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Exercise-induced mitophagy in skeletal muscle occurs in the absence of
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ABSTRACT

Maintenance of mitochondrial quality is essential for skeletal muscle function and overall health.
Exercise training elicits profound adaptations to mitochondria to improve mitochondrial quality in
skeletal muscle. We have recently demonstrated that acute exercise promotes removal of
damaged/dysfunctional mitochondria via mitophagy in skeletal muscle during recovery through
the Ampk-Ulk1 signaling cascade. In this Extra View, we explore whether Pink1 is stabilized on
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mitochondria following exercise as the signal for mitophagy. We observed no discernable pre-
sence of Pink1 in isolated mitochondria from skeletal muscle at any time point following acute
exercise, in contrast to clear evidence of stabilization of Pink1l on mitochondria in Hela cells
following treatment with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP).
Taken together, we conclude that Pink1 is not involved in exercise-induced mitophagy in skeletal

muscle.

Introduction

Exercise is well known to promote systemic health
and, hence, is an effective intervention for the
prevention and treatment of a number of chronic
diseases [1]. In particular, regular exercise main-
tains skeletal muscle health and function, as well as
mitigates the loss of skeletal muscle mass with age,
known as sarcopenia [2]. Mitochondria are the
primary producers of cellular ATP in skeletal mus-
cle required for exercise and other physiological
functions [3]. Detriments in the quality of skeletal
muscle mitochondria result in tissue dysfunction
and are thought to be primary contributors to the
development of chronic disease [2,4,5]. Therefore,
understanding how mitochondrial quality is regu-
lated and how those processes are influenced by
exercise can lead to the development of novel
therapies to maintain skeletal muscle function
and, thereby, overall health.

Skeletal muscle mitochondria exist as an inter-
connected reticulum [6,7]. In response to vyet
unknown signals, damaged, dysfunctional, and/or
energetically stressed regions of the reticulum are

selectively removed through fission and mito-
phagy, a highly regulated process of selective
autophagy of mitochondria [3,8]. Recently, we
have demonstrated that acute exercise induces
mitophagy in skeletal muscle during the recovery
period, which was dependent upon Ampk-
mediated phosphorylation of Ulkl at Ser555 [4].
By imaging mitophagy via a fluorescent mitochon-
drial reporter, MitoTimer [9,10], we were able to
observe mitophagy in response to a single bout of
exercise [4]. However, it is what
mechanism(s) may mediate the recognition of
regions of the mitochondrial reticulum destined
for mitophagy in response to exercise.

Arguably, the best understood means by which
damaged regions of the mitochondrial reticulum
are differentiated for mitophagy is through PTEN-
induced putative kinase 1 (Pinkl). In this model,
Pinkl is thought to be constantly transported to
the mitochondria from the cytosol and, when the
mitochondrial reticulum is healthy, Pinkl is
imported, cleaved, and subsequently degraded in
the mitochondria [11,12]. However, when mito-
chondrial quality is compromized (e.g. a decline
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in membrane potential, accumulation in misfolded
proteins, and/or damage to mtDNA), Pinkl is
stabilized on the outer mitochondrial membrane
(OMM) [13-18]. Once stabilized, Pinkl recruits
the E3 ubiquitin ligase, Parkin, which initiates
a cascade of events leading to the degradation of
the affected region(s) of the reticulum [15,18-20].
However it has not been demonstrated whether
stabilization of Pinkl on the mitochondria occurs
in skeletal muscle in response to exercise.

Results

To determine if Pinkl stabilization is involved in
mitophagy in skeletal muscle following acute exercise,
we isolated mitochondria-enriched fractions from
gastrocnemius muscle (GA) at five time points post-
exercise, using mitochondria-enriched fractions from
GA of sedentary mice as controls. Interestingly, we
did not detect any Pinkl in mitochondrial fractions
but an abundant prescence in the corresponding cyto-
solic fractions (Figure 1(a)). On the contrary, treat-
ment of HeLa cells with the mitochondria uncoupler
carbonyl cyanide m-chlorophenyl hydrazone (CCCP)
at 10 pM, a concentration shown to collapse mito-
chondrial membrane potential resulting in Pinkl sta-
blization [18], resulted in a marked increase of Pinkl
in mitochondria-enriched fractions (Figure 1(b)) and
co-localization with the mitochondria reticulum
(Figure 1(d,e)) using the same Pinkl antibody used
in isolated GA mitochondria fractions (Figure 1(a,c)).
Collectively, these data suggest that Pinkl is not sta-
bilized on the OMM in skeletal muscle following
acute exercise in vivo, thus Pinkl stabilization may
not be required for exercise-induced mitophagy in
skeletal muscle.

Discussion

Endurance exercise requires a profound increase
in mitochondrial metabolism in contracting skele-
tal muscle to meet energetic demands. While it has
been known for many decades that exercise train-
ing results in the expansion of the mitochondrial
reticulum in skeletal muscle through biogenesis
[21] in order to better meet energetic demands,
the impact of exercise on mitochondrial break-
down is not as well understood. Recently, we
demonstrated that an acute bout of endurance

exercise (i.e. treadmill running) promotes removal
and degradation of, presumably dysfunctional,
regions of the mitochondrial reticulum through
mitophagy [4]. Given the established role of
Pinkl1 stabilization on areas of the reticulum that
are ultimately degraded through mitophagy in
some model systems [13-15,18], we hypothesized
that this same mechanism is activated following
acute exercise.

We have previously demonstrated that the final
step in mitophagy, the incorporation of mitochon-
dria into autolysosomes, occurs approximately six
hours into the recovery period with the necessary
and sufficient Ampk-Ulk1 signaling events occur-
ring during and/or immediately following exercise
[4]. However, when we examined the presence of
Pink1 in the same isolated mitochondrial fractions
from GA muscle immediately, 3, 6, 12, and 24 hrs
following a single bout of treadmill running [4],
we observed no detectable presence of Pinkl,
though Pinkl was readily apparent in the corre-
sponding cytosolic fractions. These data in skeletal
muscle post-exercise were in contrast to the read-
ily detectable presence of Pinkl in isolated mito-
chondrial fractions and co-localization on
mitochondria following CCCP treatment in HeLa
cells. Therefore, we conclude that, although Pink1
is known to orchestrate the localization of the
mitophagic machinery to specific regions of the
mitochondrial reticulum in response to certain
stresses in some cell backgrounds [13-18], it does
not appear to be involved in exercise-induced
mitophagy in skeletal muscle (Figure 2).

The stabilization of Pinkl on the OMM has
been primarily described in response to a loss in
mitochondrial membrane potential, accumula-
tion in misfolded proteins, and mtDNA damage
[13-18]. However, skeletal muscle mitochondria
are more resistant to a collapse in membrane
potential following acute exercise [22], suggest-
ing that Pinkl should not be expected to be
stabilized on the OMM in response to exercise.
There is also little reason to suspect exercise
results in any accumulation in misfolded pro-
teins. Exercise is a potent inducer of the
unfolded protein response (UPR) [23-27], sug-
gesting, in a non-diseased state, that proper fold-
ing of nascent proteins should occur following
acute exercise. Furthermore, while mtDNA can
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Figure 1. Pink1 is not present in mitochondria fraction from skeletal muscle at any point following acute exercise but is in
Hela cells following incubation with CCCP. A) Western blot analysis was performed for mitochondrial or cytosolic fractions from
mouse gastrocnemius mucles (GA) at 0, 3, 6, 12 or 24 hrs following an acute bout of treadmill running with sedentary control mice
as control. CS, i.e. common standard, represents mixed tissue homogenate of skeletal muscle, heart and liver from sedentary control
mice. + represents whole cell lysate of Hela cell treated for 8 hrs with 1 uM CCCP, Vdac (control for mitochondria), and a-tubulin
(control for cytosol); B) Western blot image of Pink1, Vdac and a-tubulin in isolated mitochondria fraction from Hela cells treated
with 10 uM of CCCP for 1 hr; C) Quantification of Pink1 in both mitochondrial and cytosolic fractions of GA presented as mean +
standard error of the mean. n = 3-4 per time point; D) Immunofluorescent staining of Pink1 and CoxIV in Hela cells 1 hr following
exposure to 10 pM of CCCP. Scale bar = 30 uM; and E) Quantification of Pink1 positive pixels on mitochondria. n = 8 images per

three independent experiments.

be damaged by excessive generation of reactive
oxygen species (ROS) [28], ROS-induced
mtDNA mutations are not observed in response
to acute exercise [29]. Furthermore, endurance
exercise training protects mtDNA from ROS-
induced damage [30]. Taken together, in a non-
diseased condition, the appropriate stressor may
be lacking for Pinkl stabilization on OMM in
response to acute exercise to initiate mitophagy
within the current context.

