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Abstract

We study the problem of decomposing a volume bounded by a smooth surface into a collection of 

Voronoi cells. Unlike the dual problem of conforming Delaunay meshing, a principled solution to 

this problem for generic smooth surfaces remained elusive. VoroCrust leverages ideas from α-

shapes and the power crust algorithm to produce unweighted Voronoi cells conforming to the 

surface, yielding the first provably-correct algorithm for this problem. Given an ϵ-sample on the 

bounding surface, with a weak σ-sparsity condition, we work with the balls of radius δ times the 

local feature size centered at each sample. The corners of this union of balls are the Voronoi sites, 

on both sides of the surface. The facets common to cells on opposite sides reconstruct the surface. 

For appropriate values of ϵ, σ and δ, we prove that the surface reconstruction is isotopic to the 

bounding surface. With the surface protected, the enclosed volume can be further decomposed into 

an isotopic volume mesh of fat Voronoi cells by generating a bounded number of sites in its 

interior. Compared to state-of-the-art methods based on clipping, VoroCrust cells are full Voronoi 

cells, with convexity and fatness guarantees. Compared to the power crust algorithm, VoroCrust 

cells are not filtered, are unweighted, and offer greater flexibility in meshing the enclosed volume 

by either structured grids or random samples.
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1 Introduction

Mesh generation is a fundamental problem in computational geometry, geometric modeling, 

computer graphics, scientific computing and engineering simulations. There has been a 

growing interest in polyhedral meshes as an alternative to tetrahedral or hex-dominant 

meshes [48]. Polyhedra are less sensitive to stretching, which enables the representation of 

complex geometries without excessive refinement. In addition, polyhedral cells have more 

neighbors even at corners and boundaries, which offers better approximations of gradients 

and local flow distributions. Even compared to hexahedra, fewer polyhedral cells are needed 

to achieve a desired accuracy in certain applications. This can be very useful in several 

numerical methods [18], e.g., finite element [42], finite volume [39], virtual element [17] 

and Petrov-Galerkin [41]. In particular, the accuracy of a number of important solvers, e.g., 

the two-point flux approximation for conservation laws [39], greatly benefits from a 

conforming mesh which is orthogonal to its dual as naturally satisfied by Voronoi meshes. 

Such solvers play a crucial role in hydrology [51], computational fluid dynamics [22] and 

fracture modeling [20].

VoroCrust is the first provably-correct algorithm for generating a volumetric Voronoi mesh 

whose boundary conforms to a smooth bounding surface, and with quality guarantees. A 

conforming volume mesh exhibits two desirable properties simultaneously: (1) a 

decomposition of the enclosed volume, and (2) a reconstruction of the bounding surface.

Conforming Delaunay meshing is well-studied [28], but Voronoi meshing is less mature. A 

common practical approach to polyhedral meshing is to dualize a tetrahedral mesh and clip, 

i.e., intersect and truncate, each cell by the bounding surface [35,43,47,52,55]. 

Unfortunately, clipping sacrifices the important properties of convexity and connectedness of 

cells [35], and may require costly constructive solid geometry operations. Restricting a 

Voronoi mesh to the surface before filtering its dual Delaunay facets is another approach [7, 

33, 56], but filtering requires extra checks complicating its implementation and analysis; see 

also Figure 4. An intuitive approach is to locally mirror the Voronoi sites on either side of 

the surface [34, 57], but we are not aware of any robust algorithms with approximation 

guarantees in this category. In contrast to these approaches, VoroCrust is distinguished by its 

simplicity and robustness at producing true unweighted Voronoi cells, leveraging established 

libraries, e.g., Voro++ [50], without modification or special cases.

VoroCrust can be viewed as a principled mirroring technique, which shares a number of key 

features with the power crust algorithm [13]. The power crust literature [7, 8, 10, 12, 13] 

developed a rich theory for surface approximation, namely the ϵ-sampling paradigm. Recall 

that the power crust algorithm uses an ϵ-sample of unweighted points to place weighted 

sites, so-called poles, near the medial axis of the underlying surface. The surface 

reconstruction is the collection of facets separating power cells of poles on the inside and 

outside of the enclosed volume.
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Regarding samples and poles as primal-dual constructs, power crust performs a primal-dual-
dual-primal dance. VoroCrust makes a similar dance where weights are introduced 

differently; the samples are weighted to define unweighted sites tightly hugging the surface, 

with the reconstruction arising from their unweighted Voronoi diagram. The key advantage 

is the freedom to place more sites within the enclosed volume without disrupting the surface 

reconstruction. This added freedom is essential to the generation of graded meshes; a 

primary virtue of the proposed algorithm. Another virtue of the algorithm is that all samples 

appear as vertices in the resulting mesh. While the power crust algorithm does not guarantee 

that, some variations do so by means of filtering, at the price of the reconstruction no longer 

being the boundary of power cells [7, 11, 32].

The main construction underlying VoroCrust is a suitable union of balls centered on the 

bounding surface, as studied in the context of non-uniform approximations [26]. Unions of 

balls enjoy a wealth of results [15, 24, 37], which enable a variety of algorithms [13, 23, 30].

Similar constructions have been proposed for meshing problems in the applied sciences with 

heuristic extensions to 3D settings; see [40] and the references therein for a recent example. 

Aichholzer et al. [6] adopt closely related ideas to construct a union of surface balls using 

power crust poles for sizing estimation. However, their goal was to produce a coarse 

homeomorphic surface reconstruction. As in [6], the use of balls and α-shapes for surface 

reconstruction was explored earlier, e.g., ball-pivoting [19, 54], but the connection to 

Voronoi meshing has been absent. In contrast, VoroCrust aims at a decomposition of the 

enclosed volume into fat Voronoi cells conforming to an isotopic surface reconstruction with 

quality guarantees.

In a previous paper [4], we explored the related problem of generating a Voronoi mesh that 

conforms to restricted classes of piecewise-linear complexes, with more challenging inputs 

left for future work. The approach adopted in [4] does not use a union of balls and relies 

instead on similar ideas to those proposed for conforming Delaunay meshing [29,45,49].

In this paper, we present a theoretical analysis of an abstract version of the VoroCrust 

algorithm. This establishes the quality and approximation guarantees of its output for 

volumes bounded by smooth surfaces. A description of the algorithm we analyze is given 

next; see Figure 1 for an illustration in 2D, and also our accompanying multimedia 

contribution [2].

The abstract VoroCrust algorithm

1. Take as input a sample 𝒫 on the surface ℳ bounding the volume 𝒪.

2. Define a ball Bi centered at each sample pi, with a suitable radius ri, and let 

𝒰 = ∪i Bi.

3. Initialize the set of sites 𝒮 with the corner points of ∂𝒰, 𝒮  and 𝒮 , on both sides 

of ℳ.

4. Optionally, generate additional sites 𝒮  in the interior of 𝒪, and include 𝒮
into 𝒮.

Abdelkader et al. Page 3

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Compute the Voronoi diagram Vor 𝒮  and retain the cells with sites in 𝒮 ∪ 𝒮
as the volume mesh 𝒪, where the facets between 𝒮  and 𝒮  yield a surface 

approximation ℳ.

In this paper, we assume 𝒪 is a bounded open subset of ℝ3, whose boundary ℳ is a closed, 

bounded and smooth surface. We further assume that 𝒫 is an ϵ-sample, with a weak σ-

sparsity condition, and ri is set to δ times the local feature size at pi. For appropriate values 

of ϵ, σ and δ, we prove that 𝒪 and ℳ are isotopic to 𝒪 and ℳ, respectively. We also show 

that simple techniques for sampling within 𝒪, e.g., octree refinement, guarantee an upper 

bound on the fatness of all cells in 𝒪, as well as the number of samples.

Ultimately, we seek a conforming Voronoi mesher that can handle realistic inputs possibly 

containing sharp features, can estimate a sizing function and generate samples, and can 

guarantee the quality of the output mesh. This is the subject of a forthcoming paper [3] 

which describes the design and implementation of the complete VoroCrust algorithm.

The rest of the paper is organized as follows. Section 2 introduces the key definitions and 

notation used throughout the paper. Section 3 describes the placement of Voronoi seeds and 

basic properties of our construction assuming the union of surface balls satisfies a structural 

property. Section 4 proves this property holds and establishes the desired approximation 

guarantees under certain conditions on the input sample. Section 5 considers the generation 

of interior samples and bounds the fatness of all cells in the output mesh. Section 6 

concludes the paper with pointers for future work. A number of proofs is deferred to the full 

version, available online [1]; see also the accompanying multimedia contribution in these 

proceedings [2].

2 Preliminaries

Throughout, standard general position assumptions [38] are made implicitly to simplify the 

presentation. We use d(p, q) to denote the Euclidean distance between two points p, q ∈ ℝ3, 

and 𝔹 c, r  to denote the Euclidean ball centered at c ∈ ℝ3 with radius r. We proceed to 

introduce the notation and recall the key definitions used throughout, following those in [13, 

26, 37].

2.1 Sampling and approximation

We take as input a set of sample points 𝒫 ⊂ ℳ. A local scale or sizing is used to vary the 

sample density. Recall that the medial axis [13] of ℳ, denoted by 𝒜, is the closure of the set 

of points in ℝ3 with more than one closest point on ℳ. Hence, 𝒜 has one component inside 

𝒪 and another outside. Each point of 𝒜 is the center of a medial ball tangent to ℳ at multiple 

points. Likewise, each point on ℳ has two tangent medial balls, not necessarily of the same 

size. The local feature size at x ∈ ℳ is defined as lfs x = infa ∈ 𝒜d x, a . The set 𝒫 is an ϵ -

sample [9] if for all x ∈ ℳ there exists p ∈ 𝒫 such that d x, p ≤ ϵ ⋅ lfs x .

We desire an approximation of 𝒪 by a Voronoi mesh O, where the boundary ℳ of 𝒪
approximates ℳ. Recall that two topological spaces are homotopy-equivalent [26] if they 
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have the same topology type. A stronger notion of topological equivalence is 

homeomorphism, which holds when there exists a continuous bijection with a continuous 

inverse from ℳ to ℳ. The notion of isotopy captures an even stronger type of equivalence 

for surfaces embedded in Euclidean space. Two surfaces ℳ, ℳ ⊂ ℝ3 are isotopic [16, 25] if 

there is a continuous mapping F :ℳ × 0, 1 ℝ3 such that for each t ∈ [0, 1], F (·, t) is a 

homeomorphism from ℳ to ℳ, where F (·, 0) is the identity of ℳ and F ℳ, 1 = ℳ. To 

establish that two surfaces are geometrically close, the distance between each point on one 

surface and its closest point on the other surface is required. Such a bound is usually 

obtained in the course of proving isotopy.

2.2 Diagrams and triangulations

The set of points defining a Voronoi diagram are traditionally referred to as sites or seeds. 

When approximating a manifold by a set of sample points of varying density, it is helpful to 

assign weights to the points reflective of their density. In particular, a point pi with weight 

wi, can be regarded as a ball Bi with center pi and radius ri = wi.

Recall that the power distance [37] between two points pi, pj with weights wi, wj is π(pi, pj) 

= d(pi, pj)2 −wi −wj. Unless otherwise noted, points are unweighted, having weight equal to 

zero. There is a natural geometric interpretation of the weight: all points q on the boundary 

of Bi have π(pi, q) = 0, inside π(pi, q) < 0 and outside π(pi, q) > 0. Given a set of weighted 

points 𝒫, this metric gives rise to a natural decomposition of ℝ3 into the power cells 

V i = q ∈ ℝ3 |π pi, q ≤ π p j, q ∀ p j ∈ 𝒫 . The power diagram wVor 𝒫  is the cell complex 

defined by collection of cells Vi for all pi ∈ 𝒫.

The nerve [37] of a collection 𝒞 of sets is defined as 𝒩 𝒞 = X ⊆ 𝒞 | ∩ T ≠ ϕ . Observe that 

𝒩 𝒞  is an abstract simplicial complex because X ∈ 𝒩 𝒞  and Y ⊆ X imply Y ∈ 𝒩 𝒞 . With 

that, we obtain the weighted Delaunay triangulation, or regular triangulation, as 

wDel 𝒫 = 𝒩 wVor 𝒫 . Alternatively, wDel 𝒫  can be defined directly as follows. A subset 

T ⊂ ℝd, with d ≤ 3 and |T| ≤ d+1 defines a d-simplex σT. Recall that the orthocenter [27] of 

σT, denoted by zT, is the unique point q ∈ ℝd such that π(pi, zT) = π(pj, zT) for all pi, pj ∈ T; 

the orthoradius of σT is equal to π(p, zT) for any p ∈ T. The Delaunay condition defines 

wDel 𝒫  as the set of tetrahedra σT with an empty orthosphere, meaning π(pi, zT ) ≤ π(pj, 
zT ) for all pi ∈ T and p j ∈ 𝒫\T, where wDel 𝒫  includes all faces of σT.

There is a natural duality between wDel 𝒫  and wVor 𝒫 . For a tetrahedron σT, the definition 

of zT immediately implies zT is a power vertex in wVor 𝒫 . Similarly, for each k-face σS of 

σT ∈ wDel 𝒫  with S ⊆ T and k + 1 = |S|, there exists a dual (3 − k)-face σS′  in wVor 𝒫

realized as ∩p ∈ S V p. When 𝒫 is unweighted, the same definitions yield the standard 

(unweighted) Voronoi diagram Vor 𝒫  and its dual Delaunay triangulation Del 𝒫 .
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2.3 Unions of balls

Let ℬ denote the set of balls corresponding to a set of weighted points 𝒫 and define the 

union of balls 𝒰 as ∪ ℬ. It is quite useful to capture the structure of 𝒰 using a combinatorial 

representation like a simplicial complex [36, 37]. Let fi denote V i ∩ ∂Bi and ℱ the collection 

of all such fi. Observing that V i ∩ B j ⊆ V i ∩ Bi∀Bi, B j ∈ ℬ, fi is equivalently defined as the 

spherical part of ∂ V i ∩ Bi . Consider also the decomposition of 𝒰 by the cells of wVor 𝒫

into 𝒞 ℬ = V i ∩ Bi |Bi ∈ ℬ . The weighted α-complex 𝒲 𝒫  is defined as the geometric 

realization of 𝒩 𝒞 ℬ  [37], i.e., σT ∈ 𝒲 if V i ∩ Bi | pi ∈ T ∈ 𝒩 𝒞 ℬ . It is not hard to see 

that 𝒲 is a subcomplex of wDel 𝒫 .

To see why 𝒲 is relevant, consider its underlying space; we create a collection containing 

the convex hull of each simplex in 𝒲 and define the weighted α-shape 𝒥 𝒫  as the union of 

this collection. It turns out that the simplices σT ∈ 𝒲 contained in ∂𝒥 are dual to the faces of 

∂𝒰 defined as ∩i ∈ T f i. Every point q ∈ ∂𝒰 defined by ∩i ∈ Tq
f i, for Tq ∈ ℬ and k + 1 = |

Tq|, witnesses the existence of σTq
 in 𝒲; the k-simplex σTq

 is said to be exposed and ∂𝒥 can 

be defined directly as the collection of all exposed simplices [36]. In particular, the corners 
of ∂𝒰 correspond to the facets of ∂𝒥. Moreover, 𝒥 is homotopy-equivalent to 𝒰 [37].

The union of balls defined using an ϵ-sampling guarantees the approximation of the 

manifold under suitable conditions on the sampling. Following earlier results on uniform 

sampling [46], an extension to non-uniform sampling establishes sampling conditions for the 

isotopic approximation of hypersurfaces and medial axis reconstruction [26].

3 Seed placement and surface reconstruction

We determine the location of Voronoi seeds using the union of balls 𝒰. The correctness of 

our reconstruction depends crucially on how sample balls ℬ overlap. Assuming a certain 

structural property on 𝒰, the surface reconstruction is embedded in the dual shape 𝒥.

3.1 Seeds and guides

Central to the method and analysis are triplets of sample spheres, i.e., boundaries of sample 

balls, corresponding to a guide triangle in wDel 𝒫 . The sample spheres associated with the 

vertices of a guide triangle intersect contributing a pair of guide points. The reconstruction 

consists of Voronoi facets, most of which are guide triangles.

When a triplet of spheres ∂Bi, ∂Bj, ∂Bk intersect at exactly two points, the intersection points 

are denoted by gi jk = gi jk, gi jk  and called a pair of guide points or guides; see Figure 2a. 

The associated guide triangle tijk is dual to gi jk. We use arrows to distinguish guides on 

different sides of the manifold with the upper guide g↑ lying outside 𝒪 and the lower guide 

g↓ lying inside. We refer to the edges of guide triangles as guide edges ei j = pip j. A guide 

edge eij is associated with a dual guide circle Cij = ∂Bi ∩ ∂Bj, as in Figure 2a.
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The Voronoi seeds in 𝒮 ∪ 𝒮  are chosen as the subset of guide points that lie on ∂U. A 

guide point g which is not interior to any sample ball is uncovered and included as a seed s 
into 𝒮; covered guides are not. We denote uncovered guides by s and covered guides by g, 

whenever coverage is known and important. If only one guide point in a pair is covered, then 

we say the guide pair is half-covered. If both guides in a pair are covered, they are ignored. 

Let 𝒮i = 𝒮 ∩ ∂Bi denote the seeds on sample sphere ∂Bi.

As each guide triangle tijk is associated with at least one dual seed sijk, the seed witnesses its 

inclusion in 𝒲 and tijk is exposed. Hence, tijk belongs to ∂𝒥 as well. When such tijk is dual 

to a single seeds sijk it bounds the interior of 𝒥, i.e., it is a face of a regular component of 𝒥; 

in the simplest and most common case, tijk is a facet of a tetrahedron as shown in Figure 3b. 

When tijk is dual to a pair of seeds si jk, it does not bound the interior of 𝒥 and is called a 

singular face of ∂𝒥. All singular faces of ∂𝒥 appear in the reconstructed surface.

3.2 Disk caps

We describe the structural property required on 𝒰 along with the consequences exploited by 

VoroCrust for surface reconstruction. This is partially motivated by the requirement that all 

sample points on the surface appear as vertices in the output Voronoi mesh.

We define the subset of ∂Bi inside other balls as the medial band and say it is covered. Let 

the caps Ki  and Ki  be the complement of the medial band in the interior and exterior of 𝒪, 

respectively. Letting npi
 be the normal line through pi perpendicular to ℳ, the two 

intersection points npi
∩ ∂Bi are called the poles of Bi. See Figure 3a.

We require that 𝒰 satisfies the following structural property: each ∂Bi has disk caps, 

meaning the medial band is a topological annulus and the two caps contain the poles and are 

topological disks. In other words, each Bi contributes one connected component to each side 

of ∂U. As shown in Figure 3a, all seeds in 𝒮i  and 𝒮i  lie on ∂Ki  and ∂Ki , respectively, along 

the arcs where other sample balls intersect ∂Bi. In Section 4, we establish sufficient 

sampling conditions to ensure 𝒰 satisfies this property. In particular, we will show that both 

poles of each Bi lie on ∂𝒰.

The importance of disk caps is made clear by the following observation. The requirement 

that all sample points appear as Voronoi vertices in ℳ follows as a corollary.

Observation 1 (Three upper/lower seeds). If ∂Bi has disk caps, then each of ∂Ki  and ∂Ki

has at least three seeds and the seeds on ∂Bi are not all coplanar.

Proof. Every sphere S j ≠ i covers strictly less than one hemisphere of ∂Bi because the poles 

are uncovered. Hence, each cap is composed of at least three arcs connecting at least three 

upper seeds 𝒮i ⊂ ∂Ki  and three lower seeds 𝒮i ⊂ ∂Ki . Further, any hemisphere through the 
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poles contains at least one upper and one lower seed. It follows that the set of seeds 

𝒮i = 𝒮i ∪ 𝒮i  is not coplanar.

Corollary 2 (Sample reconstruction). If ∂Bi has disk caps, then pi is a vertex in ℳ.

Proof. By Observation 1, the sample is equidistant to at least four seeds which are not all 

coplanar. It follows that the sample appears as a vertex in the Voronoi diagram and not in the 

relative interior of a facet or an edge. Being a common vertex to at least one interior and one 

exterior Voronoi seed, VoroCrust retains this vertex in its output reconstruction.

3.3 Sandwiching the reconstruction in the dual shape of 𝒰

Triangulations of smooth surfaces embedded in ℝ3 can have half-covered guides pairs, with 

one guide covered by the ball of a fourth sample not in the guide triangle dual to the guide 

pair. The tetrahedron formed by the three samples of the guide triangle plus the fourth 

covering sample is a sliver, i.e., the four samples lie almost uniformly around the equator of 

a sphere. In this case we do not reconstruct the guide triangle, and also do not reconstruct 

some guide edges. We show that the reconstructed surface ℳ lies entirely within the region 

of space bounded by guide triangles, i.e., the α-shape of 𝒫, as stated in the following 

theorem.

Theorem 3 (Sandwiching). If all sample balls have disk caps, then ℳ ⊆ 𝒥 𝒫 .

The simple case of a single isolated sliver tetrahedron is illustrated in Figures 3b, 4 and 2b. 

A sliver has a pair of lower guide triangles and a pair of upper guide triangles. For instance, 

t124 and t234 are the pair of upper triangles in Figure 3b. In such a tetrahedron, there is an 

edge between each pair of samples corresponding to a non-empty circle of intersection 

between sample balls, like the circles in Figure 2a. For this circle, the arcs covered by the 

two other sample balls of the sliver overlap, so each of these balls contributes exactly one 

uncovered seed, rather than two. In this way the upper guides for the upper triangles are 

uncovered, but their lower guides are covered; also only the lower guides of the lower 

triangles are uncovered. The proof of Theorem 3 follows by analyzing the Voronoi cells of 

the seed points located on the overlapping sample balls and is deferred to Appendix A [1]. 

