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Abstract

In this paper, we present a method for automated estimation of a human face given a skull

remain. Our proposed method is based on three statistical models. A volumetric (tetrahe-

dral) skull model encoding the variations of different skulls, a surface head model encoding

the head variations, and a dense statistic of facial soft tissue thickness (FSTT). All data are

automatically derived from computed tomography (CT) head scans and optical face scans.

In order to obtain a proper dense FSTT statistic, we register a skull model to each skull

extracted from a CT scan and determine the FSTT value for each vertex of the skull model

towards the associated extracted skin surface. The FSTT values at predefined landmarks

from our statistic are well in agreement with data from the literature. To recover a face from

a skull remain, we first fit our skull model to the given skull. Next, we generate spheres with

radius of the respective FSTT value obtained from our statistic at each vertex of the regis-

tered skull. Finally, we fit a head model to the union of all spheres. The proposed automated

method enables a probabilistic face-estimation that facilitates forensic recovery even from

incomplete skull remains. The FSTT statistic allows the generation of plausible head vari-

ants, which can be adjusted intuitively using principal component analysis. We validate our

face recovery process using an anonymized head CT scan. The estimation generated from

the given skull visually compares well with the skin surface extracted from the CT scan itself.

Introduction

Facial reconstruction is mainly used in two principal branches of science: forensic science and

archaeology. Remains of a human skull act as input to reconstruct the most likely correspond-

ing facial appearance of the dead person to enable recognition. Traditional methods rely on

manual sculpturing a moldable substance onto the replica of the unknown skull using
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anatomic clues and reference data. Claes et al. [1] consider this a highly subjective procedure

requiring a great deal of anatomical and artistic modeling expertise. The result is often limited

to a single reconstruction, because it is very time consuming. Computer-based methods can

provide consistent and objective results and also allow multiple reconstructions using different

meta-information, such as age, or weight, because a reconstruction can be accomplished in a

short time [1]. In her comprehensive review, Wilkinson [2] reports that there is a lot of

criticism on facial reconstruction techniques from scientists, but following the same method

both techniques, manual or computer-based, have a rather small degree of artistic interpreta-

tion. Wilkinson concludes that achieving anatomical accuracy should be reproducible and

reliable, however some stages in the reconstruction process involve a little degree of artistic

interpretation.

Computer-aided facial reconstruction methods have been previously proposed in other

publications [3–7]. Related work uses different techniques for the underlying registration as

well as for the subsequent facial reconstruction. Although not standardized, FSTT measure-

ments play an important role both in facial approximation and craniofacial superimposition

methods due to the quantitative information provided [8]. A wide variety of different tech-

niques such as needle probing, caliper or radiographic measurements, or ultrasonographic

assessments are used to determine the FSTT, which lead to different results in the FSTT statis-

tics. In addition, 3D imaging techniques such as CT or Magnetic Resonance Imaging (MRI)

are employed for this purpose. Driven by the generally lower radiation dose when compared

to medical CT, lately Cone Beam Computed Tomography (CBCT) has also been used [9]. In

general it is difficult to compare FSTT studies based on CT and CBCT scans. CT scans are

taken in supine position whereby CBCT scans can be taken in various positions (sitting, lying

down, standing up), which has different gravity effects on the FSTT. CBCT also has the inher-

ent drawback that some landmarks cannot be found in the data sets because it is normally

limited to the craniofacial region. Although not backed by numerical data, it is generally advo-

cated to prefer measurements on living individuals over cadavers [8]. In [8], Stephan and

Simpson conclude that regardless of the applied technique the measurement error for FSTT

assessment is rather high (relative error of around 10%) and that no method so far can be

considered superior to any other. In addition, the authors stated that small sample sizes for

most of the studies also compromise the degree to which the results from such studies can be

generalized.

Generally spoken, measurements based on a few distinct landmark points yield the inherent

drawback of providing only a few discrete thickness values. Areas between these distinct mea-

surement points need to be interpolated. A dense soft tissue map would yield important infor-

mation for facial reconstruction. A statistical head model could be fitted to such a dense soft

tissue profile thereby providing an estimate of the visual appearance of the person to be identi-

fied, based on statistics of the sample data.

Turner et al. [3] introduced a method for automated skull registration, and craniofacial

reconstruction based on extracted surfaces from CT data that was applied to a large CT data

base consisting of 280 individuals in [4]. For registration of a known skull to a questioned one,

the authors use a heuristic to find crest lines in combination with a two-step ICP registration

followed by a thin-plate spline warping process. The same warping function is applied to the

extracted skin of the known skull. Following, from a collection of 50 to 150 warped skin sur-

faces they use principal component analysis (PCA) to construct a “face-space” with a mean

face for the questioned skull. Using the linear combination of the eigenvectors with some a-

priori knowledge, such as age and sex, they are able to generate a subset of most likely appro-

priate appearances for the questioned subject. To this end, both the questioned and the known

skull are represented as polygonal meshes and are reduced to their single, outer surface.
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Thereby, disregarding the volumetric nature of the bony structure in some cases leads to poor

fitting results.

