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ABSTRACT
Functional p53 signaling is essential for appropriate responses to diverse stimuli. P53 dynamics
employs the information from the stimulus leading to selective gene expression and cell fate
decision. However, the decoding mechanism of p53 dynamics under DNA damage challenge
remains poorly understood. Here we mathematically modeled the recently dual-phase p53
dynamics under doxorubicin treatment. We found that p53 could perform sequential pulses
followed by a high-amplitude terminal pulse at relatively low doxorubicin treatment, whereas
p53 became steadily accumulated when damage level was high. The effective p53 integral above
a threshold but not the absolute accumulation of p53 precisely discriminated survival and death.
Silencing negative regulators in p53 network might promote the occurrence of terminal pulse.
Furthermore, lower binding affinity and degradation rate of p53 target genes could favorably
discriminate high and low dose doxorubicin treatment. Grouping by temporal profiles suggested
that the p53 dynamics rather than the doxorubicin doses could better discriminate cellular
outcomes and confer less variation for effective p53 integral reemphasizing the importance of
p53 level regulation. Our model has established a theoretical framework that p53 dynamics can
work cooperatively with its binding affinity to target genes leading to cell fate choice, providing
new clues of optimized clinical design by manipulating p53 dynamics.
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Introduction

Many transcription factors can respond to external
or internal signals and initiate specific downstream
programs. The specificity between the input and
output may be obtained through multiple strategies
such as regulations at transcriptional, translational
and posttranslational levels and spatial locations
[1–3]. Another layer of regulation derives from the
temporal dynamics of transcription factors in which
signaling molecules may decode response specificity
into rich dynamic features [1]. A notable example is
the tumor suppressor p53, which can manifest itself
in pulsatile or sustained activation to dictate cell fate
[4]. The encoding mechanisms of the complex
dynamic features can be ascribed to intricate coordi-
nation of feedback loops [5]. Understanding the
underlying mechanisms which detect the time evo-
lution of transcription factors and decode them into
differential gene expression patterns and cell fate
remains a daunting task.

The tumor suppressor p53 acts as a central node
in sensing various stimuli and initiates appropriate
responses ranging from cell cycle arrest, senes-
cence and apoptosis [6]. The DNA double strand
breaks (DSBs) elicited by either irradiation or
DNA damaging drugs (e.g. doxorubicin, etopo-
side) represent a lethal type of signals which can
faithfully activate p53 through several checkpoint
kinases (e.g. ataxia-telangiectasia-mutated, ATM)
[7]. There are a number of positive and negative
auto-regulatory feedback loops which actively par-
ticipate in the regulation of p53 network [8–10].
Consequently, the p53 dynamics at single cell
levels under DNA damage exhibit complex pat-
terns ranging from spontaneous or synchronized
pulses to sustained elevation [4,11–14]. In
a recently report, Wu et al. identified a novel p53
dynamics in response to DNA damage in which
a prolonged and mild challenge using genotoxic
drugs can evoke sequential p53 pulses followed by
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a terminal pulse with high amplitude to enact
apoptosis [13]. Moreover, an acute and high-dose
treatment will trigger a monotonic increase of p53
with similar rate of apoptosis and decreased life-
span [13]. They argued that p53 should exceed
a threshold with sufficient accumulation to trigger
apoptotic programs and they termed this novel
pattern as effective cumulative p53 [13].
However, the exact mechanism underlying how
effective cumulative p53 is dynamically generated
and manipulates cell fate specifically through the-
oretical perspectives still remains elusive.

In current work, we investigated how p53
dynamics determines cell fate by constructing
a simplified p53 model using ordinary differential
equations (ODEs). We first faithfully reproduced
the complex patterns of p53 responses with dox-
orubicin (Dox) treatment under either wild type or
genetically manipulated conditions using stochas-
tic simulations. Generally, p53 can either display
a finite number of pulses with or without the
occurrence of a terminal pulse or a sustained acti-
vation depending on the doses of genetic drugs.
Then, we identified a potential mechanism which
unified p53 dynamics, binding affinity and turn-
over rates of target genes to dictate cell fate. We
further postulated that dynamic features of p53
signaling rather than the amount of applied
genetic drugs can encode phenotypic responses
(e.g. survival and death). In addition, p53 dynamic
features per se can dictate cell fate with markedly
reduced variation. Our findings characterized the
intricate interplay between effective accumulative
p53 and cell fate using mechanistic models and
may provide clues to optimized clinical strategies
for chemotherapeutic drugs.

Results

Construction of a dynamic p53 model identifies
the terminal pulses

To investigate the dynamic p53 responses under
doxorubicin (Dox) treatment, we constructed
a mathematical model which primarily incorpo-
rated two negative p53 feedback loops and one
implicit positive feedback loop [15] (Figure 1(a),
Table S1 and S2). To match our model to experi-
mental data, we varied the stimulus strength by

changing the parameter Dox in silico, we found
that cells performed sequential pulses and followed
by a terminal pulse (as defined in Wu et al.’s work
[13]) with markedly high amplitude (Figure 1(b)).
The elevation of total p53 was increased with
higher Dox levels (Figure 1(b)). Notably, the
amplitude and duration of pulses did not vary
significantly under relatively low Dox treatment
(Figure 1(b), we in silico set Dox = 0.01, 0.05 or
0.1, the same doses as exemplified in Wu et al.’s
work [13]). Note that in current work, “Dox treat-
ment” corresponds to the situation where we in
silico changed the Dox parameter. For example,
Dox = 0.01 in our model corresponds to 0.01 μM
doxorubicin treatment). However, the maximal
p53 level and accumulation rate of effective p53
integral (defined as effective p53 integral divided
by time duration) increased monotonically with all
Dox doses during the simulation within 40 hrs
(Figure 1(c,d)). We next performed local sensitiv-
ity analysis and found that all kinetic parameters
affected effective p53 integral more profoundly
(Figure 1(e)). Moreover, pulse period was more
robust to parametric change than amplitude
(Figure 1(e), compare green and red bars).
Specifically, p53 phosphorylation by activated
ATM (k12) and translation rate of MDM2p-
bound p53 mRNA (kcomplex) positively influenced
signaling amplitude and effective p53 accumula-
tion, whereas MDM2-mediated p53 degradation
(k11) and Wip1-induced ATM* deactivation (k24)
may efficiently terminate p53 activation
(Figure 1(e), only relatively sensitive parameters
were labeled). We compared the correlation
among all sensitivity measures and found that
only the local sensitivity of effective p53 integral
and pulse height was highly correlated
(Figure 1(f)). These deterministic data identified
the sensitive parameters and terminal pulses in
p53 signaling.

Simulation of dynamic behavior mediated by
effective p53 integral

The deterministic model did not consider the pro-
cess of doxorubicin clearance as well as the biologi-
cal noises, therefore we performed stochastic
simulations. Simulation results showed that
a fraction of cells only showed discrete number of
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pulses suggesting that Dox might be totally removed
or cleared below the threshold when Dox was set to
0.1 (Figure 2(a), left). However, cells (‘cells’ in in
silico simulation indicated a stochastic representa-
tion during simulation thereafter) may display
sequential pulses accompanied by a high-
amplitude terminal pulse at low or medium Dox

challenge (Figure 2(a), left and middle, FigureS1).
Acute high dose Dox could even lead to sustained
activation of p53 (Figure 2(a), right, FigureS1). The
fraction of cells with terminal pulses also increased
with elevated Dox stimulation (Figure 2(b)). By
sorting cells by cell fate, we noticed that the effective
p53 integral in apoptotic cells was significantly

Figure 1. A mathematical p53 model identifies p53 terminal pulses. (a) Schematic representation of p53 regulatory network for
our model. The numbers correspond to kinetic parameters in Table S2. The parameters kf and kr represent association and
dissociation respectively between p53 mRNA and phosphorylated MDM2. (b) Concentration of total p53 level at various doxorubicin
doses (Dox, from 0.01 to 1). (c) Maximal p53 levels under increasing Dox levels. (d) Time-averaged effective p53 integral (i.e. rate of
effective p53 increase in units of μM) against increasing Dox levels was plotted. The end of the simulation is 40 h. (e) (Relative) local
sensitivity coefficient of kinetic parameters for effective p53 integral (violet), p53 pulse height (red) and period (green). The most
sensitive parameters were marked. The local sensitivity is in units of 1. (f) Correlation between sensitivity measures was shown.
R denotes Spearman correlation coefficient. ‘Ep53ʹ denotes effective p53 integral.
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higher than that in survival cells (Figure 2(c) and
Fig. S2). Instead, the lifespan and terminal pulse
height were not varied markedly across different
doses of Dox (Figure 2(d,e)). The effective p53 inte-
gral of apoptotic cells, however, was not significantly
changed with varying Dox values (Figure 2(f)). The
pulse height and duration were conserved when

cells were challenged with relatively low doses of
Dox (Figure 2(g)). Furthermore, the dynamic prop-
erties above (i.e. statistical comparison) were not
affected by locally changing the minimum effective
level (data not shown). These results were qualita-
tively consistent with experimental findings [13]
and validated our stochastic model.

