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•  Background and Aims  Intraspecific trait variation (ITV) is an important dimension of plant ecological diver-
sity, particularly in agroecosystems, where phenotypic ITV (within crop genotypes) is an important correlate of 
key agroecosystem processes including yield. There are few studies that have evaluated whether plants of the same 
genotype vary along well-defined axes of biological variation, such as the leaf economics spectrum (LES). There 
is even less information disentangling environmental and ontogenetic determinants of crop ITV along an intraspe-
cific LES, and whether or not a plant’s position along an intraspecific LES is correlated with reproductive output.
•  Methods  We sought to capture the extent of phenotypic ITV within a single cultivar of soy (Glycine max) – the 
world’s most commonly cultivated legume – using a data set of nine leaf traits measured on 402 leaves, sampled 
from 134 plants in both agroforestry and monoculture management systems, across three distinct whole-plant 
ontogenetic stages (while holding leaf age and canopy position stable).
•  Key Results  Leaf traits covaried strongly along an intraspecific LES, in patterns that were largely statistically 
indistinguishable from the ‘universal LES’ observed across non-domesticated plants. Whole-plant ontogenetic 
stage explained the highest proportion of phenotypic ITV in LES traits, with plants progressively expressing more 
‘resource-conservative’ LES syndromes throughout development. Within ontogenetic stages, leaf traits differed 
systematically across management systems, with plants growing in monoculture expressing more ‘resource-con-
servative’ trait syndromes: trends largely owing to an approximately ≥50% increases in leaf mass per area (LMA) 
in high-light monoculture vs. shaded agroforestry systems. Certain traits, particularly LMA, leaf area and max-
imum photosynthetic rates, correlated closely with plant-level reproductive output.
•  Conclusions  Phenotypic ITV in soy is governed by constraints in trait trade-offs along an intraspecific LES, 
which in turn (1) underpins plant responses to managed environmental gradients, and (2) reflects shifts in plant 
functional biology and resource allocation that occur throughout whole-plant ontogeny.

Key words: Agroecology, functional traits, Glycine max, intraspecific trait variation, leaf economics spectrum, 
leaf mass per area, leaf trait, photosynthesis.

INTRODUCTION

Understanding differences in ecological strategies among plant 
species has emerged as a critical means by which ecologists test 
hypotheses on mechanisms of species coexistence (e.g. Kraft 
et al., 2015), and understand the mechanistic linkages and feed-
backs between biodiversity and ecosystem functioning (Lavorel 
and Garnier, 2002; Cadotte et al., 2011). Considerable evidence 
now exists indicating that certain suites of functional traits can 
be used to directly describe ecological variation among plants 
(e.g. Reich et al., 1997; Westoby, 1998; Westoby et al., 2002; 
Wright et al., 2004; Diaz et al., 2016). Arguably the most com-
monly evaluated plant functional traits are those forming the 
‘leaf economics spectrum’ (LES): a suite of covarying leaf 
functional characteristics that cumulatively differentiate plants 
along a continuous axis of ecological differences, from short-
lived resource-acquiring plants on one end with low leaf mass 

per area (LMA), high photosynthetic assimilation rates (A) and 
high leaf nitrogen (N) concentrations, to long-lived resource-
conserving species with the opposite suite of traits on the other 
(Wright et al., 2004). Even when considering a broader suite 
of traits, species differences along the LES remain as one of 
the primary defining axes of ecological variation among plants 
worldwide (Diaz et al., 2016).

While the vast majority of research on leaf traits focuses on 
differences among species, there has been increasing interest in 
understanding patterns and consequences of intraspecific trait 
variation (ITV) (Albert et al., 2010a, b, 2011; Messier et al., 
2010; Siefert et  al., 2015). Ecological research broadly cate-
gorizes ITV as differences in trait expression within a species 
(among either conspecific individuals or populations), which 
may be owing to genotypic variability among plants, or pheno-
typic responses to local environmental conditions (e.g. Moran 
et al., 2016). There is now increasing evidence to indicate that 
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individual plants vary considerably along an ‘intraspecific LES’ 
due to phenotypic and/or genotypic variation (Blonder et al., 
2013; Hu et al., 2015; Niinemets, 2015; Martin et al., 2017), 
and this ITV has important consequences for ecosystem func-
tioning including plant decomposition, reproduction and plant 
responses to above- and below-ground environmental change 
(e.g. Lecerf and Chauvet, 2008; Jung et  al., 2014; Gagliardi 
et al., 2015; Isaac et al., 2017).

Exploring patterns of intraspecific variation in the LES 
traits of crops has recently emerged as a critical application 
of trait-based ecology (Martin and Isaac, 2015, 2018; Milla 
et  al., 2015). From an agroecosystem functioning perspec-
tive, intraspecific variation in crop LES traits, either within or 
across cultivars, (1) modulates plant responses to above- and 
below-ground environmental gradients (Isaac et al., 2017); (2) 
is empirically linked with crop yield (Gagliardi et al., 2015); 
(3) is a key input into process-based models of agricultural 
yield (Bouman and van Laar, 2006; Martin et al., 2018); and 
(4) in certain systems forms the basis of local knowledge used 
to inform management decisions (Isaac et al., 2018). Moreover, 
variation along an intraspecific LES in crops has provided evi-
dence on the ecological consequences of plant breeding (Milla 
et al., 2015; Martin et al., 2017).

Nevertheless there is still a paucity of research assessing pat-
terns of intragenotype LES trait variation within the world’s 
most common crops (Martin and Isaac, 2015). For example, N2 
fixation is a key attribute in many (but not all) of the world’s 
most widespread leguminous crops, yet there are no studies 
evaluating how this characteristic might influence patterns of 
intragenotype LES variation. Research on non-domesticated 
plant species indicates that legumes may deviate from a wider 
LES, and, in particular, express weaker relationships between 
certain traits such as A and leaf N concentrations (Adams et al., 
2016). However, to our knowledge, no studies have assessed 
patterns or consequences of LES traits in the world’s most 
common leguminous crops. In particular, soybean [Glycine 
max (L.) Merr.] – the focus of this present study – currently 
covers >100 Mha of agricultural land globally, making it the 
world’s fourth most widespread crop, and the world’s most 
abundant domesticated N2-fixing species (Martin and Isaac, 
2015). Although many independent studies have evaluated ITV 
for one or a few individual traits, there are no studies to date 
evaluating if and why soy varies along a prospective within-
genotype intraspecific LES.

Decades of intensive selection would suggest that soy has 
been shifted towards the extreme ‘resource-acquiring’ end of 
the LES, probably expressing among the highest values of A 
and leaf N, and low LMA observed across a global species 
pool (Milla et al., 2015). However, while this might be the case 
broadly, ITV along the LES within a given genotype is also 
likely to be governed by key managed environmental gradients 
such as light and temperature, which may lead to soy covering a 
broad spectrum of the LES (e.g. Campbell et al., 1990). Spatial 
or temporal heterogeneity in soil nutrients is also expected to 
drive intraspecific variation in crop LES traits within geno-
types, yet these relationships may be more variable in soy due 
to differences in rates of N2 fixation across managed environ-
mental gradients (Isaac et al., 2014; Nasielski et al., 2015).

It is also likely that the position of soy leaves along the 
LES will shift during the course of leaf and whole-plant 

development. As leaves age, reductions in photosynthetic rate 
are often associated with changes in LMA and especially leaf 
N; such patterns have been observed in multiple plant spe-
cies, including soy (Reich et al., 1986, 1991). Furthermore, 
although much less studied, as plants enter into reproductive 
stages later in the growing season, greater resource alloca-
tion to N-intensive reproductive structures (including pods 
and seeds) may contribute to a plant progressively expressing 
more resource-conservative LES traits, notably reductions in 
leaf N and in turn A. Such ‘whole-plant ontogenetic effects’ 
associated with reproductive allocation (i.e. changes in traits 
that are detected when controlling for leaf age and canopy 
position) have been observed in some domesticated species 
and trees (Steppe et al., 2011; Mason et al., 2013; Martin and 
Thomas, 2013; Sendall and Reich, 2013), but to our know-
ledge this has not been evaluated in any of the world’s most 
common crops.

Our study seeks to address some of these expectations by 
evaluating phenotypic dimensions of ITV in soy within a sin-
gle genotype, in order to address the following research ques-
tions. (1) Do soy plants of the same genotype vary along an 
intraspecific LES? If so, then (2) do soy LES traits covary with 
one another in patterns that are similar to the LES observed 
across non-domesticated plant species? (3) Is the position of 
soy plants along an intraspecific LES predominantly explained 
by managed environmental gradients, whole-plant ontogenetic 
stage and/or N2 fixation? Finally, we ask (4) is ITV in soy along 
the LES correlated with plant-level yield?

MATERIALS AND METHODS

Experimental site

Our study was based at the University of Guelph Agroforestry 
research site located in Guelph, Canada (43°32ʹ28ʺN, 
80°12ʹ32ʺW, 334 m a.s.l.), a 30 ha experimental farm estab-
lished in 1987. Soils at the site are described as Grey Brown 
Luvisol with a sandy loam texture (but see Oelbermann and 
Voroney, 2007 for detailed soil analyses). The site experi-
ences average weekly minimum and maximum temperatures 
of 6.0 and 27.3 °C, respectively, and mean monthly rainfall of 
78.3 mm (Furze et al., 2017).

At the site, three different major crop species including soy-
bean (G. max), corn (Zea mays L.) and winter wheat (Triticum 
aestivum L.) are planted on annual rotations in both monocul-
ture and agroforestry management systems. The agroforestry 
management treatments entail intercropping one of the afore-
mentioned crops with varying combinations of ten deciduous 
and coniferous tree species, with trees planted 3–6 m apart 
within 800 m long rows and with 12.5–15 m spacing between 
rows (Thevathasan and Gordon, 2004; Reynolds et al., 2007). 
The monoculture site is located immediately adjacent (within 
300 m) to the east of the agroforestry site, and receives the 
same no-till cultivation, zero fertilization, rain-fed irrigation 
and crop rotation regimes as the agroforestry systems (Furze 
et al., 2017). In May 2017, G. max (variety: Pioneer P90Y90) 
was planted in both management systems in crop rows spaced 
18  cm apart, and at densities of approx. 450 000 seeds ha–1 
(Furze et al., 2017).
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Plant and leaf trait sampling

Individual soy plants were sampled for leaf traits in a total of 
three primary management systems (two of which are further 
sub-divided below): (1) monoculture; (2) agroforestry bordered 
with hybrid poplar (Populus tremuloides Michx. × P.  nigra 
L. clone DNN177); and (3) agroforestry bordered with spruce 
[Picea abies (L.) H. Karst.]. In the monoculture site, we estab-
lished three 3 m2 sample ‘blocks’, which were spaced 25 m 
apart to ensure spatial interspersion of samples. Within each of 
the agroforestry management systems, six 3 m2 sample blocks 
were established at the same spacing, three of which were 
located at 2 m from the treeline (hereafter, ‘treeline’ manage-
ment conditions), while the remaining three blocks were paired 
with treeline blocks, but situated 5–6 m into the crop row (here-
after, ‘crop row’ management conditions). Pairing treeline and 
crop row blocks within the agroforestry system was done in 
order to capture the effects of tree competition on soybean leaf 
functional traits (Reynolds et al., 2007).

Within each block, three individual soybean plants were 
identified that were free of major damage, vigorous and healthy 
in appearance. For each selected plant, traits were sampled on 
three leaves (detailed below). This sampling schedule was rep-
licated at three different soybean plant developmental stages: 
(1) late vegetative growth (V6, defined as soy plants with six 
nodes on the main stem with fully developed leaves; 10–13 July 
2017); (2) pod production (R3–R4, defined as soy plants bear-
ing pods at one of the four uppermost nodes, which are 0.5–2cm 
in length; 31 July–4 August 2017); and (3) late pod filling (R6, 
defined by soy plants with a fully developed leaf at one of the 
four uppermost nodes which bears a leaf pod containing a green 
seed that fills the pod cavity; 21–24 August 2017) (Fehr et al., 
1971). These stages were chosen to coincide approximately with 
key ontogenetic factors that might influence leaf traits including 
the amount of N2 fixation and reproductive onset. In sum, our 
study design resulted in traits being measured according to the 
following nested design: traits from n = 402 leaves measured on 
n = 134 soy plants, situated in n = 15 different sampling blocks 
located within n = 5 management conditions, which were then 
sampled at n = 3 different plant developmental stages.

Soybean leaf functional traits, nodules and reproduction

Leaves were selected in order to best control for the poten-
tially confounding influence of individual leaf age on trait 
values (Mason et al., 2013). Therefore all soy leaf traits were 
measured on recently matured, fully expanded, terminal trifoli-
ate leaflets that were sampled from the upper 25 % of individual 
plant canopies (Cornelissen et al., 2003; Perez-Harguindeguy 
et  al., 2013). For each leaf, we first measured the maximum 
photosynthetic rate on an area basis (Aarea, μmol CO2 m

–2 s–1) 
in the field using a Li-Cor XT 6400 CO2 portable gas analyser 
(Li-Cor Biosciences, Lincoln, NE, USA) that was equipped 
with a red/blue light source (6000-02B Red-Blue SI-0951). All 
Aarea measurements were taken between 8.00 and 14.00  h, at 
saturating photosynthetic photon flux densities of 1500 μmol 
m–2 s–1, a CO2 concentration of 400  ppm, intercellular CO2 
partial pressures >200 μmol CO2 mol–1 air, relative humidity 
between 50 and 80 %, and leaf temperatures of 25–30 °C. After 
leaf fluxes were allowed to stabilize to these conditions, Aarea 

measurements were taken as the mean value of three replicate 
measurements at 20 s intervals. We used these same gas flux 
measurements also to calculate stomatal conductance (gs, mol 
H2O m–2 s–1) and instantaneous water use efficiency (WUE, 
mmol CO2 mol H2O

–1).
Following gas exchange, we then collected each leaf, exca-

vated each whole plant by hand to the most distal fine roots 
possible and transported all plant material to the University 
of Toronto Scarborough, Canada for analysis of morphologi-
cal and chemical traits, as well as root nodule and reproduc-
tion analyses. First, leaf area was calculated by scanning each 
leaf and analysing images using ImageJ software (Abramoff 
et al., 2004). Fresh leaves were then dried at 65 °C for 48 h 
and weighed, and LMA (g m–2) was calculated as leaf dry mass 
divided by leaf area; LMA was then used to derive mass-based 
photosynthetic rates (Amass, mmol CO2 g–1 s–1). Dried leaves 
were ground into a homogeneous powder using a Retsch ball 
Mill (Retsch Ltd, Haan, Germany), and 0.01–0.1 g of leaf tis-
sue was weighed and analysed for leaf C and N concentrations 
(%  mass basis) using a CN 628 elemental analyzer (LECO 
Instruments, Ontario, Canada).

Following leaf trait analyses, we then washed and rinsed the 
excavated root masses, and counted and weighed all nodules on 
each plant. Evaluating relationships between soy reproduction 
and leaf traits is challenging, since the complete maturation of 
pods and seeds occurs after (at least partial) leaf senescence 
(Fehr et al., 1971). Therefore, we focused our analysis of trait–
reproduction relationships at the late pod filling stage where 
initial seed formation, but not complete pod filling, is accom-
plished (Fehr et al., 1971). For each plant sampled at our third 
time period, the total number of pods and seeds were counted 
on each excavated plant.

Environmental data

Upon harvesting of each soy plant, approx. 20 g of soil was 
collected from the entire area immediately surrounding the 
plant roots (to the depth of the deepest roots) using a trowel, 
placed in polyethylene bags, frozen and transported to the 
University of Toronto Scarborough where they were thawed 
and measured for gravimetric soil moisture content, as well as 
plant-available inorganic N. All soil measurements were per-
formed in the same facility, and following the same method-
ologies, as those employed by Gagliardi et  al. (2015). Light 
environment was quantified as canopy openness at the block 
level, using digital hemispherical photography with a Nikon 
Coolpix 950 digital camera affixed with a FC-E8 fisheye lens 
(Nikon, Tokyo, Japan). All images were taken between 08.00 
and 10.00  h under overcast conditions to avoid light scatter, 
and images were analysed for the percentage canopy openness 
using Gap Light Analyzer v. 2.0 (Frazer et al., 1999).

Statistical analysis

Describing ITV.  All data analysis was conducted using R v. 3.3.2 
(R Foundations for Statistical Computing, Vienna, Austria). To 
describe overall ITV in soybean LES traits (as well as nodule and 
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reproduction data), we used the ‘fitdist’ R package (Delignette-
Muller and Dutang, 2015) to fit, compare and describe ITV as 
either normal or log-normal distributions based on log-likelihood 
scores. If traits were better described by log-normal distributions, 
we employed median and median absolute deviation (mad) val-
ues to describe central tendency and variation about the mean, 
respectively, and calculated quartile-based coefficients of vari-
ation (CVs) for these traits as mad/median; otherwise, standard 
parametric descriptive statistics were calculated. Based on this 
procedure, log-transformed values of LMA, leaf area, WUE and 
gs were used for all subsequent analyses. This same procedure 
was then performed on environmental variables.