Alternatively, Theorem 3 can be seen as a consequence of Theorem 2 in [15].

4 Sampling conditions and approximation guarantees

We take as input a set of points 𝒫 sampled from the bounding surface ℳ such that 𝒫 is an ϵ-

sample, with ϵ ≤ 1/500. We require that 𝒫 satisfies the following sparsity condition: for any 

two points pi, pj ∈ P, lfs pi ≥ lfs p j d pi, p j ≥ σϵlfs p j , with σ ≥ 3/4.

Such a sampling 𝒫 can be obtained by known algorithms. Given a suitable representation of 

ℳ, the algorithm in [21] computes a loose ϵ′-sample E which is a ϵ′(1+8.5ϵ′)-sample. 

More specifically, whenever the algorithm inserts a new sample p into the set E, 

d p, E ≥ ϵ′lfs p . To obtain E as an ϵ-sample, we set ϵ′ ϵ = 34ϵ + 1 − 1 /17. Observing that 
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3ϵ/4 ≤ ϵ′ ϵ  for ϵ ≤ 1/500, the returned ϵ-sample satisfies our required sparsity condition with 

σ ≥ 3/4.

We start by adapting Theorem 6.2 and Lemma 6.4 from [26] to the setting just described. 

For x ∈ ℝ3\M, let Γ x = d x, x /lfs x , where x is the closest point to x on ℳ.

Corollary 4. For an ϵ -sample 𝒫, with ϵ ≤ 1/20, the union of balls 𝒰 with δ = 2ϵ satisfies:

1. ℳ is a deformation retract of 𝒰,

2. ∂𝒰 contains two connected components, each isotopic to ℳ,

3. Γ−1 0, a′ ⊂ U ⊂ Γ−1 0, b′ , where a′ = ϵ − 2ϵ2 and b′ ≤ 2.5ϵ.

Proof. Theorem 6.2 from [26] is stated for balls with radii within [a, b] times the lfs. We set 

a = b = δ and use ϵ ≤ 1/20 to simplify fractions. This yields the above expressions for a′ = 

(1 – ϵ)δ − ϵ and b′ = δ/(1 − 2δ). The general condition requires (1 – a′)2 + (b′ − a′+ δ(1 

+ 2b′ − a′)/(1 − δ))2 < 1, as we assume no noise. Plugging in the values of a′ and b′, we 

verify that the inequality holds for the chosen range of ϵ.

Furthermore, we require that each ball Bi ∈ ℬ contributes one facet to each side of ∂𝒰 . Our 

sampling conditions ensure that both poles are outside any ball B j ∈ ℬ.

Lemma 5 (Disk caps). All balls in ℬ have disk caps for ϵ ≤ 0.066, δ = 2ϵ and σ ≥ 3/2.

Proof. Fix a sample pi and let x be one of the poles of Bi and Bx = 𝔹 c, lfs pi  the tangent 

ball at pi with x ∈ Bx. Letting pj be the closest sample to x in P \ {pi}, we assume the worst 

case where lfs(pj) ≥ lfs(pi) and pj lies on ∂Bx. To simplify the calculations, take lfs(pi) = 1 

and let ℓ denote d(pi, pj). As lfs is 1-Lipschitz, we get lfs(pj) ≤ 1 + ℓ. By the law of cosines, 

d(pj, x)2 = d(pi, pj)2 + d(pi, x)2 − 2d(pi, pj)d(pi, x) cos(ϕ), where ϕ = ∠p jpic. Letting 

θ = ∠picp j, observe that cos(ϕ) = sin(θ/2) = ℓ/2. To enforce x ∉ B j, we require d(pj, x) > 

δlfs(pj), which is equivalent to 𝓁2 + δ2 − δ𝓁2 > δ2 1 + 𝓁 2. Simplifying, we get 

𝓁 > 2δ2/ 1 − δ − δ2  where sparsity guarantees ℓ > σϵ. Setting σϵ > 2δ2/ 1 − δ − δ2  we obtain 

4σϵ2 + 8 + 2σ ϵ − σ < 0, which requires ϵ< 0.066 when σ ≥ 3/4.

Theorem 4 together with Theorem 5 imply that each ∂Bi is decomposed into a covered 

region ∂Bi ∩ ∪ j ≠ i B j, the medial band, and two uncovered caps ∂Bi\ ∪ j ≠ i B j, each 

containing one pole. Recalling that seeds arise as pairs of intersection points between the 

boundaries of such balls, we show that seeds can be classified correctly as either inside or 

outside ℳ.

Corollary 6. If a seed pair lies on the same side of ℳ, then at least one seed is covered.

Proof. Fix such a seed pair ∂Bi ∩ ∂Bj ∩ ∂Bk and recall that ℳ ∩ ∂Bi is contained in the 

medial band on ∂Bi. Now, assume for contradiction that both seeds are uncovered and lie on 
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the same side of ℳ. It follows that Bj ∩ Bk intersects Bi away from its medial band, a 

contradiction to Theorem 4.

Theorem 4 guarantees that the medial band of Bi is a superset of Γ−1 0, a′ ∩ ∂Bi, which 

means that all seeds sijk are at least a′lfs si jk  away from ℳ. It will be useful to bound the 

elevation of such seeds above T pi
, the tangent plane to ℳ at pi.

Lemma 7. For a seed s ∈ ∂Bi, θs = ∠spis′ ≥ 29.34∘ and θs > 1
2 − 5ϵ, where s′ is the projection 

of s on T pi
, implying d s, s′ ≥ hs

⊥δl f s pi , with hs
⊥ > 0.46 and hs

⊥ > 1
2 − 5ϵ.

Proof. Let lfs(pi) = 1 and Bs = 𝔹 c, 1  be the tangent ball at pi with s ∉ Bs; see Figure 5a. 

Observe that d s, ℳ ≤ d s, x , where x = sc ∩ ∂Bs. By the law of cosines, 

d s, c 2 = d pi, c 2 + d pi, s 2 − 2d pi, c d pi, s cos π /2 + θs = 1 + δ2 + 2δsin θs . We may write2 

d s, c ≤ 1 + δ2/2 + δsin θs . It follows that d s, x ≤ δ2/2 + δsin θs . As lfs is 1-Lipschitz and 

d pi, x ≤ δ, we get 1 − δ ≤ lfs x ≤ 1 + δ. There must exist a sample pj such that 

d x, p j ≤ ϵlfs x ≤ ϵ 1 + δ . Similarly, lfs p j ≥ 1 − ϵ 1 + δ 1 − δ . By the triangle inequality, 

d s, p j ≤ d s, x + d x, p j ≤ δ2/2 + δsin θs + ϵ 1 + δ . Setting d s, p j < δ 1 − δ 1 − ϵ 1 + δ

implies d s, p j < δlfs p j , which shows that for small values of θs, s cannot be a seed and 

p j ≠ pi. Substituting δ = 2ϵ, we get θs ≥ sin−1 2ϵ3 − 5ϵ + 1/2 ≥ 29.34∘ and θs > 1/2 − 5ϵ.

We make frequent use of the following bound on the distance between related samples.

Claim 8. If Bi ∩ B j ≠ ϕ, then d pi, p j ∈ κϵ, κδ ⋅ l f s pi , with κ = 2/(1 − δ) and 

κϵ = σϵ/ 1 + σϵ .