Figure 2. Dynamic features of dual-phase p53 under stimulation by different Dox dosage. (a) Selected total p53 trajectories
when Dox = 0.01, 0.1 and 10. Note that the unit of ‘p53 levels’ in stochastic simulation is 1. (b) Fraction of terminal pulses at different
Dox levels. (c) Comparison of effective p53 integral between survival and apoptotic cells. The unit for effective p53 integral during
stochastic simulation is ‘min’ thereafter. (d-e) Lifespan (d) and terminal pulse height (e) treated by relatively low levels (0.01, 0.05
and 0.1) of Dox. Data were represented as mean±SD. (f) Effective p53 integral of apoptotic cells under different Dox levels. (g) Pulse
height (top) and duration (bottom) for cells with Dox = 0.01, 0.05 and 0.1.
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Silencing negative regulators in p53 pathway
enhances apoptosis without altering effective
p53 integral

To further validate the concept of effective p53
integral, we simulated the effect of manipulating
MDM2 expression. We first knocked down
MDM2 by in silico lowering MDM2 expression.
We found that MDM2 silence promoted steady
accumulation of p53 and generally induced an
earlier onset of terminal pulses (Fig. S3A). In addi-
tion, the average lifespan was consistently shor-
tened by decreasing MDM2 (Fig. S3B). However,
the effective p53 integral did not vary significantly
in apoptotic cells (Fig. S3C). We also simulated the
effect of Nutlin-3 treatment at 0, 6 and 16 h with
Dox = 0.1. Simulating Nutlin-3 treatment in silico
accelerated the accumulation of p53 (Figure 3(a)).
The earlier addition of Nutlin-3 induced signifi-
cantly shortened lifespan in cells (Figure 3(b)).
However, the terminal pulses held constant across
different regimes (Figure 3(c)). The total accumu-
lative p53 (i.e. total p53 integral) steadily increased
with different treatments (Figure 3(d)), the effec-
tive p53 integral was conserved irrespective of the
time for Nutlin-3 addition (Figure 3(e)). We also
silenced another negative regulator Wip1 in p53
signaling and found that lowering Wip1 in silico
profoundly increased p53 accumulation and earlier
onset of terminal pulses (FigureS4A). The lifespan
was significantly lowered with reduced Wip1
expression (Fig. S4B). Not surprisingly, the effec-
tive p53 integral was not changed significantly
with or without in silico si-Wip1 (FigureS4C).
These results supported that repression of negative
regulators in p53 pathway could promote apopto-
sis without changing the effective p53 integral.
Altogether, our mathematical model faithfully
recapitulated key experimental findings and could
be used to further unravel the dynamic implica-
tions of dual-phase p53 patterns.

Gene expression specificity determined by
effective p53 integral

Wu et al. proposed that effective p53 integral
cooperates with binding affinity to regulate down-
stream gene expression [13]. We then modeled
this scenario by sampling two parameters

(Km and δ) associated with gene expression (see
notes in Table S1 and Table S2). Then, stochastic
simulation was performed for each parametric
combination for three Dox doses (Dox = 0.00005
as control, Dox = 0.01 and 0.1 as stressed condi-
tion, Figure 4(a)). The integrated relative fold
change of downstream effector with Dox = 0.1
compared with that with Dox = 0.01 was shown
(Figure 4(a), colormap was normalized to the max-
imum expression under control condition). We
found that higher Km (i.e. lower binding affinity)
and lower degradation rate could facilitate the fold
change in gene expression between Dox = 0.1 and
Dox = 0.01 (Figure 4(a)). The temporal dynamics
of downstream effector induction further showed
that slowly degraded effector with moderate or
high Km could discriminate between relatively
high and low Dox (Figure 4(b)). Moreover, down-
stream effector with higher binding affinity (low
Km) failed to differentiate between Dox = 0.1 and
Dox = 0.01 especially at early time points (Figure 4
(b)). The scatter plot further supported that genes
with lower binding affinity and degradation could
enlarge the differences in gene expression between
Dox = 0.1 and Dox = 0.01 (n = 50 for each dose,
Figure 4(c) and Fig. S5). The effective p53 integral
was also significantly larger in cells under 0.1 μM
Dox treatment (Figure 4(d)). These results were
qualitatively consistent with Wu et al.’s data [13]
and further argued that gene expression specificity
might be conferred via binding affinity of tran-
scription factor and effector degradation rates.

P53 overexpression facilitates terminal pulses
and promotes apoptosis

We have simulated the threshold effect in p53
activation, we next argued that overexpressing
p53 may also increase the effective p53 integral
and favor apoptosis induction. By gradually
increasing the production rate of p53 mRNA, we
found that the system could ease the occurrence of
p53 terminal pulses even at Dox = 0.1 (Fig. S6A).
The fraction of cells with apoptosis was also
increased with enhanced p53 overexpression (Fig.
S6B). These data supported that manipulating p53
levels per se can also favor p53 terminal pulses and
promote apoptosis.
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Dynamic features of p53 signaling determines
phenotypic responses

In stochastic simulation, we have found pronounced
cell-to-cell viability with varyingDox levels (Fig. S7A).
For example, dynamic responses when Dox = 1 either
showed transient responses with sequential number
of pulses or terminal pulses resembling those typically
observed upon stimulation with Dox = 0.1

(Figure 5(a) and S7A). Therefore, dynamic responses
were overlapping markedly between input levels and
only partially determined by stimulus strength. To
identify the encoded information despite the strong
heterogeneity, we hypothesized that phenotypic
responses were determined by p53 activation patterns
rather than the amount of Dox applied to the system.
We used k-mean clustering to group all signaling p53

Figure 3. Simulation of effect Nutlin-3 treatment. (a) Representative traces of p53 treated with Dox = 0.1 combined with Nutlin-3
added immediately or at 6 and 16 h, following Dox treatment. To simulated the effect of Nutlin-3 treatment, k11 and k14 were
simultaneously lowed by 5 fold. (b-e) Lifespan (b), terminal pulse height (c), total p53 integral (d) and effective p53 integral in
apoptotic cells (e) for 500 simulations with nutlin-3 addministration immediately or at 6 and 16 h (Dox = 0.1), respectively. ANOVA
was used to detect the statistical significance. **: P < 0.01.
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dynamics into five classes (Figure 5(b)). The median
time courses of five signaling clusters showed distinct
dynamic patterns compared with corresponding cells
defined by Dox levels (Figure 5(a,b) and S7. Note that
to allow clustering, all temporal courses of p53 within
60 h were retained irrespective of apoptotic status).

Cluster 1 showed on average a pulsatile behavior (low
responder) while the other clusters (clusters 2–5)
revealed significantly elevated p53 responses with
varying duration (high responder, Figure 5(b)).
However, grouping dynamics by Dox levels displayed
a gradual evolution from pulsatile to high-amplitude

Figure 4. Gene expression specificity by p53 binding affinity and target gene stability. (a) Relative fold change of target gene
expression under 0.1 and 0.01 Dox treatment with varying binding affinity (Km in μM, equivalent to k11 in Table S1) and target gene
degradation rates (δ, min−1). Arrows represent exemplified situations in (B). (b) Stochastic simulations of target gene expression with
varying transcription factor binding affinity and target gene stability. The mean trajectories (solid) for control (Dox = 0.00005, red),
0.01 (blue) and 0.1 (black) Dox were shown. Shaded areas represent 95% confidence intervals. (c) The integral of putative
downstream effector (i.e. p53 target gene) under control, 0.01 and 0.1 Dox treatment was depicted with δ = 0.0001 (min−1).
N = 50 cases of stochastic simulations in (B) were shown. Km values (from left to right: 0.01, 0.07, 0.15 and 0.3 μM) were displayed on
top. (d) Effective p53 integral under 0.01 and 0.1 Dox treatment, respectively. Mann-Whitney test was used.
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elevation of p53 (Figure 5(a)). As expected, increasing
Dox concentrations may induce a shift from low
responder to high responders (Figure 5(c)). The shift
is gradual implying that cells in a given dose could
contain cells in several signaling clusters. Meanwhile,
cells with the same Dox stimulation were more

different in their dynamic behavior than cells grouped
into a signaling cluster (Figure 5(d,e)). There were
more positive silhouette scores in signaling classifica-
tion by dynamic clusters than those in classification
by Dox levels (Figure 5(d,e)). The phenotypic
responses, such as lifespan and effective p53 integral

