) + (1 − α)G2(x))) ≥ α ln (det (G1(x)))+(1 − α)ln (det (G2(x))), (A.95)

where the equality holds if and only if G1(x) = G2(x). Thus ln (det (G(x))) is concave about 

p(θ). Therefore IG[p(θ)] is a concave function about p(θ). Similarly, we can prove that 

IF[p(θ)] is also a concave function about p(θ). □
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Figure 1: 
A comparison of approximations IMC, IG, IG+, and IF for one-dimensional input stimuli. All 

of them were almost equally good, even for small population size N. (A) The stimulus 

distribution p(x) and tuning curves f (x; θ) with different centers θ = −π/4, 0, π/4. (B) The 

values of IMC, IG, IG+, and IF all increase with neuron number N. (C) The relative errors 

DIG, DIG+, and DIF for the results in panel B. (D) The absolute values of the relative errors 

∣DIG∣, ∣DIG+∣, and ∣DIF∣, with error bars showing standard deviations of repeated trials.
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Figure 2: 
A comparison of approximations IG and IF for different input dimensions. Here IG is always 

equal to the true MI with IG = IG+ = I(X; R), whereas IF always has nonzero errors. (A) The 

values IG and IF vary with input dimension K = ω2 with ω = 2, 4, 6, …, 30, and the number 

of neurons N = Ni with N1 = 104, N2 = 2 × 104, N3 = 5 × 104, N4 = 105. (B) The relative 

error DIF changes with input dimension K for different N.

Huang and Zhang Page 67

Neural Comput. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Bounds and Approximations for Mutual Information in Neural Population Coding
	Mutual Information and Notations.
	Information-Theoretic Asymptotic Bounds and Approximations.
	Regularity Conditions.
	Asymptotic Bounds and Approximations for Mutual Information.

	Approximations of Mutual Information in Neural Populations with Finite Size.
	A Numerical Comparison for 1D Stimuli.


	Statistical Estimators and Neural Population Decoding
	Variable Transformation and Dimensionality Reduction in Neural Population Coding
	Variable Transformation.
	Dimensionality Reduction for Asymptotic Approximations.
	Further Discussion.

	Optimization of Information Transfer in Neural Population Coding –
	Population Density Distribution of Parameters in Neural Populations.
	Optimal Population Distribution for Neural Population Coding.
	Necessary and Sufficient Conditions for Optimal Population Distribution.
	Channel Capacity for Neural Population Coding.

	Discussion
	Appendix: The Proofs
	References
	Figure 1:
	Figure 2:

