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Abstract

The high failure rate of therapeutics showing promise in mouse models to translate to

patients is a pressing challenge in biomedical science. Though retrospective studies have

examined the fidelity of mouse models to their respective human conditions, approaches for

prospective translation of insights from mouse models to patients remain relatively unex-

plored. Here, we develop a semi-supervised learning approach for inference of disease-

associated human differentially expressed genes and pathways from mouse model experi-

ments. We examined 36 transcriptomic case studies where comparable phenotypes were

available for mouse and human inflammatory diseases and assessed multiple computa-

tional approaches for inferring human biology from mouse datasets. We found that semi-

supervised training of a neural network identified significantly more true human biological

associations than interpreting mouse experiments directly. Evaluating the experimental

design of mouse experiments where our model was most successful revealed principles of

experimental design that may improve translational performance. Our study shows that

when prospectively evaluating biological associations in mouse studies, semi-supervised

learning approaches, combining mouse and human data for biological inference, provide

the most accurate assessment of human in vivo disease processes. Finally, we proffer a

delineation of four categories of model system-to-human “Translation Problems” defined by

the resolution and coverage of the datasets available for molecular insight translation and

suggest that the task of translating insights from model systems to human disease contexts

may be better accomplished by a combination of translation-minded experimental design

and computational approaches.
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Author summary

Empirical comparison of genomic responses in mouse models and human disease con-

texts is not sufficient for addressing the challenge of prospective translation from mouse

models to human disease contexts. We address this challenge by developing a semi-super-

vised machine learning approach that combines supervised modeling of mouse datasets

with unsupervised modeling of human disease-context datasets to predict human in vivo
differentially expressed genes and enriched pathways. Semi-supervised training of a feed

forward neural network was the most efficacious model for translating experimentally

derived mouse biological associations to the human in vivo disease context. We find that

computational generalization of signaling insights substantially improves upon direct gen-

eralization of mouse experimental insights and argue that such approaches can facilitate

more clinically impactful translation of insights from preclinical studies in model systems

to patients.

Introduction

Generalization of insights from disease model systems to the human in vivo context remains a

persistent challenge in biomedical science. The association of molecular features with a pheno-

type in a model system often does not hold true in the corresponding human indication, due

to some combination of the fidelity of the experimental system to human in vivo biology and

the inherent complexity of human disorders [1–7]. Though it is now routine to collect clinical

samples from patients and associate molecular features with clinical phenotypes, there are dis-

crepancies between the phenotypes measurable in patients and those investigable by use of

model systems. Outside of a clinical trial, novel perturbations to the disease system cannot be

directly investigated in the patient in vivo context, whereas model systems can be used to study

the impact of innumerable perturbations to the disease system and to associate molecular fea-

tures with these responses. As a consequence of this discrepancy, murine and other model sys-

tems of disease are likely to remain an important part of biomedical research. Therefore,

methods for improving generalizability of mouse-derived molecular signatures to human in
vivo contexts are needed for more impactful translational research.

The utility of mouse models for studying inflammatory pathologies was recently assessed

by a pair of studies examining the correspondence between gene expression in murine models

of inflammatory pathologies and human contexts [1, 2]. In these studies, mouse molecular and

phenotype data were matched to human in vivo molecular and phenotype data, enabling direct

comparison of genomic responses between mice and humans. These studies analyzed the

same datasets and came to conflicting conclusions about the relevance of mouse models for

inflammatory disease research, with Seok et al. concluding that mouse models poorly mimic

human pathologies and Takao et al. concluding that mouse models usefully mimic human

pathologies [1, 2]. A key methodological difference between the two studies was that Takao

et al. examined genes significantly changed in both contexts [1, 2]. However, in prospective

translational studies, the corresponding mouse and human in vivo datasets and perturbations

are rarely available making accurate pre-selection of genes that change in both human and

mouse contexts unlikely. Therefore, prospective studies will often need to proceed on the basis

of molecular changes in the model system alone.

The aim of our study is to develop a machine learning approach to address the challenge of

prospective inference of human biology from model systems. Here, we consider a machine

learning approach successful if it correctly predicts a higher proportion of human differentially
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expressed genes (DEG) and enriched signaling pathways than implicated by the corresponding

mouse model. The essence of our approach is to apply a machine learning classifier to assign

predicted phenotypes, derived from a mouse dataset, to molecular datasets of disease-context

human samples and to infer human DEGs and enriched pathways downstream of the machine

learning model using these inferred phenotypes. We assessed our approach by testing it on the

datasets from the Seok and Takao studies, where mouse phenotypes and gene expression data

were matched to patient clinical phenotypes and gene expression data [1, 2, 8–20].