Figure 5. P53 dynamics decompose into distinct signaling classes. (a) Time-resolved analysis of p53 dynamics for varying
stimulus levels as indicated (Dox = 0.01–10). 20 representative cases were shown as well as the population median (red). (b) P53
dynamics were clustered into 5 signaling classes according to their time-resolved data. The population median values were shown
(red). (c) Distributions of signaling classes depending on Dox levels. (D-E) Silhouette plots of cells sorted according to signaling
classes (d) and Dox levels (e). Positive silhouette scores indicate that P53 dynamics are more similar to the own group, whereas
negative scores indicate that the trajectory is closer to any of the other groups. (f) The lifespan distribution of cells treated with
different Dox levels (top) or dynamic clusters (top). Note that if cell survived during the whole simulation period (60 h), the lifespan
was recorded as 60 h. (g) Effective p53 integral for cells with varying Dox (top) and different clusters (bottom).
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showed in general a gradual dependence on Dox
levels (Figure 5(f,g), top panels). However, these phe-
notypic responses exhibited a clear-cut pattern if p53
dynamics were clustered by signaling dynamics
(Figure 5(f,g), bottom panels). Therefore, signaling
clustersmay provide a better separation of phenotypic
responses compared with Dox doses. These results
suggested that signaling dynamics rather than the
stimulus doses encode for cellular behavior and
could determine phenotypic outcomes.

Decomposition into dynamic clusters confers
sharp transition and less variability to effective
p53 integral

Since the effective p53 integral can determine cell
fate [13], we then investigated how variability of
effective p53 integral evolves with distinct Dox
doses or dynamic clusters. The distribution under
low dose Dox treatment was skewed while it became

more concentrated with increasing Dox doses
(Figure 6(a)). However, there was a sharp transition
of effective p53 integral from high to low variability
between cluster 1 and 2–5 (Figure 6(b,c)). Notably,
the variation gradually decayed with increasing Dox
(Figure 6(c)). Instead, dynamic clusters clearly dif-
ferentiate low (cluster 2–5) from high (cluster 1)
variation in effective p53 integral (Figure 6(c)).
Meanwhile, the distribution and variability were
comparable among clusters 2–5 (Figure 6(b,c)).
Next, we used information theoretical metrics to
calculate the mutual dependence between effective
p53 integral and dynamic processes (the rates v1-v18
were defined in Table S3). In most cases, the mutual
dependence gradually decreased with increasingDox
(Figure 6(d), violet) whereas in principle a swift
decline occurred from cluster 1 to clusters 2–5
(Figure 6(d), rose carmine). This was primarily due
to the reduced variability (i.e. enhanced robustness)
in effective p53 integral at higher Dox or cluster 2–5

Figure 6. Classification into dynamic clusters produces switch-like transition. (a) Distribution of effective p53 integral for
varying Dox levels (0.01–10). (b) Distribution of effective p53 integral for five dynamic clusters. (c) The coefficient of variation for cells
stimulated with various Dox (violet) or in distinct clusters (rose carmine). (d) Mutual information index with increasing Dox (violet)
and different clusters (rose carmine). The details for kinetic processes (v1-v18) were listed in Table S3.
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(Figure 6(c)). Notably, the reduced mutual informa-
tion for basal p53 (v7) and Wip1 turnover (v4 and
v15) with Dox = 0.01 or at cluster 1 indicated that
Wip1 and p53 were kept at low levels with relatively
less variation (Figure 6(d)). These data suggested
that decomposition into dynamic clusters induced
sharp transition of effective p53 integral.

Discussion

Efficient information processing by the p53 path-
way is crucial during stress response. Our current
model qualitatively replicated the dual-phase
dynamics of p53 in response to chemotherapeutic
drugs. We modeled the observation that the occur-
rence of p53 terminal pulses correlated with cell
death and manipulating p53 regulators could affect
the terminal pulses without significant changes in
effective p53 integral of apoptotic cells.
Furthermore, we argued that it was the dynamic
patterns could determine effective p53 accumula-
tion. Dynamic clusters may provide less variability
and more faithful discrimination for effective p53
integral and cell fate.

The occurrence of terminal pulses relied heavily
on positive feedback loops. In current study, we
considered the effect of MDM2-p53 mRNA bind-
ing to enhance p53 mRNA translation [15].
Notably, the p53 system is pervaded with positive
feedback loops [8–10]. Incorporating any positive
feedback loop in our model may support the p53
terminal pulses although the detailed mechanisms
and kinetic parameters may differ (data not
shown). Previous studies have shown that p53
may be activated in either pulsatile or sustained
mode in response to DNA damage depending on
stimulus type [4,11,12,16,17]. An intriguing
hypothesis would be that multiple feedback loops
in p53 network may display cell-specific activities
and contribute to the diversity of p53 dynamics
similar to the observation in MAPK signaling
[18,19]. Furthermore, Purvis et al. found that sus-
tained p53 activation induces senescence whereas
pulsed p53 allows recovery and growth although
pulsed and sustained p53 signaling show equiva-
lent cumulative p53 levels [4]. Since the effective
p53 integral under high doxorubicin treatment or
sustained p53 activation might be significantly
higher than that under pulsatile condition, the

conceptual framework of effective p53 integral
can also explain the observation in Purvis et al.’s
work [4].

An earlier model developed by Zhang et al. also
described a ‘two-phase’ p53 dynamics in response
to DNA damage [20]. In their model, p53 only
performs sequential pulses if low levels of DNA
damage are applied. Moreover, when DNA
damage is high, p53 always shows fixed number
of pulses before the onset of sustained p53 activa-
tion [20]. However, a mild challenge by doxorubi-
cin triggers sequential p53 pulses and occasionally
results in terminal pulses. Applying a high dose
doxorubicin treatment will abruptly lead to sus-
tained p53 activation without the appearance of
sequential pulses in Wu et al.’s experiments [13].
Therefore, Zhang et al.’s model at best is only valid
under low dose doxorubicin treatment and cannot
be used to characterize the sustained elevation of
p53 in response to high doxorubicin doses.

The p53 dynamics can work cooperatively with
binding affinity to differentiate the transactivation
of target genes in Wu et al.’s work [13]. It is the
effective p53 integral above the threshold rather
than the absolute level of p53 integral that orches-
trates gene expression and cell fate. Under mild
doxorubicin challenge, although p53 pulses conse-
cutively exceed the threshold, the cumulative inte-
gral above the threshold is insufficient to ignite
apoptosis. When the DNA damage persists at
high level, the accumulation of effective p53 then
becomes competent to markedly transactivate
proapoptotic genes and trigger apoptosis. The
competence could be ascribed to the disruption
of the balance between positive and negative feed-
back loops in p53 signaling to induce high-
amplitude terminal pulses. Notably, we only
focus on the dynamic aspects of p53-mediated
cell fate decision. Other mechanisms such as post-
translational modification, molecular interaction
or subcellular translocation may provide addi-
tional complexity.

Our model suggested that lower binding affinity
and degradation could better differentiate gene
expression between high and low DNA damage
(Figure 4). We noted that some key downstream
factors such asMDM2 and PPM1D can mirror p53
dynamics indicative of short half-life [4,21].
However, factors involved in terminal fate (e.g.
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Bax, APAF-1 and PUMA) are relatively stable and
show steady accumulation when p53 network
becomes highly activated [22,23]. Therefore, the
increased stability for p53 downstream regulators
involved in apoptosis (at least for those mentioned
in Wu et al.’s work [13]) could help differentiate
the transactivation of different target genes and
promote cell fate decision. Furthermore, previous
study indicates that common p53 ‘binding affinity’
(Km) for downstream targets is primarily distribu-
ted within 0.04 ~ 0.58 μM similar to the settings in
our model (Figure 4) whereas apoptotic genes
generally showed lower binding affinity [24].
Therefore, individual or combinatorial effect of
stability and binding affinity may facilitate gene
expression specificity and promote cell fate
decision.

The signaling clusters represent mathematically
identifiable classes for time series and provide more
homogeneous grouping compared to stimulus con-
centrations. The definition of five clusters remains
a heuristic choice [25]. Notably, p53 dynamics vary
abruptly from cluster 1 to cluster 2–5 and provide
clear-cut response patterns (e.g. lifespan, effective
p53 integral), whereas grouping by doxorubicin
doses represents a continuum of dynamic patterns.
Noticeably, p53 temporal profiles will terminate
when cells undergo apoptosis and therefore, most
temporal p53 trajectories in cluster 2–5 will not
persist for the entire 60 h (i.e. profiles in cluster
2–5 becomemore homogeneous). As a result, group-
ing by temporal profiles may better discriminate cell
fate. In cluster 1, we found that on average cells
performed consecutive pulses with occasionally
terminal pulses. Profiles in cluster 1 indicated low
effective p53 integral and longer lifespan, implying
that these dynamic patterns favored survival (survi-
val cluster). Instead, nearly all profiles in cluster 2–5
ended in p53 terminal pulses with significantly
reduced lifespan and high effective p53 integral
(dead cluster). Therefore, the dynamic clustering
suggested that pulsed p53 may favor survival until
the occurrence of high-amplitude terminal pulses.
The stimulus strength will determine the fraction of
cells in each cluster and the fraction in dead cluster
was gradually elevated with increasing stimulus.
Collectively, manipulating wild type p53 levels (i.e.
effective p53 integral) might be an effective strategy
to tip the balance between survival and death.

There are also limitations in our current work.
We did not consider the subcellular localization of
specific proteins although this may possibly confer
enhanced ultrasensitivity/nonlinearity in p53 sig-
naling. ATM-independent effect on DSB repair
was also not considered as it only affected the
repairing rate but not the feedback architecture
in p53 signaling [26]. Previous studies showed
that MDMX and c-Abl also affect p53 levels
[27,28]. However, these regulatory mechanisms
do not function through feedback mechanisms
and therefore do not exert significant influence
on dual-phase nature of p53 under doxorubicin
treatment. We only emphasized the effect of inter-
locked negative and positive feedback loops in p53
network and other detailed regulatory effects were
not considered for simplicity.

In conclusion, we have modeled the dual-phase
p53 dynamics under doxorubicin treatment and
elucidated the putative determinant for p53-
mediated cell fate decision. As aberrant p53 signal-
ing is usually linked to tumor progression, our
current model may help ignite new clues to opti-
mized clinical design for chemotherapeutic drugs.

Materials and methods

Model construction

We modeled the p53 regulatory network containing
11 species and 30 reactions (Figure 1). For p53,
MDM2 and Wip1, we incorporated both mRNA
and protein representation. The conventional geno-
toxic drug doxorubicin (Dox) was shown to induce
DNA double strand breaks (DSBs) with a half-life
around 11.7 h [29] corresponding to an approximate
clearance rate of 0.001 min−1. Therefore, we assumed
that Dox clearance underwent an exponential decay
with a clearance rate of 0.001 min−1 in stochastic
simulation. The DNA damage can phosphorylate
and activate the checkpoint kinase Ataxia-
telangiectasia mutated (ATM) [30]. Total ATM
levels were considered as a constant because data
have shown that total ATM does not change signifi-
cantly within 72 hours post stimulation [31].
Activated ATM (ATM*) can phosphorylate p53
and MDM2, which become stabilized or destabilized,
respectively [32,33]. We incorporated two negative
feedback loops (P53-MDM2 and P53-Wip1-ATM)
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as suggested by Lahav et al [34]. In response to DNA
damage, p53 can be phosphorylated, activated and
induce MDM2 expression, which in turn targets p53
for proteasome degradation. The second negative
feedback loop involves p53 induced Wip1 upregula-
tion and ATM deactivation [35]. The levels of Dox
denote model input and affect the DNA damage
induced ATM activation as previously [36] (Table
S1 and S2).

Gajjar et al. have found that under doxorubi-
cin treatment, ATM can phosphorylate MDM2 at
Ser395 and allosterically altered MDM2 can bind
p53 mRNA [15]. The phosphorylated MDM2 at
Ser 395 can further enhance p53 mRNA transla-
tion [15]. We incorporated this interaction in
our model and assumed that p53 mRNA can
bind phosphorylated MDM2 (MDM2p) and
form a p53 mRNA-MDM2p complex. We also
assume that this complex can promote p53 pro-
tein translation with higher efficiency (Table S1
and S2). We did not consider the subcellular
localization not only for simplicity but also
owing to the fact that the detailed mechanism
by which MDM2-dependent nucleolar targeting
of p53 mRNA enhances its translation and its
detailed subcellular trafficking events remain elu-
sive [15]. All the dynamic reactions were formu-
lated using ordinary differential equations
(ODEs) (Table S1) with parameter description
listed in Table S2.

Model parameterization

p53 mRNA has a long half-life from 10 to 22–23
hours in different cells [37]. We assigned
0.001 min−1 (k2) corresponding to a half-life
~11.6 h. The half-life of MDM2 mRNA is
reported to be within 1 to 2 hours [38,39] imply-
ing a degradation rate from 0.005775 to
0.01155 min−1. Therefore, we set this parameter
to be 0.006 (k4). Basal mdm2 induction rate (k3),
MDM2 dependent P53p degradation rate (k14),
mdm2 translation rate (k15), basal MDM2 degra-
dation rate (k16), the threshold concentration of
MDM2 dependent p53 (K3) and P53p degrada-
tion (K6) were set according to Ma et al’s model
[40]. The turnover rate of p53 (k10) and MDM2
dependent p53 degradation (k11) were assigned
according to Cai et al [37]. MDM2 undergoes