Proof. The upper bound comes from d(pi, pj) ≤ ri + rj and lfs(pj) ≤ lfs(pi) + d(pi, dj) by 1-

Lipschitz, and the lower bound from lfs(pi) − d(pi, dj) ≤ lfs(pj) and the sparsity.

Bounding the circumradii is the culprit behind why we need such small values of ϵ.

Lemma 9. The circumradius of a guide triangle tijk is at most ϱ f ⋅ δl f s pi , where ϱ f < 1.38, 

and at most ϱ f ⋅ d pi, p j  where ϱ f < 3.68.

Proof. Let pi and pj be the triangle vertices with the smallest and largest lfs values, 

respectively. From Claim 8, we get d(pi, pj) ≤ κδlfs(pi). It follows that lfs(pj) ≤ (1+κδ)lfs(pi). 

As tijk is a guide triangle, we know that it has a pair of intersection points ∂Bi ∩ ∂Bj ∩ ∂Bk. 

2Define f u, v = 1 + u2 + 2uv − 1 + u2/2 + uv  and observe that f(u, −u/2) = 0 is the only critical value of f(u, .). As 

∂2 f / ∂v2 ≤ 0 for u, v ∈ ℝ × −1, 1 , we get that f(u, v) ≤ 0 in this range.
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Clearly, the seed is no farther than δlfs(pj) from any vertex of tijk and the orthoradius of tijk 

cannot be bigger than this distance.

Recall that the weight wi associated with pi is δ2lfs(pi)2. We shift the weights of all the 

vertices of tijk by the lowest weight wi, which does not change the orthocenter. With that 

w j − wi = δ2 lfs p j
2 − lfs pi

2 ≤ δ2lfs pi
2 1 + κδ 2 − 1 = κδ3lfs pi

2 κδ + 2  . On the other 

hand, sparsity ensures that the closest vertex in tijk to pj is at distance at least 

N p j ≥ σϵlfs p j ≥ σϵ 1 − κδ lfs pi . Ensuring 

α2 ≤ w j − wi /N pi
2 ≤ κδ3 2 + κδ / σ2ϵ2 1 − κδ 2 ≤ 1/4 suffices to bound the circumradius of 

tijk by crad = 1/ 1 − 4α2 times its orthoradius, as required by Claim 4 in [27]. Substituting δ 

= 2ϵ and σ ≥ 3/4 we get α2 ≤ 78.97ϵ, which corresponds to crad < 1.37. It follows that the 

circumradius is at most cradδlfs p j ≤ crad 1 + κδ δlfs pi < 1.38δlfs pi .

For the second statement, observe that lfs pi ≥ 1 − κδ lfs p j  and the sparsity condition 

ensures that the shortest edge length is at least σϵlfs pi ≥ σϵ 1 − κδ lfs p j . It follows that the 

circumradius is at most 
δcrad

σϵ 1 − κδ < 3.68 times the length of any edge of tijk.

Given the bound on the circumradii, we are able to bound the deviation of normals.

Lemma 10. If tijk is a guide triangle, then (1) ∠a npi
, np j

≤ ηsδ < 0.47∘, with ηs < 2.03, and 

(2) ∠a nt, npi
≤ ηtδ < 1.52∘, with ηt < 6.6, where npi

 is the line normal to ℳ at pi and nt is the 

normal to tijk. In particular, tijk makes an angle at most ηtδ with T pi
.

Proof. Claim 8 implies d(pi, pj) ≤ κδlfs(pi) and (1) follows from the Normal Variation 

Lemma [14] with ρ = κδ < 1/3 yielding ∠a npi
, np j

≤ κδ/ 1 − κδ . Letting Rt denote the 

circumradius of t, Theorem 9 implies that the Rt ≤ ϱ f ⋅ δlfs pi ≤ lfs pi / 2 and the Triangle 

Normal Lemma [31] implies ∠a n
p∗, nt < 4.57δ < 1.05∘, where p∗ is the vertex of t 

subtending a maximal angle in t. Hence, ∠a npi
, nt ≤ ∠a npi

, n
p∗ + ∠a n

p∗, nt .

Towards establishing homeomorphism, the next lemma on the monotonicity of distance to 

the nearest seed is critical. First, we show that the nearest seeds to any surface point x ∈ ℳ
are generated by nearby samples.

Lemma 11. The nearest seed to x ∈ ℳ lies on some ∂Bi where d x, pi ≤ 5.03 ⋅ ϵl f s x . 

Consequently, d x, pi ≤ 5.08 ⋅ ϵl f s pi .
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Proof. In an ϵ-sampling, there exists a pa such that d(x, pa) ≤ ϵlfs(x), where lfs(pa) ≤ (1 + 

ϵ)lfs(x). The sampling conditions also guarantee that there exists at least one seed sa on ∂Ba. 

By the triangle inequality, we get that 

d x, sa ≤ d x, pa + d pa, sa ≤ ϵlfs x + δlfs pa ≤ ϵ 1 + 2 1 + ϵ lfs x = ϵ 2ϵ + 3 lfs x .

We aim to bound ℓ to ensure ∀pi s.t. d x, pi = 𝓁 ⋅ ϵlfs x , the nearest seed to x cannot lie on 

Bi. Note that in this case, 1 − 𝓁ϵ lfs x ≤ lfs pi ≤ 1 + 𝓁ϵ lfs x . Let si be any seed on Bi. It 

follows that d x, si ≥ d x, pi − d pi, si ≥ 𝓁 ⋅ ϵlfs x − 2ϵlfs pi ≥ ϵ 1 − 2ϵ 𝓁 − 2 lfs x .

Setting ϵ 1 − 2ϵ 𝓁 − 2 lfs x ≥ ϵ 2ϵ + 3 lfs x  suffices to ensure d x, si ≥ d x, sa , and we get 

𝓁 ≥ 2ϵ + 5 / 1 − 2ϵ . Conversely, if the nearest seed to x lies on Bi, it must be case that 

d x, pi ≤ 𝓁ϵlfs x . We verify that 𝓁ϵ = ϵ 2ϵ + 5 / 1 − 2ϵ < 1 for any ϵ < 0.13. It follows that 

d x, p j ≤ 𝓁ϵ/ 1 − 𝓁ϵ lfs pi .

Lemma 12. For any normal segment Nx issued from x ∈ ℳ, the distance to 𝒮  is either 

strictly increasing or strictly decreasing along Γ−1 0, 0.96ϵ ∩ Nx. The same holds for 𝒮 .

Proof. Let nx be the outward normal and Tx be the tangent plane to ℳ at x. By Theorem 11, 

the nearest seeds to x are generated by nearby samples. Fix one such nearby sample pi. For 

all possible locations of a seed s ∈ 𝒮 ∩ ∂Bi, we will show a sufficiently large lower bound 

on s − s″, nx , where s′′ the projection of s onto Tx.

Take lfs(pi) = 1 and let Bs = 𝔹 c, 1  be the tangent ball to ℳ at pi with s ∈ Bs. Let A be the 

plane containing {pi, s, x}. Assume in the worst case that A ⊥ T pi
 and x is as far as possible 

from pi on ∂Bs ∩ T pi
. By Theorem 11, d(pi, x) ≤ 5.08ϵ and it follows that 

θx = ∠ nx, npi
≤ 5.08ϵ/ 1 − 5.08ϵ ≤ 5.14ϵ. This means that Tx is confined within a (π/2 − θx)-

cocone centered at x. Assume in the worst case that nx is parallel to A and Tx is tilted to 

minimize d(s, s′′); see Figure 5b.