While mouse experiments alone failed to capture a large portion of human in vivo biology,

using these datasets to train computational models produced more precise and comprehensive

predictions of human in vivo biology. In particular, semi-supervised training of a neural net-

work identified significantly more human in vivo DEGs and pathways than mouse models

alone or other machine learning approaches examined here. We identify aspects of model sys-

tem study design that influence the performance of our neural network and show that the

added benefit of our method is driven by recovery of biological processes not present in the

mouse disease models. Our results suggest that computational generalization of insights from

mouse model systems better predicts human in vivo disease biology and that such approaches

may facilitate more clinically impactful translation of model system insights.

Results

Developing a framework for mouse-to-human genomic insight translation

We assembled a cohort of mouse-to-human translation case studies from the datasets analyzed

in Seok et al. and Takao et al. (Table 1) [1] [2]. We defined case studies as all pairs of mouse

(training dataset) and human (test dataset) datasets for the same disease condition. By con-

structing case studies in this manner, multiple mouse strains and experimental protocols could

be compared to different presentations of that same disease in independent human cohorts.

The final cohort consisted of 36 mouse-to-human translation case studies in which mouse-to-

human biological correspondence and machine learning translation approaches could be

assessed (Table 2).

Baseline correspondence between each mouse model and human dataset was assessed by

differential expression analysis and Gene Ontology (GO) pathway enrichment analysis of dif-

ferentially expressed, homologous mouse and human transcripts. We computed the precision

and recall of the DEGs and pathways with respect to correspondence between mouse and

human datasets and summarized these quantities using two F-scores. The F-score gave an

equal weighting on the correctness of DEG and pathway predictions (precision) and how com-

prehensive (recall) the predictions were relative to the human-predicted associations. The F-

scores of the machine learning model predictions were calculated by comparing the algo-

rithm-predicted human DEGs and pathways to those derived using the true human pheno-

types. The mouse predicted DEGs and enriched pathways constituted the baseline

performance against which our machine-learning approaches were compared.

We implemented supervised and semi-supervised versions of k-nearest neighbors (KNN),

support vector machine (SVM), random forest (RF), and neural network (NN) algorithms

using Lasso or elastic net (EN) regularization as a feature selection method. By exploring a

range of machine learning models with different model structure and varying the regulariza-

tion parameter α, we were able to assess the effect of model structure and feature selection

stringency on performance. In supervised models, a machine learning classifier was trained on

the mouse dataset and applied to the human test dataset to infer predicted phenotypes from

which we inferred human DEGs and enriched pathways. In semi-supervised models, a super-

vised classifier was initially trained on the mouse data alone to predict the human samples.
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Following this first step, the predicted human samples with the highest classification confi-

dence were selected to create an augmented mouse-human training set (Fig 1). Retraining

with the predicted human samples allowed us to humanize the new classifier using unsuper-

vised information from the human test dataset. The new classifier was then used to reclassify

the human samples. This procedure of retraining, prediction, merging predicted human sam-

ples with the training set, and dropping the confidence threshold each iteration terminated

when the lowered confidence threshold resulted in merging all human samples with the train-

ing set. The phenotypes associated with the human samples at this step were taken as the final

semi-supervised model prediction from which predicted human DEGs and enriched pathways

were inferred. Model DEG and pathway F-scores were computed by comparing the algorithm-

predicted DEGs and pathways, using computationally inferred human phenotypes on the

human test data, to those identified when using the true phenotypes on the human test data.

Semi-supervised training of a neural network is the most broadly effective

inter-species translation model

We compared the performance of 1,728 machine learning classifiers to the mouse-predicted

DEG and pathway associations. Classifier performance was summarized by the area under the

Table 1. Cohort of mouse and human inflammatory pathology microarray datasets. Datasets are identified by Gene Expression Omnibus (GEO) accession numbers

and microarray platorms. Conditions, sample sizes, and tissue source for each dataset are shown. Inflammatory disease inductions include lipopolysaccharide (LPS), cecal

ligation and puncture (CLP), Streptococcus Pneumoniae Serotype 2 (SPS2), and Staphylococcus Aureus (SA) exposure.