phosphorylation and accelerated degradation in
DNA damage response and we therefore assigned
a roughly 10-fold increase in MDM2p degrada-
tion rate (k19) [41]. Wip1 dependent depho-
sphorylation rate (k13) of phosphorylated p53
(P53p), basal Wip1 degradation rate (k21) and
Wip1 mediated ATM deactivation rates (k24 and
K10) were derived from Zhang et al within the
same order of magnitude [20]. The dissociation
constant kr/kf was set to be 100 nM qualitatively
similar to Gajjar et al.’s measurement [15]. The
basal p53 production rate (k1), ATM* induced
MDM2 activation (k17), the threshold concentra-
tion of p53 induced mdm2 (K1) and wip1 (K2)
transcription were determined according to
Chong et al’s data [42]. All other parameters
were estimated from our previous work [43] to
reproduce the dual-phase dynamics of p53.

Local parameter sensitivity

Local parameter sensitivity analysis provides
dynamic responses to an infinitesimal disturbance
in kinetic parameters. A dynamic system can be
formulated by x’ = F(x, p), where x and p donate
state vector and parameter vector for the system,
respectively. Pulse amplitude and width sensitivity
capture the variations of relative amplitude and
duration in response to parametric changes.
Relative amplitude sensitivity SA and width sensi-
tivity SW are defined as

SA ¼
@A=A
@p=p

¼ @ lnðAÞ
@ lnðpÞ (1)

SW ¼
@W=W
@p=p

¼ @ lnðWÞ
@ lnðpÞ (2)

where A and W denote relative pulse amplitude
and width, respectively. Note that normalized sen-
sitivities are only locally valid in parameter space.

Mutual information index (MII)

A general measure of input-output associations can
be provided by mutual information regardless of
the shape of underlying distributions. Randomized
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perturbations of input parameters (X1, X2,…, XN) in
parameter space within predefined range create
a random output Y with a probability density p(y)
. The entropy associated with Y is defined as

HðYÞ ¼ �
X

y

pðyÞ � log2pðyÞ

Conditional entropy can further be defined with
one fixed Xi

HðYjXiÞ ¼
X

x

pðxÞ �HðYjXi ¼ xÞ

The mutual information is defined as the differ-
ence between total entropy H(Y) and one preferred
conditional entropy H(Y | Xi) to characterize the
impact Xi exerts on Y.

IðXi;YÞ ¼ HðYÞ �HðYjXiÞ
Mutual information index (MII) can be defined
as [44]:

mi ¼ IðXi;YÞ
HðYÞ

Metrics for terminal pulse, lifespan and effective
p53 integral

Prolonged low-dose or acute high-dose doxorubi-
cin treatment initiated a series of p53 pulses fol-
lowed by an abrupt increase to high p53 amplitude
(defined as ‘terminal pulse’) [13]. The lifespan
denotes the time duration from initial Dox treat-
ment to the time point when apoptotic effector
(e.g. Bax) reaches a pre-defined threshold (see
below). According to Wu et al’s reports, p53 accu-
mulation below a certain threshold may not acti-
vate proapoptotic genes [13]. This threshold is
defined as ‘minimal effective level’ (MEL) and the
p53 accumulations (i.e. temporal integral) above
the threshold are termed as ‘effective cumulative
p53ʹ.

Ep53 ¼ �
T

0
ðP53�MELÞdt

T denotes the time when apoptosis occurs. Note
that in our simulation, the ‘MEL’ was assigned
1.8 × 104). The time-averaged Ep53 is defined as
follows:

Ep53AverT ¼ 1
T
�
T

0
ðP53�MELÞdt

In current study, ‘effective p53 integral’ refers to
‘effective cumulative p53ʹ and is sometimes abbre-
viated as Ep53.

Stochastic simulation

Since the maximum level of dynamic species was
>105, we performed stochastic simulations by
binomial τ-leap method according to Chatterjee
et al and Leier et al’s work [45,46]. The kinetic
delays were varied by 10% around the reference
values during the simulation. We further assumed
that the transcription is burst-like and the burst
size positively correlated with the amount of tran-
scription factors [47]. In stochastic simulation, we
assumed that Dox obeys an exponential decay with
clearance rate 0.001. Meanwhile, p53 can transac-
tivate the expression of an apoptotic effector (e.g.
Bax in our model). If the Bax level reaches the
threshold (2.1 × 104), cells will immediately trigger
apoptosis owing to the ‘Bax activation switch’
described in previous work [48]. Therefore, the
p53 trajectories may terminate at different time.

Model simulation

The ordinary differential equations were numerically
integrated using the ode23s solver. Both stochastic
and deterministic simulations were performed using
MATLAB (MathWork, Version 8.1, R2013a).
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