Let Tx′  be a translation of Tx such that pi ∈ Tx′  and denote by x′ and s′ the projections of x 

and s, respectively, onto Tx′ . Observe that Tx′  makes an angle θx with T pi
. From the isosceles 

triangle Δpicx, we get that θx′ ≤ 1/2∠picx = sin−15.08ϵ/2 ≤ 2.54ϵ. Now, consider Δpixx′ and let 

ϕ = ∠xpix′. We have that ϕ = θx + θx′ ≤ 2.54ϵ + δ/ 1 − δ ≤ 4.55ϵ. Hence, sin(ϕ) ≤ 4.55ϵ and 

d(x, x′) ≤ 5.08ϵ sin(ϕ) ≤ 0.05ϵ. On the other hand, we have that ∠spis′ = ψ ≥ θs − θx and 

d s, s′ ≥ δsinψ , where θs ≥ 1/2−5ϵ by Theorem 7. Simplifying we get sin ψ ≥ 1/2 − 10.08ϵ. 

The proof follows by evaluating d s, s″ = d s, s′ − d x, x′ .
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Theorem 13. For every x ∈ ℳ with closest point q ∈ ℳ and for every q ∈ ℳ with closest 

point x ∈ ℳ, we have xq < ht ⋅ ϵ2l f s x , where ht < 30.52. For ϵ < 1/500, ht ⋅ ϵ2 < 0.0002. 

Moreover, the restriction of the mapping π to ℳ is a homeomorphism and ℳ and ℳ are 

ambient isotopic. Consequently, 𝒪 is ambient isotopic to 𝒪 as well.

Proof. Fix a sample pi ∈ 𝒫 and a surface point x ∈ ℳ ∩ Bi. We consider two cocones 

centered at x: a p-cocone contains all nearby surface points and a q-cocone contains all 

guide triangles incident at pi. By Theorem 3, all reconstruction facets generated by seeds on 

Bi are sandwiched in the q-cocone.

Theorem 10 readily provides a bound on the q-cocone angle as γ ≤ ηtδ. In addition, since 

d(pi, x) ≤ δlfs(pi), we can bound the p-cocone angle as θ ≤ 2 sin−1 (δ/2) by Lemma 2 in [7]. 

We utilize a mixed pq-cocone with angle ω = γ/2 + θ/2, obtained by gluing the lower half of 

the p-cocone with the upper half of the q-cocone.

Let q ∈ ℳ and consider its closest point x ∈ ℳ. Again, fix pi ∈ 𝒫 such that x ∈ Bi; see 

Figure 5c. By sandwiching, we know that any ray through q intersects at least one guide 

triangle, in some point y, after passing through x. Let us assume the worst case that y lies on 

the upper boundary of the pq-cocone. Then, d q, x ≤ d y, y′ = h = δsin ω lfs pi , where y′ is 

the closest point on the lower boundary of the pq-cocone point to q. We also have that, 

d pi, x ≤ cos ω δlfs pi , and since lfs is 1-Lipschitz, lfs pi ≤ lfs x / 1 − δ . Simplifying, we 

write d q, x < δω/ 1 − δ ⋅ lfs x < htϵ
2lfs x .

With d(q, x) ≤ 0.55 lfs(x), Theorem 12 shows that the normal line from any p ∈ ℳ intersects 

ℳ exactly once close to the surface. It follows that for every point x ∈ ℳ with closest point 

q ∈ ℳ, we have d x, q ≤ d x, q′  where q′ ∈ ℳ with x its closest point in ℳ. Hence, 

d x, q ≤ htϵ
2lfs x  as well.

Building upon Theorem 12, as a point moves along the normal line at x, it is either the case 

that the distance to 𝒮  is decreasing while the distance to 𝒮  is increasing or the other way 

around. It follows that these two distances become equal at exactly one point on the Voronoi 

facet above or below x separating some seed s ∈ 𝒮  from another seed s ∈ 𝒮 . Hence, the 

restriction of the mapping π to ℳ is a homeomorphism.

This shows that ℳ and ℳ homeomorphic. Recall that Theorem 4(3) implies 𝒰 is a 

topological thickening [25] of ℳ. In addition, Theorem 3 guarantees that ℳ is embedded in 

the interior of 𝒰, such that it separates the two surfaces comprising ∂𝒰. These three 

properties imply ℳ is isotopic to ℳ in 𝒰 by virtue of Theorem 2.1 in [25]. Finally, as ℳ is 

the boundary of 𝒪 by definition, it follows that 𝒪 is isotopic to 𝒪 as well.

Abdelkader et al. Page 13

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5 Quality guarantees and output size

We establish a number of quality guarantees on the output mesh. The main result is an upper 

bound on the fatness of all Voronoi cell. See Appendix B for the proofs [1].

Recall that fatness is the outradius to inradius ratio, where the outradius is the radius of the 

smallest enclosing ball, and the inradius is the radius of the largest enclosed ball. The good 

quality of guide triangles allows us to bound the inradius of Voronoi cells.

Lemma 14. Consider guide triangle tijk. (1) Edge length ratios are bounded: 

𝓁k /𝓁 j ≤ κ𝓁 = 2δ
1 − δ

σϵ
1 + σϵ . (2) Angles are bounded: sin θi ≥ 1/ 2ϱ f  implying θi ∈ (7.8°, 165°). 

(3) Altitudes are bounded: the altitude above e is at least αt|e|, where αt = 1/4ϱ f > 0.067.

Observe that a guide triangle is contained in the Voronoi cell of its seed, even when one of 

the guides is covered. Hence, the tetrahedron formed by the triangle together with its seed 

lies inside the cell, and the cell inradius is at least the tetrahedron inradius.

Lemma 15. For seeds si jk ∈ 𝒮 ∪ 𝒮 , the inradius of the Voronoi cell is at least ϱvδ ⋅ l f s pi

with ϱv = hs/ 1 + 3
2σϱ f

> 0.3 and hs ≥ 1
2 − 5 + 2ηt ϵ.

To get an upper bound on cell outradii, we must first generate seeds interior to 𝒪. We 

consider a simple algorithm for generating 𝒮  based on a standard octree over 𝒪. For 

sizing, we extend lfs beyond ℳ, using the point-wise maximal 1-Lipschitz extension 

lfs x = inf p ∈ ℳ lfs p + d x, p  [44]. An octree box □ is refined if the length of its diagonal 

is greater than 2δ · lfs(c), where c is the center of □. After refinement terminates, we add an 

interior seed at the center of each empty box, and do nothing with boxes containing one or 

more guide seeds. Applying this scheme, we obtain the following.

Lemma 16. The fatness of interior cells is at most 8 3 1 + δ
1 − 3δ < 14.1.

Lemma 17. The fatness of boundary cells is at most 4 1 + δ

1 − 3δ 1 − δ 2ϱv
< 13.65.

As the integral of lfs−3 is bounded over a single cell, it effectively counts the seeds.

Lemma 18. 𝒮 ≤ 18 3/π ⋅ ϵ−3∫ 𝒪l f s−3.