Species Disease GEO Accession Microarray Platform(s) Conditions and Sample Sizes Tissue

Human Burn GSE37069 GPL570 Control (n = 37)

Burn (n = 553)

White Blood Cells

Human Trauma GSE36809 GPL570 Control (n = 37)

Trauma (n = 216)

White Blood Cells

Human Endotoxemia GSE3284 GPL96

GPL 97

Control (n = 16)

Endotoxin (n = 76)

Whole Blood

Human Sepsis GSE13904 GPL570 Control (n = 18)

Sepsis (n = 158)

Whole Blood

Human Sepsis GSE9960 GPL570 Control (n = 16)

Sepsis (n = 54)

Peripheral Blood Mononuclear Cells

Human Sepsis GSE28750 GPL570 Control (n = 20)

Sepsis (n = 21)

Whole Blood

Human Sepsis GSE13015 GPL6106

GPL6947

Control (n = 29)

Sepsis (n = 77)

Whole Blood

Mouse (C57BL/6J) Burn GSE7404 GPL1261 Control (n = 16)

Burn (n = 16)

Leukocytes

Mouse

(C57BL/6J)

Trauma GSE7404 GPL1261 Control (n = 16)

Trauma (n = 16)

Leukocytes

Mouse

(C57BL/6J)

Endotoxemia: LPS GSE7404 GPL1261 Control (n = 8)

Endotoxemia (n = 8)

Leukocytes

Mouse

(C57BL/6J)

Endotoxemia: LPS GSE5663 GPL81 Control (n = 4)

Endotoxemia (n = 5)

Blood

Mouse

(C57BL/6J)

Sepsis: CLP GSE5663 GPL81 Control (n = 4)

Mild Sepsis (n = 5)

Sepsis (n = 5)

Blood

Mouse

(C57BL/6J)

Sepsis: SPS2 GSE26472 GPL6778 Control (n = 3)

Sepsis (n = 8)

Blood

Mouse

(A/J and C57BL/6J)

Sepsis: SA GSE19668 GPL1261 Control A/J (n = 5)

Control C57BL6J (n = 5)

Sepsis A/J (n = 20)

Sepsis C57BL6J (n = 20)

Blood

https://doi.org/10.1371/journal.pcbi.1006286.t001
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receiver operator characteristic curve (AUC) for the accuracy of the predicted human pheno-

types and the F-score of predicted human DEGs and pathways. A generalized linear model

(GLM) was trained to assess the impact of Lasso/EN regularization α values and the type of

machine learning classifier on the AUC and DEG F-score performance metrics. Neither the

value of α (p = 0.374), nor the type of machine learning approach (p = 0.874) significantly

impacted the AUC (S1 Table). However, both α (p = 0.0000215) and the type of machine

learning method (p = 0.000902) significantly impacted the F-score (S2 Table). The significance

of the regularization parameter and classifier type for F-score and not AUC suggests that

Table 2. Enumeration of mouse-to-human translation case studies. Case studies are defined by all combinations of

mouse and human datasets (GEO-GSE number) for a given mouse strain, microarray platform (GPL number), and

disease induction method.

Disease Case Study Mouse (Training Set) GEO Accession Human (Test Set) GEO Accession