The utilization of a deformable template mesh for forensic facial reconstruction was pre-

sented by Romeiro et al. [5]. Their computerized method depends on manually identifying 57

landmarks placed on the skull. Based on these preselected landmarks and a corresponding

FSTT (obtained from other studies) an implicit surface is generated using Hermite radial basis

functions (HRBF). To improve the quality of the result, they use several anatomical rules such

as the location of the anatomical planes and anatomical regressions related to the shape of the

ears, nose, or mouth. Hence, the quality of their results strongly depends on an appropriate

template that properly takes age, sex, and ethnicity into account.

An approach for craniofacial reconstruction based on dense FSTT statistics, utilizing CT

data, was presented by Shui et al. [6]. Their method depends on 78 manually selected land-

marks placed on the skull, which guide the coarse registration of a template skull to each indi-

vidual skull, followed by a fine registration using ICP and thin plate splines (TPS). The FSTT

measurement is performed for each vertex of the deformed skull in the direction defined by

the geometric coordinate. A coarse reconstruction of a face from an unidentified skull is

achieved by translating each skull vertex in the defined direction by the length of the FSTT

measured at this position. To achieve a smooth appearance six additional points have to be

marked manually for guiding a TPS deformation of a template face to the coarse reconstruc-

tion. Finally, the recovery of mouth, eyes, and nose has to be performed by a forensic expert,

which makes the method not fully automatic.

Shui et al. [7] proposed a method for determining the craniofacial relationship and sexual

dimorphism of facial shapes derived from CT scans. Their approach employs the registration

method presented in [6], to register a reference skull and face to a target skull respective face.

Applying a PCA to the sets of registered skull and skin templates, they derive a parametric

skull and skin model. Through analyzing the skull- and skin-based principal component

scores, they establish the craniofacial relationship between the scores and therefore reconstruct

the face of an unidentified subject. Although the visual comparison of the estimated face with

the real shows good results, these results appear to be due to over-fitting. Moreover, the geo-

metric deviation, especially in the frontal part of the face, are mostly around 2.5–5 mm, which

indicates rather inaccurate reconstruction results.

Our approach to forensic facial reconstruction is divided into two parts: model generation

and forensic facial reconstruction. Unlike most previous methods [3–7] our approach is fully

automated, from the initial skull registration up to the final face reconstruction, and thus does

not require any manual interaction. Only the initial model generation (preprocessing or train-

ing phase) requires a few manual steps. The next section describes the generation of the three

models required for our automated facial reconstruction approach: The parametric skull

model, the statistic of FSTT, and the parametric head model. In the following sections the

automated facial reconstruction process is presented, including the modeling of variants of

plausible FSTT distributions for a given skull.

Model generation

In this section we present the proposed model generation processes, as outlined in Fig 1. We

use volumetric CT scans and optical 3D surface scans as input and distinguish between two

input types: skulls and heads. In the following, the outer skin surface of a head is referred to as

head and the bony skull structure is referred to as skull. In order to obtain a uniform data

basis, a preprocessing step is performed to extract the skull and the head as triangular surface

meshes from each CT scan. In the next step we need to establish the relationship between
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different skulls as well as between different heads. For this purpose, in a fitting process, we reg-

ister an appropriate template model to each given mesh of a specific input type. After that,

we are able to utilize the fitted templates to determine the geometric variability of the skulls

respectively heads performing a PCA. As result we derive two parametric models: a parametric

skull model and a parametric head model. Based on corresponding skulls and heads extracted

from CT scans we additionally build a dense FSTT map in the statistical evaluation step.

Database

Following internal ethical review board approval (Ethik-Kommission der Landesärztekammer

Rheinland-Pfalz, Deutschhausplatz 2, 55116 Mainz), head CT scans were collected from the

PACS system of the University Medical Center Mainz. We only used existing CT data (from

four different CT devices) from our database. No subject was exposed to ionizing radiation for

this research. The local ethical approval board has approved the processing of the pseudony-

mized existing CTs (from the DICOM database of the University Medical Center Mainz) to

generate the statistical models under the approval number No 837.244.15 (10012) (date:

05.08.2015). In our study we included CT scans that meet the following criteria:

1. The facial skull of the patient is completely imaged.

2. The slice thickness is less than or equal to 1 mm.

3. The subject has no significant oral and maxillofacial deformations or missing parts.

From several hundred CT scans that we analyzed a total number of 60 were suitable for our

purpose. However, only 43 of these scans could be used for generating the parametric head

model and the statistic of FSTT, since in the remaining 17 CT scans external forces (e.g. frontal

extending neck stabilizers, nasogastric tubes, etc.) compressed the soft tissue. In a preprocessing
step every CT scan was cropped, such that we obtain a consistent volume of interest limited

to the head area. For this purpose the most posterior point of the mandibular bone was

Fig 1. Overview of our model generation processes. Generation of a skull and a head model as well as a dense FSTT statistic from multimodal

input data.

https://doi.org/10.1371/journal.pone.0210257.g001
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determined automatically in the 2D slice images and the volume was trimmed with an offset

below this detected position. After this cropping step, bone and skin surface meshes were

extracted using the Marching Cubes algorithm [10] (we used the Hounsfield units -200 and

600 as iso-values for skin and bone surface extraction, respectively). To remove unwanted

parts, such as the spine or internal bone structures, a connectivity filter was applied to the

bone mesh, leaving only the skull. Finally, all extracted meshes were decimated to obtain a uni-

form point density for all data sets [11]. The meshes extracted from CT data were supple-

mented by triangle meshes from 3D surface head scans (From www.3dscanstore.com) of real

subjects in order to fill up the database for our model generation processes. The 3D surface

scans are of high quality, do not suffer from artifacts or strong noise, and consist of about 500

k vertices in case of the head and about 400 k vertices in case of the skull. In summary the fol-

lowing data sets were included in the study:

1. A total number of p = 62 skulls (60 extracted skulls from CT scans and 2 skulls from 3D sur-

face scans) were used to generate a skull model.

2. A total number of q = 82 heads (43 extracted skin surfaces from CT scans and 39 heads

from 3D surface scans) were used to generate a head model.

3. A total number of r = 43 corresponding skulls and skin surfaces extracted from CT scans

were used to build the FSTT statistic.

Generating a parametric skull model

In order to generate a parametric skull model we need to establish the relationship between

the different skulls from our database. For this purpose, we register a single template skull to

each skull individually. This template model has to be a volumetric tetrahedral mesh in order

to accurately represent the solid nature of a bony skull. We therefore converted a surface trian-

gle mesh of a skull (Based on www.turbosquid.com/3d-models/3d-human-skull/691781) to a

volumetric tetrahedral mesh. Our template skull model, shown in Fig 1, consists of m� 70 k
vertices, whose positions we denote by S ¼ fs1; . . . ; smg. Tetrahedra TðSÞ are built by con-

necting four vertices each, and the set of all tetrahedra is denoted as T ¼ T ðSÞ. The vertices S
and tetrahedra T constitute the tetrahedral mesh of our template skull.

The fitting process comprises the following two main stages for an input skull with vertex

positions P ¼ fp1; . . . ; pMg:

1. A global rigid transformation that coarsely aligns the input skull to the template skull. The

registration starts with the fast global registration approach presented in [12], followed by a

refinement step using the well known Iterative Closest Point (ICP) algorithm [13].

2. A fine registration of the template skull to the input skull, which consists of several non-

rigid transformation steps, computed by minimizing the energy (inspired by [14])

EðSÞ ¼ EfitðSÞ þ lregEregðSprev;SÞ ð1Þ

consisting of a fitting term Efit and a regularization term Ereg.

In the non-rigid step, the fitting term

Efit Sð Þ ¼
1

P
c2Cwc

X

c2C

wc ksc � f ck
2

penalizes the squared distance between a vertex on the template skull sc and its corresponding
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point fc, which is a point on or close to the mesh of the input skull. The factor wc 2 [0, 1] is a

per-correspondence weight, which controls the influence of the various correspondences, such

as points on the inner or outer skull surface.

The regularization term

EregðSprev;SÞ ¼
X

T2T

ðvolðTðSÞÞ � volðTðSprevÞÞÞ
2

penalizes geometric distortion of the template skull during the fitting. Sprev represents the ver-

tex positions of the previous deformation state, while S stands for the current (to-be-opti-

mized) positions. The function vol(T) denotes the volume of tetrahedron T. Thus, the

regularization term penalizes the change of volume of tetrahedra. The non-rigid deformation

starts with rather stiff material settings and successively softens the material during the regis-

tration process (by reducing λreg).

During the various non-rigid transformation steps we use different strategies to define the

correspondences C. First, correspondences are determined by the hierarchical ICP approach

described in [15], where we register hierarchically subdivided parts of the template skull to the

input skull using individual similarity transformations. This results in several small pieces

(e.g., the eye orbit) that are well aligned to the input skull. Based on the correspondences

found in this step the whole template skull is registered towards the input skull. In subsequent

deformation steps, we estimate the correspondences in a closest vertex-to-vertex manner,

where we only consider vertices lying in high curvature regions, additionally pruning unreli-

able correspondences based on distance and normal deviation [15]. In the final non-rigid

transformation steps, when the meshes are already in good alignment, we use vertex-to-sur-

face-point correspondences. These correspondences are determined considering all vertices

employing a two-step search: First, we search for vertex-to-vertex correspondences from the

input skull to the template skull, pruning unreliable correspondences based on distance and

normal deviation. Second, we search for correspondences from the computed corresponding

vertices on the template towards the input skull. This second step is computed in vertex-to-

surface-point manner, this time pruning only large deviation between the vertex and surface

normal.

The described two-way correspondence search prevents tangential distortions of the fitted

template skull and can handle artifacts in the input skulls, e.g., artifacts in the teeth region due

to metallic restorations. Additionally, it makes our registration process robust against the

porous bony structure caused by low resolution of the CT scan or the age of the subject. To

further prevent mesh distortions we additionally use a release step, where the undeformed

template is deformed towards the current deformed state using only preselected points of

interest (for further details see [15]).

In order to analyze the accuracy of our skull registration process, we evaluated the fitting

error by computing the distance for all vertices of the facial area (which covers all predefined

landmarks) of an input skull towards the fitted template model. The mean fitting error for all

62 fitted skulls is below 0.5 mm.

Stacking the vertex coordinates of each fitted skull into column vectors s = (x1, y1, z1, . . ., xm,

ym, zm)> we can apply PCA to the set of fitted skulls (after mean-centering them by subtracting

their mean �s). This results in a matrix U = [u1, . . ., up−1] containing the principal components

ui in its columns. A particular skull S in the PCA space spanned by U can be represented as

SðaÞ ¼ �s þ Ua; ð2Þ

where a = (α1, . . ., αp−1)> contains the individual weights of the principal components of U.
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The parametric skull model (2) can be used to generate plausible skull variants as a linear com-

bination of the principal components, which is depicted exemplarily for the first two main

principal components in Fig 2.

We finally select 10 landmarks on the parametric skull model that are used to guide the

head fitting process in the automatic forensic facial reconstruction (see detailed explanation in

the section on head fitting).

Generating a statistic of facial soft tissue thickness

In a statistical evaluation process the distances between 43 corresponding skulls and heads

extracted from the CT scans are measured. To this end, we determine for each vertex of a fitted

skull the shortest distance to the surface of the extracted skin surface [16]. Finally, the mean

and standard deviation of the FSTT are computed per vertex. Fig 3 shows the mean skull �s
with color-coded mean and standard deviation of the obtained FSTT.

To obtain the FSTT data we often register our complete template skull to partial input

skulls, which, for instance, have holes in the bony structure or a missing upper part of the cal-

varia. Fig 4 (left) shows an example of our template skull fitted to a partial skull extracted from

Fig 2. Skull variants along the two principal components with the largest eigenvalues. We visualize �s þ a1u1 þ a2u2, where αi = ai � σi, i = 1,

2, is the weight containing the standard deviation σi to the corresponding eigenvector ui, and the factor ai 2 {−2, 0, 2}.

https://doi.org/10.1371/journal.pone.0210257.g002

Fig 3. Statistic of the FSTT on a mean skull. Mean and standard deviation of FSTT computed from the 43 CT scans.

https://doi.org/10.1371/journal.pone.0210257.g003
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CT data. To avoid bias caused by false FSTT measurements, we validate if a vertex of a fitted

skull corresponds to a surface point on the corresponding extracted partial skull. We exclude

all vertices of the former whose distance to the latter is larger than a given threshold (2 mm in

our implementation). This results in the validation mask depicted in Fig 4 (center), which is

used for the statistical evaluation. The number of FSTT measurements used for a particular

vertex in our statistic is visualized in Fig 4 (right). The facial skull is covered predominantly by

all 43 samples, whereas the upper part of the calvaria is covered by a few samples only.

The generated FSTT statistic is based on 43 different subjects (26 males and 17 females)

with a mean age of 28 years. Fig 5 presents the computed FSTT (see Fig 3) at some landmarks

commonly used in forensic reconstruction [17]. Our results for these landmarks fit well into

the range presented in [18].

Generating a parametric head model

Similar to the skull model, we generate the parametric head model by fitting a template head

to head scans of real subjects, which establishes correspondence between them, and then

perform statistical analysis using PCA. For model generation we employ the skin surfaces

extracted from the 43 CT scans used for building the FSTT statistics (26 male, 17 female).

However, since for some CT scans the nose tip or the upper part of the calvaria are cropped,

we bootstrap the model generation by first fitting the template head to a set of 39 optical sur-

face scans (20 male, 19 female) that represent complete heads. We generate a preliminary PCA

model from these complete surface scans and use it to fit to the incomplete CT scans, where it

fills the missing regions in a realistic manner. The final PCA model is then built from the tem-

plate fits to all 82 scans.

In the following, a head scan (extracted from CT or generated through optical scan) is

represented by its point set Q ¼ fq1; . . . ; qNg. Since the head models are skin surfaces only,

our template head is a surface triangle mesh consisting of n� 6 k vertices with positions

H ¼ fh1; . . . ; hng, as shown in Fig 1. The template fitting process consists of two stages, simi-

lar to the skull fitting:

1. We first optimize scaling, rotation, and translation of the template model to align it to the

point set Q by minimizing the sum of squared distances between points qc on the point set

Q and their corresponding points hc on the template model H using ICP [13].

2. After this coarse initialization, we perform a fine-scale non-rigid registration to update the

vertex positions H, such that the template model better fits the points Q. Following the

Fig 4. Basis for the statistical evaluation of the FSTT. From left to right: Example of a fitted skull (white) and corresponding extracted skull

(black wireframe), validation mask (corresponding to left), number of samples used for all vertices in the statistic of FSTT in Fig 3.

https://doi.org/10.1371/journal.pone.0210257.g004
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approach of [19], we minimize a non-linear objective function

EðHÞ ¼ EfitðHÞ þ lregEregðHprev;HÞ: ð3Þ

Fig 5. FSTT for commonly used midline and bilateral landmarks. Landmarks defined by [17] as produced by our method (red dots) in

relation to pooled data from a recent meta-analysis [18] (weighted mean ± weighted standard deviation as blue error bars).

https://doi.org/10.1371/journal.pone.0210257.g005
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The fitting term Efit penalizes squared distances between points qc on the point set Q and

corresponding points hc on the template model H:

Efit Hð Þ ¼
1

P
c2Cwc

X

c2C

wc khc � qck
2
: ð4Þ

The set of correspondences C consists mostly of closest point correspondences, which we con-

struct by finding for each scan point qc 2 Q its closest surface point hc on the template model,

and which we filter by pruning unreliable correspondences based on distance and normal

deviation thresholds. To allow for more precise fits, we extend these closest point correspon-

dences by 70 facial landmarks in the face region, on the ears, and on the lower jaw. These land-

marks are manually selected on the template model and on all scans to be fitted (note that this

manual work is necessary during model generation only). The per-correspondence weights wc

are used to give the landmarks a higher weight than the closest point correspondences, and to

assign a lower weight to surface regions that are not supposed to be fitted closely (e.g., hairs for

surface scans or CT artifacts due to teeth restorations).

The regularization term Ereg penalizes the geometric distortion of the undeformed model

Hprev (the result of the previous rigid/similarity transformation) to the deformed state H. Since

the template head is a surface mesh, we employ a discrete surface deformation model that min-

imizes bending, discretized by the squared deviation of the per-edge Laplacians

EregðHprev;HÞ ¼
1

P
e2EAe

X

e2E

Ae kD
ehðeÞ � ReD

ehprevðeÞk
2
: ð5Þ

Here, Ae is the area associated to edge e, and Re are per-edge rotations to best-fit deformed and

undeformed Laplacians (see [20] for details). In the spirit of non-rigid ICP [19] we alternat-

ingly compute correspondences and minimize (3), starting with a rather stiff surface that is

subsequently softened (by reducing λreg) to allow for more and more accurate fits. Whenever

λreg is decreased, we also update the rest state Hprev by the current deformed state H.

From the 39 fits to the complete optical surface scans we construct a preliminary parametric

head model. Similar to the skull model generation, we stack the vertex positions of each fitted

head h = (x1, y1, z1, . . ., xn, yn, zn)> and compute a PCA model of dimension d (d = 30 in our

case), such that we can write

HðbÞ ¼ �h þ Vb; ð6Þ

where �h is the mean head, V is the matrix containing the principal components in its d col-

umns, and b = (β1, . . ., βd) contains the PCA parameters representing the head.

With the preliminary PCA model at hand, we can now fit the template head to the incom-

plete skin surfaces extracted from CT scans, where regions of missing data are filled realisti-

cally by the PCA model. Fitting to a point set Q amounts to additionally optimizing the PCA

parameters b during the initial rigid/similarity transformation step. To this end, we minimize

squared distances of corresponding points, with a Tikhonov regularization ensuring plausible

weights:

EPCAðbÞ ¼
1

P
c2Cwc

X

c2C

wc k
�hc þ Vcb � qck

2
þ
ltik

d

Xd

k¼1

bk

sk

� �2

: ð7Þ

In the fitting term, Vc and �hc are the rows of V and �h representing the point hc corresponding

to qc, that is hc ¼
�hc þ Vcb. We use λtik = 1 � 10−4 for the regularization term, where s2

k is the

variance of the kth principal component. The optimal weights b are found by solving the linear
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least-squares problem (7). In step (1) of the head fitting process we optimize for alignment

(scaling, rotation, translation) and for shape (PCA weights) in an alternating manner until

convergence. Step (2), the non-rigid registration, is then performed the same way as without

the PCA model.

We finally combine the fits to the 43 CT scans and to the 39 surface scans into a single

parametric PCA head model. The variation of this model along the first two principal directions

is shown in Fig 6. While the first principal component basically characterizes head size, the sec-

ond principal component describes strong variation of head shape within our training data.

In order to analyze the accuracy of our head fitting process, we evaluate the RMS error for

all 82 head scans:

rmsðH;QÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P
c2Cwc

X

c2C
wc khc � qck

2

s

:

This is similar to (4) and measures the distance between corresponding point pairs from H
and Q. Depending on our input data, we weight down regions that should not be fitted closely

(hairs, CT artifacts), such that these regions do not influence the error measure too much.

Averaging this error over all 82 scans gives an overall fitting error of 0.19 mm. Note that we

prune unreliable correspondences above a distance threshold of 2 mm, which therefore are

not considered for error evaluation. However, since the overall fitting error is an order of mag-

nitude smaller, it is not significantly influenced by this pruning.

As done before for the parametric skull model, we also manually select 10 corresponding

landmarks on the parametric head model, which are used for the automatic forensic facial

reconstruction.

Automatic forensic facial reconstruction

Our automatic forensic facial reconstruction process is based on the generated parametric

skull model, the statistic of FSTT, and the parametric head model, described in the previous

Fig 6. Head variants along the two principal components with the largest eigenvalues. We visualize �h þ b1v1 þ b2v2, where βi = bi � σi, i = 1,

2, is the weight containing the standard deviation σi to the corresponding eigenvector vi, and the factor bi 2 {−2, 0, 2}.

https://doi.org/10.1371/journal.pone.0210257.g006
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sections. In the following, we use an anonymized CT scan of a female subject with an age of 21

years to demonstrate the quality of our forensic facial reconstruction. This CT scan was not

used for constructing the parametric skull model, head model, or FSTT statistic. The recon-

struction process runs in three steps as shown in Fig 7 and is explained in the following

sections.

Skull fitting

Given scanned skull remains as input, the skull fitting process is very similar to the registration

process described in the section about generating the parametric skull model. The main differ-

ence is that we are finally able to utilize the generated parametric skull model (2) as a starting

point for the subsequent deformation steps. First, we compute a shape-preserving transforma-

tion which aligns the parametric skull model to the given skull by using the global registration

approach presented in [12]. To further optimize the alignment we search for reliable point cor-

respondences C between the given skull and the parametric skull model and compute the opti-

mal scaling, rotation, and translation in closed form [21]. After optimizing the alignment, we

continue with optimizing the shape. Similar to the PCA fitting of heads (7) we are looking for

the coefficient vector a of the parametric skull model (2) with

EPCAðaÞ ¼
1

jCj

X

c2C

k�sc þ Uca � pck
2
þ
ltik

d

Xd

k¼1

ak
sk

� �2

; ð8Þ

where λtik = 1 � 10−3, s2
k is the variance of the kth principal component k of the skull model and

d is the number of employed PCA components. Optimization for alignment and shape is alter-

nated until convergence, and before each optimization (alignment or shape) we recompute

point correspondences C. After this initialization, we continue with non-rigid registration by

minimizing (1).

Adding facial soft tissue thickness

Next we assign FSTT values based on our FSTT statistic to the fitting result of a given skull. An

important advantage of our approach is that our FSTT statistics only contains scalar FSTT val-

ues without a particular measurement direction, such as skull normal or skin normal, since

these directions are hard to determine in a robust manner due to noise or fitting errors.

In our case the measured skin position, which is the closest point on the skin surface for a ver-

tex of the skull, is located on a sphere centered at the skull vertex with radius being the

Fig 7. Processing steps of the automatic forensic facial reconstruction. The reconstruction of a face from a given input skull utilizing the

generated parametric skull model, the statistic of FSTT, and the parametric head model.

https://doi.org/10.1371/journal.pone.0210257.g007
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corresponding FSTT value. Fig 8 (left) shows a side view of the FSTT measurement results for

few preselected points on the midline.

Knowing both the skull and the skin surface for a subject allows the computation of the

actual FSTT. Fig 8 (center and right) shows an overlay of the extracted skin surface and the

union of all spheres centered at the skull vertices and having as radii the appropriate FSTT val-

ues, which we call the sphere model. The depicted sphere model is based on the exact FSTT of

this subject and provides a visually good approximation of the real skin surface. Certainly,

since nose and ears do not have a directly underlying bony structure, this method does not

provide this kind of information. Approaches for prediction of nasal morphology, such as [22,

23], give some hints about the nose, e.g., the approximated position of the nose tip, but do not

really create an individual nose shape for a particular subject. In a real application scenario the

age, sex and ancestry of the individual are derived from its skeleton remains and a disaggre-

gated FSTT statistic is used for reconstruction. In our case the sample size is too small to build

specific FSTT statistics, so as an approximation we simply build the sphere model based on the

mean of our general FSTT statistics (cf. Fig 7).

Head fitting

Given a specific sphere model, the next step is to derive a facial profile from this data. For this

purpose we deform our parametric head model to the (under-specified) sphere model. The fit-

ting procedure is very similar to the generation of our parametric head model. Similar as

before, we initially align the sphere model with the parametric head model. However, this time

the landmarks on the fitted skull, which have been selected during the skull model generation,

are projected automatically onto the surface of the sphere model as depicted in Fig 9.

The projected landmarks give us robust correspondences on the parametric head model.

They are automatically determined and replace the manually selected landmarks used during

model generation. We start by optimizing scaling, rotation, and translation, as well as PCA

parameters based on the set of landmarks. This initialization is followed by a fine-scale non-

rigid registration based on landmarks and closest point correspondences between the paramet-

ric head model and the given sphere model.

While this process is very similar to the model generation phase, it differs in the following

point: We use the per-correspondence weights wc in the fitting energy (4) to give points on the

Fig 8. FSTT for a given individual visualized as sphere model. At each skull vertex a sphere with radius of the actual FSTT value from the

ground truth data set is drawn. From left to right: Some example spheres for points on the midline, union of all spheres (in green) with original

skin surface as overlay.

https://doi.org/10.1371/journal.pone.0210257.g008

A method for automatic forensic facial reconstruction based on dense statistics of soft tissue thickness

PLOS ONE | https://doi.org/10.1371/journal.pone.0210257 January 23, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0210257.g008
https://doi.org/10.1371/journal.pone.0210257


outer surface of the sphere model more influence than points in the interior, since the former

can be considered as an approximation to the skin surface that we intend to fit. To this end, we

first identify if a point qc on the sphere model is outside from its corresponding point hc on the

template head by checking n>c ðqc � hcÞ � 0, where nc is the normal vector of hc. For such cor-

respondences, we set wc = 1 + 108 � khc − qck/B, where B is the bounding box size of model.

As mentioned before, nose and ears do not have a directly underlying bony structure. Thus

the sphere models do not provide any data for such regions. Utilizing a parametric head model

allows the reconstruction of nose and ears in a statistical sense, i.e., as an element related to the

underlying PCA space.

Generating plausible head variants

The simplest method for facial reconstruction is to fit the template head to a sphere model

based on the mean of the FSTT statistics. However, this approximation will rarely match a spe-

cific subject. To get a reliable FSTT diversification for an individual, we again adopt the PCA

approach creating a parametric FSTT model

FSTTðcÞ ¼ �t þWc ð9Þ

where �t is the mean FSTT, W contains the principal components of the FSTT, and c = (γ1, . . .,

γr−1) contains the PCA parameters. Using this parametric FSTT model, we can create plausible

FSTT variants for the given input skull. Since the CT scans used for the statistic of FSTT are

mostly missing the upper part of the calvaria, the FSTT values obtained in this area are mainly

very large and invalid. Thus we omit this area for the construction of our parametric FSTT

model (9), which results in partial sphere models. Fig 10 (top) depicts a subset of the partial

sphere models along the two principal components with the largest eigenvalues for the given

input skull.

Our head fitting process described above can be applied to the partial sphere models with-

out special adjustments. As depicted in Fig 10 (bottom) our approach is able to generate plau-

sible head variants based on the corresponding sphere models in Fig 10 (top). As we are using

a parametric model of the complete head, the missing parts like nose, ears and especially the

Fig 9. Landmarks for the automatic facial reconstruction. From left to right: Mean skull with preselected landmarks,

sphere model based on mean FSTT with projected landmarks, and mean head with preselected landmarks. The

landmarks consist of two midline landmarks and four bilateral landmarks, which are selected once on the parametric

skull and head model after model generation. The landmarks are based on the proposed nomenclature of [17]: nasion
and menton (from craniometry) and mid-supraorbitale and porion (from craniometry) as well as ciliare lateralis and

ciliare medialis (from capulometric) and their corresponding counterparts on skull respectively skin surface.

https://doi.org/10.1371/journal.pone.0210257.g009
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skin surface above the calvaria, are reconstructed in a statistical sense, i.e., as an element related

to the underlying PCA space.