6 Conclusions

We have analyzed an abstract version of the VoroCrust algorithm for volumes bounded by 

smooth surfaces. We established several guarantees on its output, provided the input samples 

satisfy certain conditions. In particular, the reconstruction is isotopic to the underlying 

surface and all 3D Voronoi cells have bounded fatness, i.e., outradius to inradius ratio. The 

triangular faces of the reconstruction have bounded angles and edge-length ratios, except 

Abdelkader et al. Page 14

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perhaps in the presence of slivers. In a forthcoming paper [3], we describe the design and 

implementation of the complete VoroCrust algorithm, which generates conforming Voronoi 

meshes of realistic models, possibly containing sharp features, and produces samples that 

follow a natural sizing function and ensure output quality.

For future work, it would be interesting to ensure both guides are uncovered, or both 

covered. The significance would be that no tetrahedral slivers arise and no Steiner points are 

introduced. Further, the surface reconstruction would be composed entirely of guide 

triangles, so it would be easy to show that triangle normals converge to surface normals as 

sample density increases. Alternatively, where Steiner points are introduced on the surface, it 

would be helpful to have conditions that guaranteed the triangles containing Steiner points 

have good quality. In addition, the minimum edge length in a Voronoi cell can be a limiting 

factor in certain numerical solvers. Post-processing by mesh optimization techniques [5, 53] 

can help eliminate short Voronoi edges away from the surface. Finally, we expect that the 

abstract algorithm analyzed in this paper can be extended to higher dimensions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Tamal Dey for helpful discussions about surface reconstruction. Sandia National Laboratories is a multi-
mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a 
wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear 
Security Administration under contract DE-NA0003525.

Funding This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office 
of Advanced Scientific Computing Research (ASCR), Applied Mathematics Program.

Supported in part by a contract from Sandia, #1439100, and a grant from NIH, R01-GM117594

References

1. Abdelkader A, Bajaj C, Ebeida M, Mahmoud A, Mitchell S, Owens J, and Rushdi A. Sampling 
conditions for conforming Voronoi meshing by the VoroCrust algorithm. CoRR, arXiv:1803.06078, 
2018 URL: http://arxiv.org/abs/1803.06078.

2. Abdelkader A, Bajaj C, Ebeida M, Mahmoud A, Mitchell S, Owens J, and Rushdi A. VoroCrust 
Illustrated: Theory and Challenges (Multimedia Contribution). In 34th International Symposium on 
Computational Geometry (SoCG 2018), pages 77:1–77:4, 2018. doi:10.4230/LIPIcs.SoCG.2018.77.

3. Abdelkader A, Bajaj C, Ebeida M, Mahmoud A, Mitchell S, Owens J, and Rushdi A. VoroCrust: 
Voronoi meshing without clipping Manuscript, In preparation.

4. Abdelkader A, Bajaj C, Ebeida M, and Mitchell S. A Seed Placement Strategy for Conforming 
Voronoi Meshing. In Canadian Conference on Computational Geometry, 2017.

5. Abdelkader A, Mahmoud A, Rushdi A, Mitchell S, Owens J, and Ebeida M. A constrained 
resampling strategy for mesh improvement. Computer Graphics Forum, 36(5):189–201, 2017.

6. Aichholzer O, Aurenhammer F, Kornberger B, Plantinga S, Rote G, Sturm A, and Vegter G. 
Recovering structure from r-sampled objects. Computer Graphics Forum, 28(5):1349–1360, 2009.

7. Amenta N and Bern M. Surface reconstruction by Voronoi filtering. Discrete & Computational 
Geometry, 22(4):481–504, 12 1999.

8. Amenta N, Bern M, and Eppstein D. The crust and the β-skeleton: Combinatorial curve 
reconstruction. Graphical models and image processing, 60(2):125–135, 1998.

Abdelkader et al. Page 15

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1803.06078


9. Amenta N, Bern M, and Eppstein D. Optimal point placement for mesh smoothing. Journal of 
Algorithms, 30(2):302–322, 1999.

10. Amenta N, Bern M, and Kamvysselis M. A new Voronoi-based surface reconstruction algorithm. 
In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, 
pages 415–421, 1998.

11. Amenta N, Choi S, Dey T, and Leekha N. A simple algorithm for homeomorphic surface 
reconstruction. In 16th Annual Symposium on Computational Geometry, pages 213–222, 2000.

12. Amenta N, Choi S, and Kolluri R-K. The power crust. In Proceedings of the Sixth ACM Symp. on 
Solid Modeling and Applications, pages 249–266, 2001.

13. Amenta N, Choi S, and Kolluri R-K. The power crust, unions of balls, and the medial axis 
transform. Computational Geometry, 19(2):127–153, 2001.

14. Amenta N and Dey T. Normal variation for adaptive feature size. CoRR, abs/1408.0314, 2014.

15. Amenta N and Kolluri R-K. The medial axis of a union of balls. Computational Geometry, 20(1):
25–37, 2001 Selected papers from the 12th Annual Canadian Conference.

16. Amenta N, Peters T, and Russell A. Computational topology: ambient isotopic approximation of 2-
manifolds. Theoretical Computer Science, 305(1):3–15, 2003 Topology in Computer Science.

17. Beirão da Veiga L, Brezzi F, Marini L-D, and Russo A. The hitchhiker’s guide to the virtual 
element method. Mathematical Models and Methods in Applied Sciences, 24(08):1541–1573, 
2014.

18. Bellomo N, Brezzi F, and Manzini G. Recent techniques for PDE discretizations on polyhedral 
meshes. Mathematical Models and Methods in Applied Sciences, 24(08):1453–1455, 2014.

19. Bernardini F, Mittleman J, Rushmeier H, Silva C, and Taubin G. The ball-pivoting algorithm for 
surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4):349–359, 
10 1999.

20. Bishop J. Simulating the pervasive fracture of materials and structures using randomly close 
packed Voronoi tessellations. Computational Mechanics, 44(4):455–471, 9 2009.

21. Boissonnat J-D and Oudot S. Provably good sampling and meshing of surfaces. Graphical Models, 
67(5):405–451, 2005 Solid Modeling and Applications.

22. Brochu T, Batty C, and Bridson R. Matching fluid simulation elements to surface geometry and 
topology. ACM Trans. Graph, 29(4):47:1–47:9, 2010.

23. Cazals F, Dreyfus T, Sachdeva S, and Shah N. Greedy geometric algorithms for collection of balls, 
with applications to geometric approximation and molecular coarse-graining. Computer Graphics 
Forum, 33(6):1–17, 2014.

24. Cazals F, Kanhere H, and Loriot S. Computing the volume of a union of balls: A certified 
algorithm. ACM Trans. Math. Softw, 38(1):3:1–3:20, 2011.

25. Chazal F and Cohen-Steiner D. A condition for isotopic approximation. Graphical Models, 67(5):
390–404, 2005 Solid Modeling and Applications.

26. Chazal F and Lieutier A. Smooth manifold reconstruction from noisy and non-uniform 
approximation with guarantees. Computational Geometry, 40(2):156–170, 2008.

27. Cheng S-W, Dey T, Edelsbrunner H, Facello M, and Teng S-H. Silver exudation. J. ACM, 47(5):
883–904, 2000.

28. Cheng S-W, Dey T, and Shewchuk J. Delaunay Mesh Generation CRC Press, 2012.

29. Cohen-Steiner D, de Verdière É-C, and Yvinec M. Conforming Delaunay triangulations in 3D. In 
Proceedings of the Eighteenth Annual Symposium on Computational Geometry, SCG ‘02, pages 
199–208, 2002.