1. Burn GSE7404 GSE37069

2. Trauma GSE7404 GSE36809

3. Endotoxemia GSE7404 GSE3284 (GPL96)

4. Endotoxemia GSE5663 GSE3284 (GPL96)

5. Endotoxemia GSE7404 GSE3284 (GPL97)

6. Endotoxemia GSE5663 GSE3284 (GPL97)

7. Sepsis GSE5663 (Mild CLP Sepsis) GSE13904

8. Sepsis GSE5663 (Mild CLP Sepsis) GSE9960

9. Sepsis GSE5663 (Mild CLP Sepsis) GSE28750

10. Sepsis GSE5663 (Mild CLP Sepsis) GSE13015 (GPL6947)

11. Sepsis GSE5663 (Mild CLP Sepsis) GSE13015 (GPL6106)

12. Sepsis GSE5663 (CLP Sepsis) GSE13904

13. Sepsis GSE5663 (CLP Sepsis) GSE9960

14. Sepsis GSE5663 (CLP Sepsis) GSE28750

15. Sepsis GSE5663 (CLP Sepsis) GSE13015 (GPL6947)

16. Sepsis GSE5663 (CLP Sepsis) GSE13015 (GPL6106)

17. Sepsis GSE26472 (SPS2 Sepsis) GSE13904

18. Sepsis GSE26472 (SPS2 Sepsis) GSE9960

19. Sepsis GSE26472 (SPS2 Sepsis) GSE28750

20. Sepsis GSE26472 (SPS2 Sepsis) GSE13015 (GPL6947)

21. Sepsis GSE26472 (SPS2 Sepsis) GSE13015 (GPL6106)

22. Sepsis GSE19668 (AJ Strain, SA) GSE13904

23. Sepsis GSE19668 (AJ Strain, SA) GSE9960

24. Sepsis GSE19668 (AJ Strain, SA) GSE28750

25. Sepsis GSE19668 (AJ Strain, SA) GSE13015 (GPL6947)

26. Sepsis GSE19668 (AJ Strain, SA) GSE13015 (GPL6106)

27. Sepsis GSE19668 (C57 Strain, SA) GSE13904

28. Sepsis GSE19668 (C57 Strain, SA) GSE9960

29. Sepsis GSE19668 (C57 Strain, SA) GSE28750

30. Sepsis GSE19668 (C57 Strain, SA) GSE13015 (GPL6947)

31. Sepsis GSE19668 (C57 Strain, SA) GSE13015 (GPL6106)

32. Sepsis GSE19668 (C57 and AJ Strains, SA) GSE13904

33. Sepsis GSE19668 (C57 and AJ Strains, SA) GSE9960

34. Sepsis GSE19668 (C57 and AJ Strains, SA) GSE28750

35. Sepsis GSE19668 (C57 and AJ Strains, SA) GSE13015 (GPL6947)

36. Sepsis GSE19668 (C57 and AJ Strains, SA) GSE13015 (GPL6106)

https://doi.org/10.1371/journal.pcbi.1006286.t002
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though each model had comparable accuracy, the biological relevance of the predicted pheno-

types was significantly influenced by feature selection stringency and machine learning model

structure.

Since the F-score directly measured the biological relevance of the predictions made by a

particular algorithm, we focused on it as the relevant performance metric, emphasizing gain-

ing biological insights over mere numerical predictive capacity. We computed the 95% confi-

dence intervals of the F-scores for each machine learning approach and mouse model across

all case studies and regularization parameters (Fig 2A). The overall performance of mouse-

derived DEGs for predicting human DEGs was low (F-score 95% CI [0.082, 0.158]) and

though many models significantly outperformed the mouse, the F-scores were still somewhat

low indicating an imbalance in precision and recall in some case studies. We investigated the

role that the experimental design of the mouse cohorts may be contributing to this imbalance

using a GLM and found that smaller sample sizes and larger class imbalances in the mouse

datasets resulted in significantly lower model F-scores (S3 Table). Though most machine

learning models balanced precision and recall, we noted a cluster of models with precision

< 0.2 and recall> 0.3 (S1 Fig). All of these could be attributed to case studies in which human

dataset GSE9960 was the test dataset (Table 2). Here, the mouse training datasets were com-

prised of mouse leukocytes and the poor performance of the models suggests that mouse leu-

kocytes are not reflective of human peripheral blood mononuclear cell (PBMC) biology. We

retained case studies with GSE9960 to examine whether our models could add translational

value despite this inter-tissue mouse and human discrepancy.

The semi-supervised NN (ssNN), semi-supervised RF (ssRF), KNN, SVM, and RF outper-

formed the mouse model, with similar behavior found for the precision and recall (Fig 2A, S4

and S5 Tables). We found that ssNN F-scores were significantly higher than all other models

indicating it was the most successful model (95% CI [0.253, 0.342], p< 0.05). Finally, we

examined the performance of the ssNN across all case studies for each setting of the regulariza-

tion parameter and found Lasso regularization (α = 1.0) had the highest F-score across all case

studies (median F-score = 0.281) (S6 Table). Based upon the GLM, F-scores, and performance

at each value of α, we concluded that the ssNN with Lasso regularization was the most broadly

effective approach for prediction of human DEGs.

Having identified the ssNN as the most broadly effective model, we examined the genes

selected in the semi-supervised training procedure (Fig 2B and 2C, S7 Table). Most of the

genes selected by the ssNN were not concordantly differentially expressed in mouse and

human contexts (Fig 2B). The genes most frequently included in the ssNN models tended to

have either strong differential regulation in the human context alone (e.g LCN2) or be among

those genes that exhibit concordant differential expression in both mouse and human contexts

(e.g. ARG1) (Fig 2C). Recall that the semi-supervised training procedure begins with a model

and features informed only by the mouse training dataset, demonstrated by the cluster of

genes exhibiting large mouse fold changes. That these genes have correspondingly small

human fold changes suggests that the neural network is responsive to the addition of predicted

human samples in the training procedure and is able to prioritize those genes that are relevant

to the human context and ignore those relevant only in the mouse context (Fig 2B and 2C).

Fig 1. Semi-supervised learning approach to inter-species translation. Semi-supervised learning begins by training an initial supervised model on the mouse

data alone and applying the model to a human test data. Human samples with the highest prediction confidence are used to create an augmented training dataset

of mouse and human samples with predicted phenotypes. A new model is trained on this augmented training set and applied to reclassify the human samples.