Indeed, it is becoming increasing clear that
there exists a certain specificity for mechanisms
that recognize regions of the mitochondrial reticu-
lum for mitophagy. The mitochondrial protein
FUN domain containing 1 (Fundcl) has been
shown to orchestrate the recruitment of Ulkl and
Lc3 to the mitochondrial reticulum only in
response to hypoxia [31-36]. There is evidence
that the Pinkl substrate, Parkin, is enriched in

mitochondrial following
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Figure 2. Schematic presentation of timeline for mechanisms
regulating acute exercise-induced mitophagy in skeletal muscle.

treadmill running in mice [37,38]. In these studies,
the exercise protocol used was cumulatively more
intense with shorter durations compared to the
protocol wused in our current investigation.
Therefore, it may still be possible that acute exer-
cise can result in the stabilization of Pinkl on
mitochondria given a robust enough energetic
stress (i.e. exhaustive exercise), but it is unclear
whether such a result would be beneficial for opti-
mal adaptation to training. Taken
together, it may be that the mechanism(s) of mito-
phagy initiation are stress-dependent.

While our data do not support a role for Pink1-
mediated mitophagy in exercise-induced mitochon-
drial quality control in the non-diseased state, Pinkl
may very well be important for maintenance of
mitochondrial quality in other contexts. Sensitivity
to mitochondrial transition pore opening, which
causes detriments in mitochondrial membrane
potential, is increased in skeletal muscle from elderly
humans and is accompanied by a reduction in con-
tent of the Pinkl substrate Parkin [39]. Loss in
mitochondrial membrane potential has also been
linked to the development of skeletal muscle insulin
resistance [40]. Therefore, the functional importance
of Pink1 in skeletal muscle for maintenance of mito-
chondrial quality may be better appreciated within
the context of chronic disease.

In conclusion, we have recently demonstrated
that acute exercise promotes mitophagy, which is

exercise

dependent on activation of Ulkl through Ampk-
dependent phosphorylation at Ser555. However,
distinguishing specific regions of the reticulum
for mitophagy in response to exercise does not
appear to be mediated by a stabilization of Pinkl
on mitochondria. It seems likely that a different
mechanism may be responsible for the recognition
of regions of the mitochondrial reticulum in ske-
letal muscle that are unable to maintain the ener-
getic output required during prolonged exercise,
thus triggering their removal via mitophagy for the
maintenance of mitochondrial quality.

Methods
Animals

All experimental procedures were approved by the
University of Virginia, Institutional Animal Care
and Use Committee. As in our previous publication
[4], male C57BL/6] mice (10-12 weeks old) were
obtained commercially (Jackson Laboratories) for
post-exercise time course experiments.

Acute treadmill running

C57BL/6 mice were acclimatized to the treadmill
and acute treadmill running was performed as
described in our previous publication [4].

Isolation of mitochondria from skeletal muscle

Skeletal muscle mitochondrial and cytosolic frac-
tions were isolated via differential centrifugation as
described in our previous publication [4].
Mitochondria fractions from HeLa cells were iso-
lated using the same procedure from cells grown
on two 100 mm plates and combined for
centrifugation.

Cell culture and reagents

HeLa cells were cultured in DMEM with 10% FBS.
For fractionation experiment, HeLa cells were trea-
ted with either 10 pM CCCP or DMSO (control) for
1 hr. For immunohistochemistry, HeLa cells were
fixed in 4% paraformaldehyde/PBS, permeabilized in
0.3% Triton/PBS, blocked in 5% NGS/PBS, and
stained with primary antibodies. Primary antibodies



used were Pinkl (Santa Cruz #33796) and CoxIV
(CST #11967) at a concentration of 1:50. Secondary
antibodies FITC and Cy5 were used as well as DAPI
for detection of nuclei. Slides were imaged at X100
magnification under a confocal microscope
(Olympus Fluoview FV1000) with identical pre-
determined acquisition parameters for all samples
to ensure no saturation of the signals.

Western blot

Immunoblotting procedures and antibody catalog
numbers are reported in our previous publication [4].

Statistical Analyses

Data are presented as the mean + SEM. Time
course experiments are analyzed via one-way
ANOVA. THC Pinkl 1 colocalization on mitochon-
dria was performed using Image ] by designating
mitochondria ROI’s and averaging individual cell
Pinkl histograms across each condition and ana-
lyzed via two-way ANOVA. Statistical significance
was established a priori as p < 0.05.
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