30. Sykes DK. Letscher. On the stability of medial axis of a union of disks in the plane. In 28th 
Canadian Conference on Computational Geometry, CCCG 2016, pages 29–33, 2016.

31. Dey T. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis Cambridge 
University Press, New York, NY, USA, 2006.

32. Dey T, Li K, Ramos E, and Wenger R. Isotopic reconstruction of surfaces with boundaries. In 
Computer Graphics Forum, volume 28:5, pages 1371–1382, 2009.

Abdelkader et al. Page 16

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Dey T and Wang L. Voronoi-based feature curves extraction for sampled singular surfaces. 
Computers & Graphics, 37(6):659–668, 2013 Shape Modeling International (SMI) Conference 
2013.

34. Duan L and Lafarge F. Image partitioning into convex polygons. In 2015 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pages 3119–3127, 6 2015.

35. Ebeida M and Mitchell S. Uniform random Voronoi meshes. In International Meshing Roundtable 
(IMR), pages 258–275, 2011.

36. Edelsbrunner H. Weighted alpha shapes University of Illinois at Urbana-Champaign, Department 
of Computer Science, 1992.

37. Edelsbrunner H. The union of balls and its dual shape. Discrete & Computational Geometry, 13(3):
415–440, 6 1995.

38. Edelsbrunner H and Mücke E-P. Simulation of simplicity: A technique to cope with degenerate 
cases in geometric algorithms. ACM Trans. Graph, 9(1):66–104, 1990.

39. Eymard R, Gallouët T, and Herbin R. Finite volume methods In Techniques of Scientific 
Computing (Part 3), volume 7 of Handbook of Numerical Analysis, pages 713–1018. Elsevier, 
2000.

40. Klemetsdal Ø, Berge R, Lie K-A, Nilsen H, and Møyner O. SPE-182666-MS, chapter 
Unstructured Gridding and Consistent Discretizations for Reservoirs with Faults and Complex 
Wells Society of Petroleum Engineers, 2017.

41. Kuzmin D. A guide to numerical methods for transport equations University Erlangen-Nuremberg, 
2010.

42. Manzini G, Russo A, and Sukumar N. New perspectives on polygonal and polyhedral finite 
element methods. Mathematical Models and Methods in Applied Sciences, 24(08):1665–1699, 
2014.

43. Merland R, Caumon G, Lévy B, and Collon-Drouaillet P. Voronoi grids conforming to 3D 
structural features. Computational Geosciences, 18(3):373–383, 2014.

44. Miller G, Talmor D, and Teng S-H. Data generation for geometric algorithms on non-uniform 
distributions. International Journal of Computational Geometry and Applications, 09(06):577–597, 
1999.

45. Murphy M, Mount D, and Gable C. A point-placement strategy for conforming Delaunay 
tetrahedralization. International Journal of Computational Geometry & Applications, 11(06):669–
682, 2001.

46. Niyogi P, Smale S, and Weinberger S. Finding the homology of submanifolds with high confidence 
from random samples. Discrete & Computational Geometry, 39(1–3):419–441, 2008.

47. Okabe A, Boots B, Sugihara K, and Chiu S-N. Spatial Tessellations: Concepts and Applications of 
Voronoi Diagrams, volume 501 John Wiley & Sons, 2009.

48. Peric M and Ferguson S. The advantage of polyhedral meshes. Dynamics-Issue 24, page 4–5, 
Spring 2005 The customer magazine of the CD-adapco Group, currently maintained by Siemens at 
http://siemens.com/mdx. The issue is available at http://mdx2.plm.automation.siemens.com/
magazine/dynamics-24 (accessed March 29, 2018).

49. Rand A and Walkington N. Collars and intestines: Practical conforming Delaunay refinement. In 
Proceedings of the 18th International Meshing Roundtable, pages 481–497, 2009.

50. Rycroft C. Voro++: A three-dimensional Voronoi cell library in C++. Chaos, 19(4):–, 2009 
Software available online at http://math.lbl.gov/voro++/.

51. Sents M and Gable C. Coupling LaGrit Unstructured Mesh Generation and Model Setup with 
TOUGH2 Flow and Transport. Comput. Geosci, 108(C):42–49, 2017.

52. Si H, Gärtner K, and Fuhrmann J. Boundary conforming Delaunay mesh generation. 
Computational Mathematics and Mathematical Physics, 50(1):38–53, 2010.

53. Sieger D, Alliez P, and Botsch M. Optimizing Voronoi diagrams for polygonal finite element 
computations In International Meshing Roundtable (IMR), pages 335–350. Springer, 2010.

54. Stelldinger P. Topologically correct surface reconstruction using alpha shapes and relations to ball-
pivoting. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1–4. 
IEEE, 2008.

Abdelkader et al. Page 17

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://siemens.com/mdx
http://mdx2.plm.automation.siemens.com/magazine/dynamics-24
http://mdx2.plm.automation.siemens.com/magazine/dynamics-24
http://math.lbl.gov/voro++/


55. Yan D-M, Wang W, Lévy B, and Liu Y. Efficient computation of clipped Voronoi diagram for mesh 
generation. Computer-Aided Design, 45(4):843–852, 2013.

56. Yan Dong-Ming, Bruno Lévy Yang Liu, Sun Feng, and Wang Wenping. Isotropic remeshing with 
fast and exact computation of restricted Voronoi diagram. Computer Graphics Forum, 28(5):1445–
1454, 7 2009.

57. Yip M, Mohle J, and Bolander J. Automated modeling of three-dimensional structural components 
using irregular lattices. Computer-Aided Civil and Infrastructure Engineering, 20(6):393–407, 
2005.

Abdelkader et al. Page 18

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
VoroCrust reconstruction, demonstrated on a planar curve.
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Figure 2. 
(a) Guide triangle and its dual seed pair. (b) Cutaway view in the plane of circle C34.
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Figure 3. 
(a) Decomposing the sample sphere ∂B1. (b) Uncovered seeds and reconstruction facets. Let 

τp ∈ 𝒲 𝒫 ⊆ wDel 𝒫  and τs ∈ Del 𝒮  denote the tetrahedra connecting the four samples and 

the four seeds shown, respectively. s123 and s134 are the uncovered lower guide seeds, with 

g123 and g134 covered. The uncovered upper guide seeds are s124 and s234, with g124 and g234

covered. Δac is the Voronoi facet dual to the Delaunay edge between  a s123 and  c s124, etc. 

Voronoi facets dual to magenta edges are in the reconstructed surface; those dual to green 

and blue edges are not. n is the circumcenter of τs and appears as a Voronoi vertex in Vor 𝒮
and a Steiner vertex in the surface reconstruction. In general, n is not the orthocenter of the 

sliver τp.

Abdelkader et al. Page 21

Lebniz Int Proc Inform. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Cutaway view of a sliver tetrahedron τp ∈ 𝒲 𝒫 ⊆ wDel 𝒫 , drawn to scale. Half-covered 

guides give rise to the Steiner vertex (pink), which results in a surface reconstruction using 

four facets (only two are shown) sandwiched within τp. In contrast, filtering wDel 𝒫
chooses two of the four facets of τp, either the bottom two, or the top two (only one is 

shown).
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Figure 5. 
Constructions used for (a) Theorem 7, (b) Theorem 12 and (c) Theorem 13.
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