Predictions are finalized when all human samples are merged with the training set. Predicted human differentially expressed genes and enriched pathways are

validated against genes and pathways identified using the true human phenotypes.

https://doi.org/10.1371/journal.pcbi.1006286.g001
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We next compared the DEGs and pathways predicted by the ssNN and mouse models in

each case study (Fig 2D, S8 Table). In most cases, the mouse pathway F-score is higher than

the DEG F-score indicating that the mouse models considered here are more predictive of

human pathway function than differential expression events (Fig 2D). The correspondence

between the enriched pathways identified by mouse models and human in vivo contexts was

relatively consistent across disease indications, (Fig 2D), suggesting that mouse models of

inflammatory pathologies recapitulate similar proportions of human in vivo molecular biology

across indications independent of disease etiology complexity.

Fig 2. Semi-supervised training of a neural network is the most broadly effective computational translation approach. (A) 95% confidence intervals of the DEG F-

scores of each machine learning approach across all regularization parameters and case studies. The average F-score is denoted in the confidence interval. (B) Log2 fold

changes of genes included in the ssNN model compared between mouse and human contexts. (C) Frequency of genes included in more than three ssNN models across

case studies. (D) Comparison of DEG and pathway F-scores of mouse models and ssNN delineated by case study and disease context.

https://doi.org/10.1371/journal.pcbi.1006286.g002
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Notable exceptions to this pattern of mouse-human pathway correspondence were the

endotoxemia and cecal ligation and puncture (CLP) mouse models, none of which, had any

corresponding human DEGs at permissive statistical thresholds (WMW p< 0.05, FDR

q< 0.25) (Fig 2D). Despite this, in 9 of 14 endotoxemia or CLP mouse cases, the ssNN charac-

terized a large proportion of human sepsis biology despite being trained on nonrepresentative

mouse models (Fig 2D). Similarly, in 5 of 6 cases where the human PBMC dataset was the test

dataset and mouse leukocyte gene expression was the training set, the ssNN equaled or sur-

passed the mouse. These results indicate that the semi-supervised approach provided substan-

tial benefit when mouse models, such as CLP-driven sepsis and LPS stimulated endotoxemia,

did not recapitulate molecular features of human disease biology.

In total, the ssNN predicted an equal or greater proportion of human enriched pathways in

29 of 36 case studies (Fig 2D). In the other cases, the mouse models of Streptococcus Pneumo-
niae Serotype 2 (SPS2) and Staphylococcus Aureus (SA) driven sepsis outperformed the ssNN

in particular human cohorts. A single human sepsis dataset, GSE13015, where many of the

patients had other infections, was implicated in 3 of these 7 case studies [9]. This suggests that

the C57 strain mouse with an SA or SPS2-driven sepsis is an unusually satisfactory direct

model for human sepsis with other infectious complications. The ssNN may have failed to out-

perform the mouse in these cases due to the heterogeneity of infections in the human cohort,

an interpretation supported by the fact that the ssNN outperforms the combined mouse cohort

by a wide margin when the AJ and C57 mouse models are combined into a single training

cohort (Fig 2D). Therefore, when predicting biological associations in a heterogeneous human

cohort, the ssNN performs better when trained on a heterogeneous mouse cohort.

The semi supervised neural network improves comprehensiveness of

translating human in vivo pathways in sepsis

This diversity of sepsis mouse models in our cohort made it possible to assess the correspon-

dence of different protocols for generating sepsis mouse models to the human disease context.

While CLP mouse models failed to identify any DEGs, the SPS2 and SA sepsis mouse models

were both partially predictive of DEGs and pathways in human sepsis cohorts. The SA mouse

sepsis cohort was comprised of two mouse strains, the highly susceptible A/J mouse strain and

the somewhat resistant C57BL/6J strain [8]. We were therefore able to compare four cohorts

of sepsis models (SPS2- C57BL/6J, SA-A/J, SA-C57BL6J, and SA-mixed (A/J and C57BL6J)) in

order to identify the most representative mouse models of clinical sepsis. Since pathway pre-

dictions had a greater correspondence to human sepsis than DEGs alone, we compared the

pathway associations derived from each sepsis mouse model to one another to identify com-

mon and distinguishing features of each model (Fig 3A). In total, 442 pathways and processes

were enriched across all human sepsis cohorts and multiple mouse sepsis models correctly pre-

dicted subsets of these pathways. All mouse models and strains correctly identified a set of 112

pathways including signaling by FGFR1, FGFR2, FGFR3, and FGFR4, and MAPK1 signaling

(S9 Table). This pathway signature of human sepsis appears to be highly reproducible in multi-

ple mouse sepsis models, rendering it a stable signature for assessing therapeutic interventions

and benchmarking mouse sepsis models against human data.