Discussion and conclusion

In this paper we presented an automated method based on a parametric skull model, a

parametric head model, and a statistic of FSTT for reconstructing the face for a given skull.

The models we are using were derived from head CT scans taken from an existing CT image

repository and from 3D surface scans of real subjects. Our approach has three main outcomes:

Fig 10. Variants of plausible FSTT distributions for the anonymized given skull. Top: Partial sphere model variants along the two principal

components with the largest eigenvalues: We visualize �t þ g1w1 þ g2w2, where γi = ci � σi, i = 1, 2, is the weight containing the standard deviation

σi to the corresponding eigenvector wi, and the factor ci 2 {−2, 0, 2}. Bottom: Head model fitted to these partial sphere models.

https://doi.org/10.1371/journal.pone.0210257.g010
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(i) a dense map of FSTT (i.e., a soft tissue layer), (ii) a visual presentation of a statistically prob-

able head based on a statistic of FSTT and a parametric head model, and (iii) a method to gen-

erate plausible head or face variants, respectively.

The main advantage of our approach over landmark-based FSTT measurements (see

references in [18]) is the density of the FSTT map without the need of error-prone normal

information. For any vertex of the parametric skull model a FSTT value can be derived from

the statistic of FSTT. It is important to note that the statistical evaluation of the FSTT is fully

automatic without any manual interaction. This is different from other FSTT assessments

based on CT data, which often still rely on error-prone manual measurements (see, e.g., [24]).

The fully automated method introduced here can help to generate a more accurate database in

the future, largely overcoming the accuracy issues well-known for manual, landmark-based

FSTT assessments [8]. However, as our method is based on CT scans, it is still prone to typical

artifacts and gravity effects due to supine patient position. Although our statistic of FSTT so

far is generated from only 43 CT scans, the data we derived (Fig 5) clearly indicate good agree-

ment with data just recently published in a meta-analysis [18]. If enough appropriate CT scans

are available, rapid processing by means of an automated pipeline can aid the creation of a

large statistical database. It seems most likely that methods such as the one introduced here

constitute the future for the generation of statistical models from 3D medical imagery. There-

fore, enlarging the database will be part of our future work to generate a more precise statistic.

A statistic of FSTT plays a significant role in facial approximation [8] and is also an integral

part of modern orthodontic treatment planning [24, 25]. For forensic reconstruction, it forms

the basis for further steps in the reconstruction process. The advantage of our approach in

comparison to other automated methods [3–7] is that our facial reconstruction process is fully

automated. The only manual steps done in our approach are during the model generation pro-

cesses. As mentioned before, our statistic of FSTT is independent of the measurement direc-

tion and thus we utilize sphere models in the reconstruction process. Therefore, error-prone

strategies such as averaging over normal vectors to define a measurement direction are

completely avoided. Moreover, our parametric FSTT model allows us to create plausible head

variants in a statistical sense, which do not require any prior knowledge.

Subsequently, future work will concentrate on merging the two pathways (parametric skull

and head model) by integrating all statistical information into one combined model. This

model could then be used for various purposes, such as forensic applications, demonstrations

for medical procedures, yet also for realistic animations in movies.

In conclusion, the automated technique suggested in this paper aids recognition of

unknown skull remains (e.g. see Fig 11) by providing statistical estimates derived from a CT

head database and 3D surface scans. By creating a range of plausible heads in the sense of

Fig 11. Skull fitting results for a given skull. Extracted skull from CT (left) and fitted skull (right).

https://doi.org/10.1371/journal.pone.0210257.g011
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statistical estimates, a “visual guess” of likely heads can be used for recognition of the individ-

ual represented by the unknown skull. Compared to clay-based sculpturing, which depends on

the ability of the operator, our method provides a good approximation of the facial skin surface

in a statistical sense (see Fig 12). Nevertheless, the quality of the reconstruction depends on the

sample size of the statistic. In order to use additional descriptive factors (e.g., age, sex, ancestry,

weight, or skeletal classes [26]), a larger sample size representing the variance of each of the

factors is required. We thus aim to enlarge our skull and head database to further elaborate

on the method introduced here. Part of our future work is the evaluation of accuracy and

Fig 12. Head fittings with color coded distances (in mm) to original skin surface extracted from CT (last column). First three columns

from left to right: Fitted head to sphere model based on a) mean FSTT (RMSE 4.04 mm), b) best fit in PCA space (RMSE 1.99 mm), and c)

original FSTT (RMSE 1.32 mm).

https://doi.org/10.1371/journal.pone.0210257.g012
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recognition of a reconstruction based on our method. Inspired by the approach of Miranda

[27], we are planning to collect existing CT datasets and frontal standardized photographs,

which are voluntarily donated by subjects for publication and the assessment of accuracy as

well as recognition.
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