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Abstract Myelin serves as an axonal insulator that facilitates rapid nerve conduction along

axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted

membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly

of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of

myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss

of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin

assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin

outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/

myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM);

myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact

membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature

myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.

DOI: https://doi.org/10.7554/eLife.43888.001

Introduction
Fast, saltatory nerve impulse conduction in the central nervous system (CNS) of vertebrates is facili-

tated by the ensheathment of axons with multiple layers of insulating oligodendroglial membrane,

termed myelin (Nave and Werner, 2014; Hartline and Colman, 2007). Myelin compaction along

the extracellular membrane surface (intraperiod line) involves cholesterol-associated transmembrane

proteins, such as proteolipid protein (PLP) (Simons et al., 2000; Werner et al., 2013), which exhibits

adhesive forces (Bakhti et al., 2013; Bizzozero et al., 2001) that prevent splitting of myelin lamellae

(Lüders et al., 2017; Möbius et al., 2016; Rosenbluth et al., 2006). At the intracellular membrane

surface (major dense line), myelin basic protein (MBP) facilitates the tight association of myelin layers

by covering the negatively charged headgroups of membrane phospholipids (Musse et al., 2008;

Nawaz et al., 2009; Nawaz et al., 2013). The adhesive function of MBP can be counteracted by the

presence of cyclic nucleotide phosphodiesterase (CNP), thereby regulating the developmental clo-

sure of cytoplasmic channels that flank compacted myelin (Snaidero et al., 2017). In mature myelin,

CNP is thus largely confined to non-compacted myelin (Brunner et al., 1989; Trapp et al., 1988).

The relevance of PLP, MBP and CNP for the regular ultrastructure of myelin is reflected by their high
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abundance in biochemically purified myelin membranes (Jahn et al., 2009) and the myelin defects in

the corresponding mouse mutants.

In addition to the delamination of single myelin layers, pathological destabilization of myelin was

observed as pathological outfoldings of entire stacks of compacted myelin membranes in several

myelin mutants, (Patzig et al., 2016a) and upon normal brain aging (Peters, 2002; Sturrock, 1976).

We recently found that myelin outfoldings correlate with a loss of septins, which are cytoskeletal pro-

teins of comparatively lower abundance in the myelin proteome (Patzig et al., 2016a). Septins are

widely expressed and control the rigidity of the membranes they are associated with (Bridges and

Gladfelter, 2015; Gilden and Krummel, 2010). Localized in the non-compacted, adaxonal myelin

layer adjacent to the inner-most compacted myelin membrane, myelin septin filaments are assem-

bled from the monomers SEPT2, SEPT4, SEPT7 and SEPT8 in 1:1:2:2 stoichiometry (Patzig et al.,

2016a). This marks a canonical but distinct composition of subunits when compared with the higher

order structures of septins in other cell types (Barral and Kinoshita, 2008; Dolat et al., 2014).

Recently, we proposed that septin filaments provide a scaffold that prevents detachment of the

compacted myelin layers from the adaxonal myelin membrane and thus outfoldings of entire myelin

sheaths (Patzig et al., 2016a).

Septins associate with the pleckstrin homology (PH)-domain containing adaptor protein anillin

(ANLN) and its homologs in drosophila embryos (El Amine et al., 2013; Field et al., 2005;

Liu et al., 2012), budding yeast (Eluère et al., 2012; Kang et al., 2013; Tasto et al., 2003) and

mouse NIH3T3-fibroblasts (Kinoshita et al., 2002). Here, the role of anillin in the formation of con-

tractile septin rings is a conserved step of cytokinesis (Piekny and Maddox, 2010) and essential for

cell division (Zhang and Maddox, 2010). However, in post-mitotic cells the interactions between

septins and anillin are not understood. In the adult CNS, expression of Anln mRNA is highest in mye-

linating oligodendrocytes when assessed by RNA-Seq (www.web.stanford.edu/group/barres_lab/

cgi-bin/igv_cgi_2.py?lname=anln) (Zhang et al., 2014), single-cell transcriptomics (www.linnarsson-

lab.org/cortex) (Zeisel et al., 2015) and in situ-hybridization (mouse.brain-map.org/gene/show/

44585) (Lein et al., 2007).

Here we show that oligodendroglial anillin serves a crucial function in myelination. Conditional

mouse mutants lacking expression of the Anln-gene in mature oligodendrocytes fail to assemble

septin filaments, display large myelin outfoldings similar to those of Sept8-mutant mice

(Patzig et al., 2016a) and exhibit reduced nerve conduction velocity. This work thus establishes a

crucial function for anillin-dependent assembly of myelin septin filaments in scaffolding CNS myelin

to enable rapid nerve conduction, thereby demonstrating a vital function of anillin unrelated to

cytokinesis.

Results and discussion
To address a functional connection between anillin and myelin septins, we first asked if the protein is

also enriched in CNS myelin. Indeed, anillin was detected in myelin when biochemically purified from

mouse brains at P75, while it was virtually undetectable in brain lysates when loading the same

amount of protein (Figure 1A). This implies that anillin is enriched in myelin similar to SEPT8 variant

1 (SEPT8_v1; according to nomenclature at Ensembl.org) (Patzig et al., 2016a) or myelin oligoden-

drocyte glycoprotein (MOG) (Linnington et al., 1984). In comparison, the axonal marker Tubulin-

beta3/TUJ1 was diminished in myelin compared to brain lysate (Figure 1A). To determine the locali-

zation of anillin, we performed immunohistochemistry and confocal microscopy of longitudinal spinal

cord sections. We found that anillin-immunolabeling parallels but does not overlap with axonal neu-

rofilament (NF) labeling (Figure 1B). Most anillin-immunolabeling was reminiscent of the longitudinal

myelin septin filaments (Figure 1C) (Patzig et al., 2016a).

Considering that the abundance of Anln mRNA increases over 10-fold coinciding with the differ-

entiation of oligodendrocyte progenitor cells to myelinating oligodendrocytes (Zhang et al., 2014)

we tested whether the abundance of ANLN increases with the developmental maturation of myelin.

Indeed, by immunoblotting of myelin purified from mouse brains at postnatal day 15 (P15), P18, P21

and P24, the abundance of ANLN increased (Figure 1D) similar to that of SEPT2. When immunolab-

eling ANLN together with SEPT8 on longitudinal optic nerve sections at P15, P21 and P28, first co-
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labeled structures were occasionally detected at P21 but frequently seen at P28 (Figure 1E). Also in

other white matter tracts, ANLN-immunolabeling was largely in proximity to SEPT8-immunolabeling,

as seen in the fimbria and the corpus callosum by immunohistochemistry of coronal brain sections

from wild type mice at P75 (Figure 1—figure supplement 1A,B). Thus, expression of the cytoskele-

tal adaptor protein ANLN is strongly enriched in mature oligodendrocytes, in which it largely co-dis-

tributes with myelin septin filaments that localize to the non-compacted adaxonal myelin layer.

We previously noted that the presence of pathological myelin outfoldings in several myelin

mutant mice correlates with reduced abundance of both myelin septins and ANLN (Patzig et al.,

2016a). However, it remained unknown whether diminishment of ANLN represents a mere
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Figure 1. Co-distribution of anillin with myelin septins. (A) Immunoblotting of myelin purified from the brains of wild type mice at P75 compared to

brain lysates indicates that anillin (ANLN) is enriched in myelin similar to septin 8 variant 1 (SEPT8_v1). The same amount of protein was loaded. The

myelin marker MOG and the axonal marker TUJ1 served as controls. Blot shows n = 2 mice per genotype representative of n = 3 mice per genotype.

(B–C) Immunofluorescent signal of ANLN (green in B) and SEPT7 (green in C) extends longitudinally along axons identified by neurofilament-labelling

(red in B–C). Additional ANLN-immunopositive puncta (asterisks in B) were not evidently associated with filamentous structures (arrowheads in B,C). The

panels show maximal projections of confocal stacks and 3-dimensional reconstructions of longitudinally sectioned spinal cord of P75 WT mice. Images

representative of three mice. (D) Immunoblotting of myelin purified from the brains of wild-type mice at P15, P18, P21 and P24 indicates that the

abundance of ANLN in myelin increases with maturation. Myelin septins (SEPT2, SEPT4, SEPT7, SEPT8) and MAG served as control. Blot shows n = 1

mouse per timepoint. (E) Immunolabelling of longitudinally sectioned WT optic nerves detects ANLN (red) in proximity to SEPT8 (green); co-labeled

structures (arrowheads) were seen occasionally at P21 and frequently at P28 but not at P15. TUJ1 served as axonal marker. Images representative of

three experiments.

DOI: https://doi.org/10.7554/eLife.43888.002

The following figure supplement is available for figure 1:

Figure supplement 1. Co-labeling of ANLN and SEPT8 in various white matter tracts.

DOI: https://doi.org/10.7554/eLife.43888.003
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epiphenomenon of septin loss or if ANLN has a function in the assembly of septin filaments. To dis-

criminate between these alternative hypotheses, we generated mouse mutants in which exon 4 of

the Anln gene is flanked by loxP-sites (Figure 2—figure supplement 1A). Appropriate breedings

yielded Anlnflox/flox;CnpCre/WT mice, in which Cre recombinase is expressed under control of the Cnp

promoter (Lappe-Siefke et al., 2003) to mediate recombination (Figure 2—figure supplement 1B)

in myelinating oligodendrocytes. Conditional mutants and control mice were born at the expected

frequencies, and the major white matter regions developed normally as judged by light microscopic

visualization of myelin upon silver impregnation (Figure 2A,A‘). However, electron microscopic anal-

ysis revealed the presence of numerous myelin outfoldings in the CNS of Anlnflox/flox;CnpCre/WT mice

(Figure 2B,C), very similar to Sept8null/null and Sept8flox/flox;CnpCre/WT mutants (Patzig et al., 2016a).

Analysis of myelin sheath thickness (Figure 2D,D‘), the percentage of myelinated axons (Figure 2E),

degenerating/degenerated axons (Figure 2F) and secondary neuropathology (Figure 2—figure sup-

plement 2) did not reveal further abnormalities in Anlnflox/flox;CnpCre/WT mice, implying that myelin

outfoldings represent a very specific neuropathology.

To test if myelin outfoldings in Anlnflox/flox;CnpCre/WT mice impair CNS function in vivo, we mea-

sured nerve conduction in the spinal cord at 6 months of age. Indeed, nerve conduction velocity was

reduced by 15.5% in Anlnflox/flox;CnpCre/WT compared to control mice (Figure 2G), very similar to

Sept8-mutants (Patzig et al., 2016a). Considering that slowed nerve conduction can be caused by

structural changes of the nodes of Ranvier (Arancibia-Cárcamo et al., 2017) we performed immuno-

histochemistry for the nodal and paranodal markers Nav1.6 and CASPR, respectively, and deter-

mined the density of the nodes (Figure 2—figure supplement 3A) as well as their length and

diameter (as indicated in Figure 2—figure supplement 3B). This analysis did not reveal any nodal or

paranodal abnormality in Anlnflox/flox;CnpCre/WT mice (Figure 2—figure supplement 3C–F). Although

we cannot formally rule out other unidentified alterations in the CNS of Anlnflox/flox;CnpCre/WT mice,

myelin outfoldings are the most likely cause of reduced nerve conduction velocity.

At the molecular level we asked whether recombination of the Anln-gene in mature oligodendro-

cytes affects the protein composition of myelin. As expected, ANLN was undetectable by immuno-

blot analysis of myelin purified from the brains of Anlnflox/flox;CnpCre/WT mice (Figure 2—figure

supplement 1C). Interestingly, in these mutants the abundance of SEPT8 in myelin was reduced (Fig-

ure 2—figure supplement 1C). This prompted us to analyze the entire myelin proteome by quanti-

tative label-free mass spectrometry (Figure 3—source data 1). ANLN was readily detectable in

myelin purified from the brains of control mice but not identified in Anlnflox/flox;CnpCre/WT myelin

(Figure 3—figure supplement 1A). The abundance of all myelin septins (SEPT2, SEPT4, SEPT7,

SEPT8) was strongly reduced in myelin purified from the brains of Anlnflox/flox;CnpCre/WT mice

(Figure 3A,B, Figure 3—figure supplement 1B). Interestingly, the abundance of two GTPases of

the Rho-subfamily, CDC42 and RHOB, also appeared reduced, although less than the applied

threshold of a 2-fold change (Figure 3—figure supplement 1B). Importantly, the abundance of the

major myelin marker proteins (Figure 3—figure supplement 1C, Figure 3C) and cytoskeletal pro-

teins associated with the actin cytoskeleton or microtubules (Figure 3—figure supplement 1D) was

unaltered.

Since a reduction of the membrane phospholipid phosphatidylinositol (4,5)-bisphosphate (PtdIns

(4,5)P2) in myelin of Ptenflox/flox;CnpCre/WT mice causes a loss of septins and ANLN (Patzig et al.,

2016a), we asked whether vice versa the absence of ANLN from myelin affects PtdIns(4,5)P2–levels.

Indeed, by quantitative assessment of label-free lipid extracts (Goebbels et al., 2010; König et al.,

2008) we found a decreased abundance of PtdIns(4,5)P2 in myelin purified from the brains of Anln-
flox/flox;CnpCre/WT compared to control mice (Figure 3D).

By qRT-PCR, cDNA-fragments for Sept2, Sept4, Sept7, Sept8 were amplified with equal efficiency

from mutant and control corpus callosi (Figure 3E), suggesting that the loss of myelin septins is a

posttranscriptional event secondary to ANLN-deficiency. Most likely, myelin septin monomers are

degraded if not incorporated into filamentous higher order structures, the formation of which is facil-

itated by ANLN. The cDNA-fragments for Rhob and Cdc42 were also amplified with equal efficiency

from mutant and control corpus callosi (Figure 3—figure supplement 1E). Conversely, cDNA frag-

ments for Anln were virtually undetectable in Anlnflox/flox;CnpCre/WT corpus callosi (Figure 3E), indi-

cating that expression of Anln mRNA in the adult CNS is strongly enriched in mature

oligodendrocytes in accordance with RNA-Seq data (Zeisel et al., 2015; Zhang et al., 2014).
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Figure 2. Myelin outfoldings and reduced nerve conduction velocity in mice lacking oligodendroglial expression of ANLN. (A–A’) Silver impregnation

(in brown) visualizes myelinated fiber tracts in mice lacking ANLN from myelinating cells (Anlnfl/fl;CnpCre/WT-mice; Anln cKO) and in control mice (Anlnfl/

fl) at P75. (A) displays coronal brain sections; A’) shows sagittal sections through the cerebellum. Images representative of three mice per genotype. For

generation and validation of Anln cKO mice see Figure 2—figure supplement 1. (B) Electron micrographs of optic nerves exemplify myelin outfoldings

Figure 2 continued on next page
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To determine the morphology of myelin outfoldings three-dimensionally, we performed focused

ion beam-scanning electron microscopy (FIB-SEM) of optic nerves dissected from Anlnflox/flox;CnpCre/

WT and control mice, covering a depth of about 23 mm in each tissue. In control nerves, reconstruc-

tion of axonal plasma membranes (false-colored in blue in Figure 4) and myelin (false-colored in yel-

low in Figure 4) revealed a largely regular association of myelinated axons with their myelin sheaths

(exemplified in Figure 4A,A‘ and Video 1). In comparable blocks of optic nerves dissected from

Anlnflox/flox;CnpCre/WT mice, FIB-SEM allowed the 3D-reconstruction of a number of myelin outfold-

ings (Figure 4B‘,B‘‘‘ and Video 2 and Video 3). Most of them were in internodal segments; we

observed only a single myelin outfolding close to a node of Ranvier. The observed myelin outfold-

ings measured between 10 mm and 15 mm in length. Thus, myelin outfoldings do not adopt pin-nee-

dle-like shape but represent large sheets of compacted multilayered membrane stacks that extend

for considerable distance away from the myelinated axon.

Outfoldings of compact CNS myelin are a neuropathological hallmark in numerous models of

myelin-related disorders (Patzig et al., 2016a) and upon normal brain aging (Peters, 2002; Stur-

rock, 1976). Localized in the non-compacted adaxonal myelin layer, i.e. underlying the innermost

compact myelin membrane, septin filaments scaffold the myelin structure, thereby preventing the

emergence of myelin outfoldings (Patzig et al., 2016a). The phenotype of Anlnflox/flox;CnpCre/WT

mice is very similar to that of mice lacking SEPT8, a septin monomer essential for the assembly of

myelin septin filaments (Patzig et al., 2016a). Thus, the present study has revealed that anillin is crit-

ical for the assembly of septin filaments in CNS myelin and that the lack of these filaments causes

myelin outfoldings associated with reduced nerve conduction velocity.

During yeast cytokinesis, PtdIns(4,5)P2 recruits the anillin homolog Mid2p to the membrane at the

cleavage furrow, which in turn is critical for the polymerization of septin subunits into rings at the

budding site of mother and daughter cells (Bertin et al., 2010; Liu et al., 2012). At the molecular

level, the interactions between PtdIns(4,5)P2, anillin and septins are probably principally conserved

between dividing cells and mature oligodendrocytes, which are post-mitotic. Yet, during cytokinesis,

ANLN affects microtubules and myosin-dependent bundling of actin filaments (Hickson and O’Far-

rell, 2008a; Hickson and O’Farrell, 2008b). Since myelin wrapping involves actin disassembly

(Nawaz et al., 2015; Zuchero et al., 2015) and myelin compaction requires trafficking of Mbp

mRNA along microtubules (Müller et al., 2013; Thakurela et al., 2016), we point out that there is

no evidence of fewer, thinner or non-compacted myelin sheaths in Anlnflox/flox;CnpCre/WT mice.

Instead, ANLN is required during the latest stages of myelin maturation, i.e., for septin-dependent

scaffolding of the myelin sheath rather than for its actin/tubulin-dependent biosynthesis and

compaction.

Figure 2 continued

at P75. Stippled lines highlight myelin outfoldings; associated axons are marked with asterisks. (C) Quantitative evaluation of electron micrographs of

optic nerves reveals progressive emergence of myelin outfoldings in adult Anlnfl/fl;CnpCre/WT mice (Anln cKO). Mean +/SEM. n = 4–6 mice per genotype

and age; two-tailed unpaired t-test P14 p=0.0076; P75 p=0.0009; 6mo p=0.0007. (D,D‘) g-ratio analysis of electron micrographs of optic nerves at six mo

indicates normal myelin sheath thickness in Anln cKO mice. Mean +/SEM. Not significant according to two-way ANOVA (p=0.9279). (E) Quantitative

evaluation of electron micrographs of optic nerves at six mo reveals a normal frequency of myelinated axons in Anln cKO mice. Mean +/SEM. n = 4–5

mice per genotype; not significant (n.s.) according to two-tailed unpaired t-test (p=0.1827). (F) Quantitative evaluation of electron micrographs of optic

nerves at six mo indicates that there is no increased frequency of degenerating/degenerated axons in Anln cKO mice. Mean +/SEM. n = 4–5 mice per

genotype; not significant (n.s.) according to two-tailed unpaired t-test (p=0.8664). For immunohistochemical assessment of neuropathology see

Figure 2—figure supplement 2. (G) Electrophysiological measurement reveals reduced nerve conduction velocity in the spinal cord of Anln cKO

compared to control (Anlnfl/fl) mice at six mo. Mean +/SEM. n = 7–11 mice per genotype; two-tailed unpaired t-test (p=0.0149). For assessment of

density and dimensions of the nodes of Ranvier see Figure 2—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.43888.004

The following figure supplements are available for figure 2:

Figure supplement 1. Generation of mice lacking expression of ANLN from myelinating oligodendrocytes (Anln cKO mice).

DOI: https://doi.org/10.7554/eLife.43888.005

Figure supplement 2. ANLN deficiency in oligodendrocytes does not cause axonopathy, astrogliosis or microgliosis.

DOI: https://doi.org/10.7554/eLife.43888.006

Figure supplement 3. ANLN deficiency in oligodendrocytes does not cause alterations of density or structure of nodes of Ranvier.

DOI: https://doi.org/10.7554/eLife.43888.007
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Figure 3. Myelin composition in mice lacking oligodendroglial expression of ANLN. (A) Volcano plot summarizing genotype-dependent quantitative

myelin proteome analysis. Data points represent quantified proteins in myelin purified at P75 from the brains of Anln cKO compared to Anlnfl/fl mice

(n = 3 mice per genotype). Data points are plotted as log2-transformed fold-change (FC) on the x-axis against the �log10-transformed q-value on the

y-axis. The horizontal red dashed line indicates a q-value of q = 0.01; the vertical black dashed lines mark the ±1 log2 fold-change threshold indicating

a halved or doubled abundance of a protein in myelin, respectively. Data points representing myelin septin monomers (SEPT2, SEPT4, SEPT7, SEPT8)

are highlighted in light red color with protein names given; note that their abundance is strongly reduced in Anln cKO compared to Anlnfl/fl myelin.

Also note that ANLN is not represented because it was not detected in Anln cKO myelin. For bar graphs showing genotype-dependent comparison of

the abundance of individual proteins in myelin see Figure 3—figure supplement 1A–D. For the original dataset and exact q-values see Figure 3—

source data 1. (B) Immunoblotting validates the lack of anillin (ANLN) and the strong reduction of septins (SEPT2, SEPT4, SEPT7, SEPT8) in myelin

purified from the brains of Anln cKO-mice. ATPase Na+/K + transporting subunit alpha 3 (ATP1A3) was detected as control. Blot shows n = 3 mice per

genotype. (C) Immunoblotting indicates that the abundance of classical myelin proteins (PLP/DM20, SIRT2, CD9, CA2) is unaltered in myelin purified

from the brains of Anln cKO-mice. ATP1A1 served as control. Blot shows n = 3 mice per genotype. (D) Genotype-dependent quantitative assessment of

PtdIns(4,5)P2 (PIP2)–levels in myelin purified from the brains of Anln cKO-mice compared to controls (Anlnfl/fl) at P75. Mean +/SEM. n = 6 mice per

genotype; two-tailed unpaired t-test; PtdIns(4,5)P2p=0.0435. (E) qRT-PCR to determine the abundance of mRNAs encoding anillin and myelin septins in

the white matter (corpus callosum) of control (Anlnfl/fl) versus Anln cKO-mice. Note that Anln mRNA was virtually undetectable in Anln cKO-mice while

the abundances of Sept2, Sept4, Sept7 and Sept8 mRNAs were unaltered. Mean +/SEM. n = 6 mice per genotype; two-way ANOVA; Anln p<0.0001,

Sept2 p>0.9999, Sept4 p>0.9999, Sept7 p>0.9999, Sept8 p>0.9999.

DOI: https://doi.org/10.7554/eLife.43888.008

The following source data and figure supplement are available for figure 3:

Source data 1. Label-free quantification of proteins in myelin purified from the brains of Anln cKO and control mice Tryptic peptides derived from two

technical replicates (replicate digestion) per biological replicate (n = 3 mice per genotype) were analyzed by LC-MS (12 runs in total).

DOI: https://doi.org/10.7554/eLife.43888.010

Figure supplement 1. Genotype-dependent quantification of selected proteins according to myelin proteome analysis.

DOI: https://doi.org/10.7554/eLife.43888.009
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Myelin is one of the most long-lived structures in the CNS (Toyama et al., 2013) with a particu-

larly slow turnover rate of its components (Lasiene et al., 2009; Lüders et al., 2019; Yeung et al.,

2014; Young et al., 2013). Failure to physically stabilize the myelin architecture causes myelin out-

foldings and affects nerve conduction velocity. We therefore propose that PtdIns(4,5)P2/anillin-

dependent scaffolding of myelin by septin filaments represents a crucial step of myelin maturation.

Materials and methods

Mouse models
Embryonic stem cells (ES) harboring an engineered allele of the Anln gene were acquired from the

European Conditional Mouse Mutagenesis Program (Eucomm). ES were microinjected into blasto-

cysts derived from c57BL/6N mice, and embryos were transferred to pseudo-pregnant foster
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Figure 4. Three-dimensional reconstruction of myelin outfoldings in Anln cKO mice. (A–C) Focused ion beam-scanning electron microscopy (FIB-SEM)

micrographs and 3D reconstruction of the plasma membrane of myelinated axonal segments (blue) and respective myelin sheaths (yellow) of

representative axon/myelin-units in the optic nerve of control (Anlnfl/fl) (A,A‘) and Anln cKO (B,B‘,B‘‘,B‘‘‘) mice at 5.5 mo. Note the tight association of

the myelin sheath reconstructed in A ‘with the corresponding axon (in A,A‘) over at least 10 mm in the control nerve. An individual myelin outfolding (B‘)

and the corresponding axon are reconstructed over 20 mm in B,B‘. All myelin outfoldings in that same block (as in B,B‘) were reconstructed in B‘‘‘ with

their corresponding axons (in B‘‘,B‘‘‘). Note that myelin outfoldings represent large sheets of compacted multilayered membrane stacks that extend

considerably away from their respective myelinated axon, commonly displaying longitudinal dimensions between 10 mm and 15 mm. See Videos 1–3.

DOI: https://doi.org/10.7554/eLife.43888.011
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mothers, yielding two chimeric males. For ES

clone EPD0545_1_F09, germline transmission

was achieved upon breeding with c57BL/6N-

females, yielding mice harboring the AnlnLacZ-neo

allele. The lacZ-neo cassette was excised in vivo

upon interbreeding with mice expressing FLIP

recombinase (129S4/SvJaeSor-Gt(ROSA)26Sortm1

(FLP1)Dym/J; backcrossed into c57BL/6N), yielding

mice carrying the Anlnflox allele. To inactivate

expression of ANLN in myelinating cells, exon

four was excised in vivo upon appropriate inter-

breedings of Anlnflox mice with mice expressing

Cre recombinase under control of the Cnp pro-

moter (Lappe-Siefke et al., 2003). For simplicity,

Anlnfl/fl;CnpCre/WT mice are also termed Anln con-

ditional knockout (Anln cKO). Routine genotyping

of the Anln allele as shown in Figure 2—figure

supplement 1B was performed by PCR with

sense primer P1 (5‘-GACATAGCCC TCAGTGTT-

CAGG; binding 5 ‘of the first loxP-site) in combi-

nation with antisense primers P2 (5‘-

GAATCCTGCA TGGACAGACAG; binding the segment flanked by loxP-sites), and P3 (5‘-GAGCT-

CAGAC CATAACTTCG; binding 3 ‘of the third loxP site). PCR genotyping of the Cnp allele was with

primers 2016 (5‘-GCCTTCAAAC TGTCCATCTC), 7315 (5‘-CCCAGCCCTT TTATTACCAC), 4193 (5‘-

CCTGGAAAAT GCTTCTGTCCG) and 4192 (5‘-CAGGGTGTTA TAAGCAATCCC). Experimental

mutant mice were analyzed together with littermate controls as far as possible. Mice were kept in

the mouse facility of the Max Planck Institute of Experimental Medicine with a 12 hr light/dark cycle

and 2–5 mice per cage. All experiments were approved by the Niedersächsisches Landesamt für Ver-

braucherschutz und Lebensmittelsicherheit (license 33.19-42502-04-15/1833) in agreement with the

German Animal Protection Law.

Quantifications and statistical analysis
Sample size was according to previous analyses of similar parameters, e.g. in (Patzig et al., 2016a).

All quantifications were performed blinded with respect to the genotypes. Bar graphs display mean

values and standard error of the mean (SEM). Statistical tests were performed in GraphPad Prism

Video 1. FIB-SEM and 3D reconstruction of a normal-

appearing axon/myelin-unit in a control mouse.

DOI: https://doi.org/10.7554/eLife.43888.012

Video 2. FIB-SEM and 3D reconstruction of one

selected myelin outfolding in an Anln cKO mouse.

DOI: https://doi.org/10.7554/eLife.43888.013

Video 3. FIB-SEM and 3D reconstruction of multiple

myelin outfoldings in one tissue block of an Anln cKO

mouse.

DOI: https://doi.org/10.7554/eLife.43888.014
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6.0. Tests were chosen depending on experimental groups and as suggested by the software. To

test for variance, F-test was performed in GraphPad Prism 6.0. GraphPad online test at http://graph-

pad.com/quickcalcs/Grubbs1.cfm was used to test for outliers; however, no outliers were removed

from the data. Levels of significance were set at p<0.05 (*), p<0.01 (**), and p<0.001 (***). Exact

p-values are given in the figure legends. For myelin proteome analysis, q-values were calculated by

R data analysis as detailed in the section ‘Myelin proteome analysis’ and given in Figure 3—source

data 1.

Electron microscopy
For conventional transmission electron microscopy, sample preparation by chemical fixation or by

high pressure freezing and freeze substitution was performed as described (Möbius et al., 2010;

Möbius et al., 2016; Patzig et al., 2016a; Patzig et al., 2016b). Myelinated and degenerated axons

were assessed on electron micrographs of the optic nerves of 4–5 male mice per genotype chemi-

cally fixed at 6 mo of age. 15 randomly distributed non-overlapping electron micrographs were

taken per optic nerve at 7000x magnification (one field = 220 mm2). Electron micrographs were

assessed using ImageJ (Fiji) (Schindelin et al., 2012). A minimum of 1600 axons per mouse was

assigned to one of three categories: healthy-appearing myelinated axons, healthy-appearing non-

myelinated axons and degenerating/degenerated profiles. Axons were counted as myelinated if

ensheathed by at least one complete layer of compact myelin. Degenerating/degenerated profiles

were identified by the presence of tubovesicular structures and amorphous cytoplasm within an

axon or the absence of an identifiable axon within a myelin sheath, respectively. The area occupied

by myelin outfoldings was assessed by applying a point-hit counting method (Edgar et al., 2009;

Patzig et al., 2016a) to the same electron micrographs. Briefly, a regular grid of 0.25 mm2 was

placed on the images. The number of intercepts coinciding with myelin outfoldings was related to

the evaluated area. g-ratios were calculated as ratio between axonal Feret diameter and Feret diam-

eter of the corresponding myelin sheath. To this aim, the top left quarter of the same electron micro-

graphs (one field = 55 mm2) was assessed, yielding a minimum of 200 myelinated axons per mouse.

For focused ion beam-scanning electron microscopy (FIB-SEM), optic nerves dissected from mice

at 5.5 months of age were fixed for 24 hr in 4% formaldehyde (Serva) and 2.5% glutaraldehyde (Sci-

ence Services) in 0.1 M phosphate buffer (PB). The samples were processed principally following the

OTO protocol (www.ncmir.ucsd.edu/sbem-protocol) (Deerinck et al., 2010) with some modifica-

tions: Samples were washed in 0.1 M PB (3 � 15 min), incubated for 3 hr at 4˚C in 2% osmium tetrox-

ide (OsO4) (Electron Microscopy Sciences) and 0.25% potassium ferrocyanide (K4[Fe(CN)6]) (Electron

Microscopy Sciences), washed with H2O (3 � 15 min) and then incubated with 0.1% thiocarbohydra-

zide (Sigma-Aldrich) for 1 hr at room temperature. For further contrast enhancement the tissue was

treated with 2% OsO4 for 90 min at room temperature. The samples were then washed with H2O (3

� 15 min), contrasted overnight at 4˚C with 2% uranyl acetate (SPI-Chem) and washed again with

H2O (3 � 15 min), followed by dehydration in an increasing acetone series (30%, 50%, 75%, 90%, 3

� 100%). The tissue was infiltrated with increasing concentrations of Durcupan (Sigma-Aldrich, com-

ponents A, B, C) for 2 hr each (25%, 50%, 75% Durcupan in acetone) and then incubated in 100%

Durcupan overnight. Fresh Durcupan with accelerator (component D) was added to the samples for

5 hr before embedding the samples in resin blocks. The blocks were polymerized for 48 hr at 60˚C.
The blocks were trimmed with a 90˚ diamond trimming knife (Diatome AG, Biel, Switzerland). The

blocks were then attached to the SEM stub (Science Services GmbH, Pin 12.7 mm x 3.1 mm) by a sil-

ver filled epoxy resin (Epoxy Conductive Adhesive, EPO-TEK EE 129–4; EMS) and polymerized at 60˚
overnight. The samples were coated with a 10 nm platinum layer using the sputter coater EM

ACE600 (Leica) at 35 mA current. Samples were placed into the Crossbeam 540 focused ion beam-

scanning electron microscope (Carl Zeiss Microscopy GmbH). To ensure even milling and to protect

the surface, a 400 nm platinum layer was deposited on top of the region of interest. Atlas 3D (Atlas

5.1, Fibics, Canada) software was used to collect the 3D data. Samples were exposed with a 15 nA

current, and a 7 nA current was used to polish the surface. The images were acquired at 1.5 kV with

the ESB detector (450 V ESB grid, pixel size x/y 2 nm) in a continuous mill-and-acquire mode using

700 pA for the milling aperture (z-step 50 nm).

For image analysis, alignments were done with TrackEM2 (Cardona et al., 2012), a plugin of Fiji

(Schindelin et al., 2012). The following post-processing steps were performed in Fiji: The dataset

was cropped and inverted before applying a Gaussian blurr (sigma 2) and local contrast
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enhancement (CLAHE: blocksize 56; histogram bins 100; maximum slope 1.5). The images were

manually segmented using IMOD (Kremer et al., 1996).

Immunohistochemistry
Immunohistochemistry on sections of paraffin-embedded brains to determine neuropathology was

performed as described (de Monasterio-Schrader et al., 2013; Patzig et al., 2016a), assessing five

male mice per genotype at postnatal day 75 (P75). Antibodies were specific for MAC3 (Pharmingen

553322; 1:400), glial fibrillary acidic protein (GFAP) (NovoCastra NCL-L-GFAP-GA5; 1:200) or amy-

loid precursor protein (APP) (Chemicon MAB348; 1:1000). For quantification, the hippocampal fim-

bria was selected, and APP-positive axonal spheroids were counted. Microscopy was as described

(Patzig et al., 2016a). To quantify white matter area immunopositive for MAC3 or GFAP, the hippo-

campal fimbria was selected on micrographs and analyzed using an ImageJ plugin for semiauto-

mated analysis (de Monasterio-Schrader et al., 2013; Lüders et al., 2017; Patzig et al., 2016a).

Data were related to the mean of wild-type levels. Silver impregnation of myelin on histological sec-

tions was as described (Gallyas, 1979; Patzig et al., 2016a). Microscopy and image stitching was as

described (Patzig et al., 2016a).

Immunohistochemistry on cryosectioned optic nerves to assess expression and localization of

ANLN and myelin septins was as described (Patzig et al., 2016a). Antibodies were specific for

ANLN (Acris AP16165PU-N; 1:200), SEPT7 (IBL18991; 1:1000), SEPT8 (ProteinTech Group 11769–1-

AP; 1:500), TUJ1 (Covance MMS-435P; 1:1000), neurofilament (Covance SMI-31; 1:1500), myelin-

associated glycoprotein (MAG clone 513; Chemicon MAB1567; 1:50), voltage-gated sodium channel

Nav1,6 (alomonelabs ASC-009; 1:500) or contactin-associated protein (CASPR; Neuromabs 75–001;

1:500). Secondary antibodies were donkey a-rabbit-Alexa488 (Invitrogen A21206), donkey a-mouse-

Alexa488 (Invitrogen A21202), donkey a-rabbit-Alexa555 (Invitrogen A31572), donkey a-mouse-

Alexa555 (Invitrogen A31570), donkey a-goat-Cy3 (dianova 705-165-147) and donkey a-mouse Dye-

light633 (Yo-Pro). Images were obtained by confocal microscopy (Leica SP5) as described

(Patzig et al., 2016a). The LAS AF lite and Fiji were used to export the images as tif-files. Imaris was

used for 3D-reconstructions. For quantification of nodal density, the frequency of occurrence of two

CASPR-immunopositive paranodes was analyzed using Fiji. CASPR-immunopositivity was converted

using a threshold and counted using ITNC plugin (n = 4 mice per genotype, one section each, five

random micrographs of spinal cord white matter with a size of 2500 mm2 per micrograph). Statistical

analysis was performed using GraphPad Prism 6.0.

Myelin purification
A light-weight membrane fraction enriched for myelin was purified from mouse brains by sucrose

density centrifugation and osmotic shocks as described (Jahn et al., 2013; Patzig et al., 2016a). For

immunoblot analyses of myelin during development, male wild-type (c57Bl/6N) mice were used at

the indicated ages. For proteome and immunoblot analyses of Anln cKO mice and control (Anlnfl/fl)

littermates, n = 3 male mice at P75 were used. Protein concentrations were determined using the

DC protein assay (BioRad). For PtdIns(4,5)P2 measurement, myelin was purified from n = 6 male

mice per genotype at P75 with phosphatase inhibitor (Roche PhosSTOP; 1 tablet per 10 ml) added

to the Tris-buffered saline and the sucrose solutions.

Myelin proteome analysis
Differential quantitative label-free proteome analysis of myelin purified from the brains of male Anln

cKO mice and control littermates at P75 was performed using a label-free quantification workflow

essentially as described (Ambrozkiewicz et al., 2018; Patzig et al., 2016a). Briefly, protein fractions

corresponding to 10 mg myelin protein were lysed and reduced in lysis buffer (7 M urea, 2 M thio-

urea, 10 mM DTT, 0.1 M Tris pH 8.5) containing 1% ASB-14 while shaking for 30 min at 37˚C. Subse-
quently, samples were diluted with 10 volumes lysis buffer containing 2% CHAPS to reduce the ASB-

14 concentration and processed according to an automated filter-aided sample preparation (FASP)

protocol for in-solution digestion with trypsin. Aliquots of the recovered tryptic peptides were

spiked with 10 fmol/ml Hi3 EColi standard (Waters Corporation) for protein quantification according

to the TOP3 approach (Silva et al., 2006). This standard contains a set of quantified synthetic pepti-

des representing the top six ionizing tryptic peptides derived from E. coli. Chaperone protein ClpB.
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Peptide samples were directly subjected to analysis by liquid chromatography coupled to electro-

spray mass spectrometry (LC-MS) on a Synapt G2-S quadrupole time-of-flight mass spectrometer

equipped with ion mobility option (Waters Corporation). Analyses were performed in the ion mobil-

ity-enhanced data-independent acquisition mode with drift time-specific collision energies as

described (Distler et al., 2014; Distler et al., 2016). Specifically, a novel data acquisition strategy

with dynamic range enhancement (DRE) was used, in which a deflection lens cycles between full and

reduced ion transmission during one scan. This method provides an optimal trade-off between iden-

tification rate (i.e. proteome depth) and dynamic range for correct quantification of high-abundant

myelin proteins. Continuum LC-MS data were processed using Waters ProteinLynx Global Server

(PLGS) version 3.0.2 and database searches were performed against the UniProtKB/Swiss-Prot

mouse proteome (release 2016–07, 16806 entries) to which the sequence information for E. coli.

Chaperone protein ClpB, porcine trypsin, and the reversed sequence of each entry was added. The

false discovery rate (FDR) for protein identification was set to 1% threshold. As to the experimental

design, myelin protein fractions from the CNS of three mice per condition (Anln cKO, Ctrl) were

processed with replicate digestion, resulting in two technical replicates per biological replicate and

thus in a total of 12 LC-MS runs to be compared in the freely available software ISOQuant (www.iso-

quant.net). This post-identification analysis included retention time alignment, exact mass and reten-

tion time (EMRT) and ion mobility clustering, data normalization, isoform/homology filtering, and

calculation of absolute in-sample amounts for each detected protein as described

(Ambrozkiewicz et al., 2018; Kuharev et al., 2015). FDR for both peptides and proteins was set to

1% threshold and only proteins reported by at least two peptides were quantified using the TOP3

method. The parts per million (ppm) abundance values (i.e. the relative amount (w/w) of each protein

in respect to the sum over all detected proteins) were log2-transformed and significant changes in

protein abundance were detected by moderated t-statistics with an empirical Bayes approach and

false discovery (FDR)-based correction for multiple comparisons performed in RStudio

(Ambrozkiewicz et al., 2018; Kammers et al., 2015). The genotype-dependent relative abundance

of a protein in myelin was compared with high stringency and accepted as altered if both statistically

significant (q-value <0.01) and exceeding a regulation factor threshold of 2-fold.

Lipid extraction and PtdIns(4,5)P2 measurement
Purified myelin was thawed on ice in 1 ml of an acidic extraction solvent (Cho and Boss, 1995) con-

taining 36% (v/v) CH3OH, 36% (v/v) CHCl3, 18% (v/v) 2.4 M HCl, and 9% (v/v) 0.4 M EDTA in a glass

reaction vial (73750–13100, Kimble-Chase, Meiningen, Germany). The material was ground to homo-

geneity using a rotating Douncer (IKA, Staufen, Germany) on ice. Samples were mixed and incu-

bated for 2 hr at 4˚C while shaking on a Cat-Ing shaker (Ballrechten, Germany, city). Phases were

separated by centrifugation for 2 min at 600 g, and the organic phase was collected into a fresh

glass tube. Samples were re-extracted twice with 500 ml of CHCl3. The combined organic phases

were washed twice using 1.5 ml of 0.5 M HCl in 50% (v/v) CH3OH. The first aqueous phase was dis-

carded; after the second washing step the organic phase was collected into a fresh glass tube. The

lipid extracts were analyzed in a double-blind experiment for phosphatidylinositol (4,5)-bisphosphate

(PtdIns(4,5)P2) using combined thin layer chromatography (TLC) and gas chromatography (GC)

essentially as previously described (Goebbels et al., 2010; König et al., 2008). Briefly, myelin sam-

ples were subjected to TLC on silica S60 plates (Merck, Darmstadt, Germany) using a developing sol-

vent of CHCl3:CH3OH:NH4OH:H2O (57:50:4:11 v/v/v/v) (Perera et al., 2005). Lipids were identified

by co-migration with authentic standards (5 mg; Avanti Polar Lipids, Alabaster, AL, USA), re-isolated

and quantified according to their fatty acid content, as determined by GC. For GC analysis, re-iso-

lated lipids were dissolved in MeOH/toluol (2:1 v/v), 5 mg of tripentadecanoin was added as an inter-

nal standard for quantification and the mixture transmethylated with 0.5 M sodium methoxide

(Sigma-Aldrich, Munich, Germany) according to (Hornung et al., 2002). After 30 min incubation at

room temperature, derivatization was terminated by adding 0.5 ml 5 M NaCl (Sigma-Aldrich,

Munich, Germany) and 50 ml of 32% HCl (Carl Roth, Karlsruhe, Germany). Fatty acid methyl esters

were extracted with 2 ml hexane (Carl Roth, Karlsruhe, Germany), the hexane phase was washed

twice with 2 ml ddH2O and dried under streaming nitrogen. The lipid coat was resuspended in 10 ml

acetonitrile (Carl-Roth, Karlsruhe, Germany) and transferred to GC vials (order number 702287.1,

VWR, Darmstadt, Germany). GC analysis was performed using a GC2010plus gas chromatograph

with flame ionization detection (Shimadzu, Jena, Germany) fitted with a DB-23 capillary column (30
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m x 250 mm, 0.25 mm coating thickness; J and W, Agilent, Waldbronn, Germany). Helium flowed as a

carrier gas at 1 ml min�1. Samples were injected at 220˚C. The temperature gradient was 150˚C for

1 min, 150–200˚C at 8 ˚C min�1, 200–250˚C at 25 ˚C min�1 and 250˚C for 6 min as previously

described (König et al., 2008). Fatty acids were identified according to authentic standards and

quantified relative to the internal standard using GC-solution software (Shimadzu, Jena, Germany).

Immunoblotting
Immunoblotting was performed as described (Patzig et al., 2016a; Schardt et al., 2009). Antibod-

ies were specific for ANLN (Acris AP16165PU-N; 1:1000), SEPT2 (ProteinTech Group 11397–1-AP;

1:500), SEPT4 (IBL JP18987; 1:500), SEPT7 (IBL JP18991; 1:5000), SEPT8 (ProteinTech Group 11769–

1-AP; 1:2500), MAG ((Erb et al., 2003); kindly provided by N. Schaeren-Wiemers, Basel; 1:500), PLP/

DM20 (A431 ((Jung et al., 1996); 1:5000), cyclic nucleotide phosphodiesterase (CNP) (Sigma C5922;

1:1000), MOG (clone 8–18 C5 (Linnington et al., 1984); 1:5000; kindly provided by C. Linington,

Glasgow), SIRT2 (abcam 67299; 1:500), CD9 (abcam ab92726; 1:2000), CA2 ((Ghandour et al.,

1980a; Ghandour et al., 1980b); 1:1000; kindly provided by S. Ghandour, Strasbourg), ATP1A1

(abcam ab7671; 1:2500), ATP1A3 (abcam ab2826; 1:1000), beta3-Tubulin (TUBB3/Tuj1) (Covance

MMS-435P; 1:1000). Secondary HRP-coupled antibodies were anti-mouse (dianova 715-035-020;

1:1000), -rabbit (dianova 711-035-152; 1:1000), or -goat (dianova 705-035-003; 1:500). Immunoblots

were scanned using the Intas ChemoCam system.

Quantitative RT-PCR
mRNA abundance was determined by qRT-PCR as described (Lüders et al., 2017; Patzig et al.,

2016a) using corpus callosi dissected from 4 months old male and female mice of the indicated gen-

otypes. mRNA abundance was analyzed in relation to the mean of the standard Ppia, which did not

differ between genotypes. Statistical analysis was performed in GraphPad Prism 6.0. Primers were

specific for Anln (forward 5‘-ACAATCCAAG GACAAACTTGC, reverse 5‘- GCGTTCCAGG

AAAGGCTTA, Sept2 (forward 5‘-TCCTGACTGA TCTCTACCCAGAA, reverse 5‘-AAGCCTCTAT

CTGGACAGTTCTTT), Sept4 (forward 5‘-ACTGACTTGT ACCGGGATCG, reverse 5‘-TCTCCACGGT

TTGCATGAT), Sept7 (forward 5‘-AGAGGAAGGC AGTATCCTTGG, reverse 5‘-TTTCAAGTCC

TGCATATGTGTTC), Sept8 (forward 5‘-CTGAGCCCCG GAGCCTGT, reverse 5‘-CAATCCCAGT

TTCGCCCACA), Cdc42 (forward 5‘-GCTGTCAAGT ATGTGGAGTGCT, reverse 5’-GGCTCTTCTT

CGGTTCTGG), Rhob (forward 5‘-CAGACTGCCT GACATCTGCT, reverse 5’-GTGCCCACGCT

AATTCTCAG) and the standard Ppia (forward 5‘-CACAAACGGT TCCCAGTTTT, reverse 5‘-

TTCCCAAAGA CCACATGCTT).

Nerve conduction velocity measurement
Nerve conduction velocity in the CNS was measured in 6 months old anesthetized male mice in vivo

as described (Dibaj et al., 2012; Patzig et al., 2016a).
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