Examining mouse sepsis model F-scores by component precision and recall revealed that

while aggregating predictions across multiple mouse models improves the coverage of human

sepsis pathway predicted, it simultaneously degrades the precision of these pathway signatures

and ultimately only accounts for half of the totality of human in vivo sepsis signaling (Fig 3B).

This contrasts with our finding that increasing the heterogeneity of the mouse cohort

improved the predictive power of the ssNN suggesting that a heterogeneous mouse cohort
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contains latent features that the ssNN detects and incorporates into its predictions of human

in vivo pathways. Therefore, a key limitation of these sepsis mouse models appears to be that

they lack in depth and correspondence of biological functions to the processes of human in
vivo sepsis and that the ssNN is able to recover this missing information through integration

with human datasets.

We then compared the combined pathway predictions of all mouse sepsis models to the

predictions of the ssNN across all sepsis cases to assess correspondence with human in vivo
sepsis pathway signatures (Fig 3C). The mouse sepsis models confirmed two pathways that the

ssNN missed: the CD28-dependent VAV1 pathway and the oxidative stress induced senes-

cence pathway. The oxidative stress senescence pathway was implicated by both of the SA

mouse models in isolation, but not the mixed cohort, while the CD28-dependent VAV1 path-

way was specifically implicated in the C57 strain. Use of a CD28 mimetic peptide has been

shown to increase survival in gram-negative and polymicrobial models of mouse sepsis and

has been explored as a therapeutic option for human sepsis [21]. Though the mouse model

identified two pathways missed by the ssNN, the ssNN performed with comparable precision

to the mouse models overall (precision = 0.72) and recovered a strikingly higher proportion of

in vivo human sepsis pathways (recall = 0.96) (Fig 3C). Furthermore, the ssNN recovered a set

of 163 pathways enriched in human sepsis in vivo that were not identified in any mouse mod-

els of sepsis (S10 Table). These pathways included thrombin signaling, TGFβ signaling, as well

as several RNA transcriptional and post-translational modification-based pathways (S10

Table) that all mouse models of sepsis lacked. Both thrombin and TGFβ signaling have been

shown to play key roles in the pathology of sepsis and have been investigated for therapeutic

and prognostic applications in sepsis [22, 23] [24]. This result suggests that combining con-

text-associated human data with mouse disease model data recovers important aspects of

human in vivo signaling.

Discussion

The lack of fidelity of mouse models for representing complex human biology is one of the

most pressing challenges in biomedical science. Failures of inter-species translation are likely

driven by a combination of evolutionary factors, experimental design limitations, and the chal-

lenges of comparing biological function between species and tissues [25–27]. It is well known

that particular features exist that translate well between model systems and humans, particu-

larly at the level of pathway function [28, 29]. However, a key methodological issue in inter-

species translation is to consider what will be knowable in prospective translation of a model

system experiment, that pre-selection of translatable features is often not possible. In this study

we demonstrate that semi-supervised training of a neural network is a powerful approach to

inter-species translation and show that successful translation is dependent upon the computa-

tional method, the model system-to-human tissue pairings, and the experimental design of the

model systems studies. The low pathway recall in the sepsis mouse models demonstrates that

there are human disease-associated biological functions simply not present in mouse disease

biology. Despite this intrinsic limitation of the mouse, our semi-supervised learning approach

prospectively discovers mouse features predictive of human biology, offering a valuable tool

for inter-species molecular translation.

Fig 3. Assessing the correspondence of pathways implicated by mouse models or the ssNN to human in vivo
sepsis. (A) Comparison of signaling pathways enriched in different strains and mouse models of sepsis and proportion

of these pathways enriched in human sepsis. (B) Precision and recall of each mouse model’s predicted human in vivo
signaling pathways by strain and type of mouse model. (C) Comparison of signaling pathway predictions by any sepsis

mouse model, ssNN, and human in vivo sepsis.

https://doi.org/10.1371/journal.pcbi.1006286.g003
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The ideal case for characterizing the biology of human disorders would be the availability of

comprehensive human phenotype and molecular data from clinical cohorts. However, since

novel perturbations to the disease system cannot be studied in the human in vivo context out-

side of a clinical trial, mouse disease model systems and emerging human in vitro model sys-

tems will continue to play an important role in biomedical research. It is in this context that

we propose a delineation of four categories of Translation Problems, those of generalizing

insights from model systems to human in vivo contexts (Fig 4). The most challenging case is

when only model system molecular and phenotype data are available (Category 4), where a

large proportion of biomedical research falls. If human-based prior knowledge, such as candi-

date genes or clinical observations, is available to integrate with model system data, then gener-

alization can be characterized as a Category 3 problem. In Category 2 problems, condition-

specific human molecular data is available to combine with model system molecular and out-

come data to characterize human biology. Inferences from solving Category 2 problems can be

further refined with human-based prior knowledge in a Category 1 problem.

Within this framework, our efforts here are best viewed as an approach to Category 2 trans-

lation problems in which we show that ssNN modeling provides a framework for integration

of high throughput, high-coverage datasets from model system and human contexts for molec-

ular translation. However, different categories of translation problems have datasets with dif-

ferent properties and will likely require alternative computational methods. In a recent crowd-

sourced competition, a series of challenges were posed for translating molecular and pathway

responses between rat and human in vitro models. No computational methods were broadly

effective in across challenge events and it appears that none of the competitors employed semi-

supervised machine learning approaches [30, 31]. This finding supports our delineation of

Translation Problems into different categories defined by the coverage and resolution of the

data available for model training. Other computational translation efforts often use informa-

tion about how genes change between experimental groups in both model system and human

contexts [32, 33]. A key advantage to our approach to inter-species translation is that informa-

tion about gene regulation in the human context is not required for successful modeling.

The driving principle of semi-supervised learning (transfer learning) is that combining

information from multiple domains can enhance model performance. In these applications, a

set of training data (Xtrain and Ytrain) are integrated with a context-related dataset (Xcontext) to

improve the performance of the algorithm in an approach known as inductive transfer learn-

ing. Our approach is an example of transductive transfer learning, where Xcontext = Xtest, and

the test dataset is incorporated into the algorithm training procedure in an unsupervised man-

ner. Examining machine learning models with different structures allowed us to assess

whether different model structures resulted in better performance and how responsive differ-

ent models structures were to a semi-supervised training procedure. In the case of KNN and

SVM models, the human samples were classified by distances in mouse gene expression fea-

ture space, a model structure we found did not gain in performance with semi-supervised

training. By contrast, the NN and RF improved in performance with semi-supervised training

suggesting that these approaches are more responsive to reweighting model features by incor-

porating unsupervised human information. Although the NN ended up being the most biolog-

ically successful model, direct interpretation of NN model weights and neurons remains

challenging. Here, we use the NN as a prediction-only model and derive biological insights in

downstream analyses, though as NN interpretability methods advance it may be possible to

gain additional biological insights by direct interpretation of the NN model structure.

Despite advances in the fidelity of model system biology to human contexts, generalizability

of findings of model system experiments will continue to be a key issue in both basic biology

and translational science research [34, 35]. Whenever the model system data alone forms the
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basis of inference, whether through direct interpretation or indirectly through a computational

description of the model system’s biology, key aspects of human biology are likely to be over-

looked or misrepresented. Semi-supervised learning approaches that neither aim for a general-

izable computational model nor rely on the model system training data alone, recover more

relevant human in vivo biology as a downstream consequence of creating good predictions of

human phenotype for a specific patient cohort. This conceptual shift from direct interpreta-

tions of model system data to the indirect generalization of model system biology through inte-

gration with human data in semi-supervised learning framework has the potential to aid in

successful translation of preclinical insights to patients.

Materials and methods

Dataset collection and processing

Datasets were obtained from Gene Expression Omnibus [36] and selected based on their inclu-

sion in two studies comparing mouse and human genomic responses [1, 2]. Since we used the

human datasets as test datasets and the mouse datasets as training datasets for machine learning

applications, we applied the additional criteria that phenotypes and tissues of origin were compa-

rable between mouse model and human in vivo datasets to ensure comparable training and test

cases for algorithm performance comparison. Based on these criteria, we excluded the acute

respiratory distress syndrome and acute infection datasets, and mouse splenocyte samples from

GSE7404, GSE5663 antibiotic treated sepsis mice spleen samples, and GSE26472 mouse liver

and lung samples. The final cohort consisted of 6 mouse cohorts and 7 human cohorts (Table 1).

Mouse array probe identifiers were converted to gene symbols and mapped to homologous

human genes using the mouse genome informatics database [37, 38]. If multiple diseases or

microarray platforms were used in a dataset, the dataset was partitioned by disease type and

array platform to create multiple case studies, resulting in 36 case studies (Table 2). Duplicate

genes in each dataset in each case study were removed by retaining those genes with the maxi-

mum average expression across all samples. Datasets were z-scored by gene.

Supervised and semi-supervised classification models

We implemented supervised and semi-supervised versions of the k-nearest neighbors (KNN),

support vector machine (SVM), random forest (RF), and neural network (NN) algorithms.

Simulations showed that three neighbors were sufficient for training the KNN models (data

not shown). Simulations from 10 to 1000 decision trees showed that 50 decision trees were suf-

ficient for training the RF (data not shown). The NN was a feed-forward neural network with

three layers. The input layer consisted of one node for each feature, the output layer consisted

of two nodes, one for each class, and the hidden layer consisted of the average of the number

of input and output nodes rounded up to the nearest integer. NN synapse weights were com-

puted using scaled conjugate gradient backpropagation.

Prior to model training, we performed feature selection with either Lasso or elastic net

(EN) regularization. Different values of the regularization parameter α were examined to

assess the impact of varying the number of features selected for training the supervised and

semi-supervised classifiers (α = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1). In the case of supervised classification

models, Lasso and EN regularization underwent 10-fold cross validation (leave one out cross

Fig 4. Delineation of four categories of translation problems, those of generalizing insights from model systems

to human in vivo contexts. The coverage and resolution of the available data determines the category. Categories one

through three are potentially approachable by data integration of model system and human datasets and semi-

supervised learning approaches.

https://doi.org/10.1371/journal.pcbi.1006286.g004
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validation for mouse endotoxemia dataset GSE5663) to learn a set of features. These features

were then used to train a supervised classifier (KNN, SVM, RF, or NN) on the mouse dataset.

The supervised classification model was then applied to the human dataset for that particular

case study to infer predicted human phenotypes. In the case of semi-supervised models, feature

selection was performed on the mouse dataset in the same manner as supervised models.

These features were then used to train an initial supervised classification model on the mouse

data alone to predict the human samples’ phenotypes. Following this initial training and pre-

diction step, the human samples with the highest 10% of confidence scores on their predicted

phenotypes were combined with the mouse dataset to create a new augmented training set. In

the second iteration, feature selection and model training proceeded using this training set of

mouse and human samples. All human samples in the test set were re-classified and the confi-

dence score threshold of inclusion was dropped by 10%. Feature selection, model retraining,

classification, and training set augmentation continued until all human samples were incorpo-

rated into the training set. Since NN training is inherently stochastic, we specified that the

semi-supervised NN would proceed to the second iteration only if more than one human sam-

ple was classified into each class. If this condition as not met after 50 training iterations, the

semi-supervised NN proceeded with further training and prediction iterations on the human

dataset using an initial model that did not have human predicted phenotypes in both classes.

Model performance assessment

Classification models were evaluated by their ability to discriminate between human pheno-

types and by the extent to which analyzing the human molecular data using the predicted

human phenotypes implicated the same genes as using the true human phenotypes. Classifica-

tion performance was assessed by the area under the receiver operating characteristic curve

(AUC) for the test set of human samples. Differential expression analysis was performed on

the homologous mouse and human genes using the phenotypes from the original datasets to

identify differentially expressed mouse and human genes. Following model prediction, differ-

ential expression analysis was then performed on the human dataset using the predicted phe-

notypes. Differential expression was assessed by the Wilcoxon-Mann-Whitney (WMW) test

with Benjamini Hochberg False Discovery Rate (FDR) correction (significance: WMW

p< 0.05 and FDR q< 0.25). GO enrichment was performed on all DEGs in each case study,

for the human data, mouse data, and human data with predicted phenotypes using the Reac-

tome pathway database annotation option in GO [39] [40, 41].

A DEG or enriched pathway identified in the mouse model was considered a true positive

(TP) if that gene or pathway was also implicated in the human data analyzed using the true phe-

notypes. False negatives (FN) were DEGs or enriched pathways implicated in the human data,

but not implicated by the mouse model. False positives (FP) were DEGs or pathways implicated

in the mouse but not in the human data. DEGs and pathways identified using the predicted

human phenotypes generated machine learning approaches were considered TP, FP, and FN by

their correspondence to the DEGs and pathways implicated in human data analyzed using the

true phenotypes. We computed the precision and recall for the DEGs predicted by the mouse

model and machine learning classifiers and aggregated these into an F-score for each prediction

modality. Enriched pathway precision, recall, and F-scores were analogously computed for TP,

FP, and FN predicted pathways from the mouse model and machine learning classifiers.

Code availability

All analyses were implemented in MATLAB 2016b. KNN, SVM, and RF functions were imple-

mented using the fitcknn, fitcsvm, and TreeBagger functions respectively. Neural networks
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were implemented using the MATLAB Neural Network Toolbox. Semi-supervised functions

are deposited at: https://www.mathworks.com/matlabcentral/fileexchange/69718-semi-

supervised-learning-functions
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