An intraspecific LES.  We used the ‘smatr’ R package (Warton 
et  al., 2012) to perform a series of standardized major axis 
(SMA) regression analyses among all pairwise leaf trait com-
binations. To evaluate how patterns of LES trait covariation in 
soy compare with the same relationships observed among wild 
species, we also focused in more detail on pairwise relation-
ships that are key in the LES, namely those among Amass, LMA 
and leaf N. These analyses then entailed comparing the slope 
of the SMA relationship observed between these traits in soy 
with the same relationships observed in the GLOPNET data set 
populated by ‘wild species’ trait values, that was used to derive 
the initial LES hypothesis (Table 1 in Wright et al., 2004). For 
these comparisons of slopes, we used log-transformed values of 
all traits in both the soy and GLOPNET data sets.

We also evaluated multivariate patterns in trait covariation 
using a principal components analysis (PCA) that included all 
traits except Aarea since it was highly correlated with Amass. We 
then coupled the PCA with a permutational multivariate anal-
ysis of variance (PerMANOVA) to evaluate if traits varied in 
multivariate space as a function of plant developmental stage, 
management and a plant stage × management interaction term 
(as informed by the variance decomposition procedure detailed 
below). Both the PCA and PerMANOVA were implemented 
using the ‘vegan’ R package (Oksanen et al., 2016); more spe-
cifically, the PerMANOVA was based on Euclidean distances 
among data points with 10 000 permutations used.

Predictors of ITV along the LES.  We followed the approach of 
Messier et al. (2010) to determine how our four nested levels of 
organization explained variation in soy leaf traits (as well as PCA 
axis 1 and 2 scores). This was done using the ‘nlme’ R package 
(Pinheiro et al., 2016) to fit first a linear mixed effects model for 
each trait individually, where all four levels were included as nested 
random effects (i.e. plants within blocks within management 
within plant developmental stage), and the overall intercept is the 
only fixed effect. The ‘varcomp’ function in the ‘ape’ R package 
(Paradis et al., 2004) was then used in order to partition the varia-
tion in soybean LES traits among these nested levels. This analysis 
was also done to evaluate ITV in nodule and reproduction data.

This variance partitioning technique informed our next anal-
ysis, which was designed to evaluate differences in leaf traits 
(as well as nodule and reproduction data) across plant devel-
opmental stages and management conditions. To account for 
non-independence of samples, this was done using a linear 
mixed-effects model where variation in traits was assessed as 
a function of plant developmental stage, management condi-
tions and developmental stage × management interaction term 
as fixed effects, and plant identity and block as random effects. 

Mixed-effects models were fit using the ‘nlme’ R package 
(Pinheiro et al., 2016), and least square mean trait values and 
associated 95 % confidence intervals were calculated using the 
‘lsmeans’ R package (Lenth, 2016).

Leaf traits and root nodules.  Relationships between leaf traits 
and nodules were determined at the plant level, such that plant-
level leaf trait values were calculated as the mean of three 
observations for each trait per plant. We then used simple linear 
regression analysis to test if the number of nodules per plant 
predicted leaf trait values (see the Supplementary statistical 
methods).

However, since inferences regarding the relationships 
between traits and nodules are likely to be confounded by 
autocorrelation among data within plant developmental stages 
and management conditions, we also analysed trait–nodule 
relationships using a linear mixed-effects model. This model 
predicted traits as a function of nodules, while accounting for 
plants within blocks within management treatments within 
developmental stages, as four nested random effects (see the 
Supplementary statistical methods). We then used the ‘sem.
model.fits’ function in the ‘piecewiseSEM’ R package (Lecerf 
and Chauvet, 2008) to calculate the marginal and conditional r2 
values for these mixed models. Marginal r2 values correspond 
to the proportion of variation in traits explained by nodules per 
plant (while assuming the nested structure of data); conditional 
r2 values correspond to the proportion of variation in traits 
explained by nodule count as well as the nested random effects.

Leaf traits and reproduction.  We used a simple linear regression 
that included a second-order polynomial term to evaluate the rela-
tionship between traits and reproductive output (measured and 
analysed as both pod and seed count separately; Supplementary 
statistical methods). We also used linear mixed-effects mod-
els to evaluate relationships between pod and seed counts, and 
leaf traits while accounting for our nested random effects (i.e. 
plants within blocks within management treatments; see the 
Supplementary statistical methods). For all trait–reproduction 
models we then calculated marginal and conditional r2 values.

Leaf traits and environmental variables.  We used a linear 
mixed-effects model to evaluate how continuous environmen-
tal variables influence leaf trait expression. Within these mod-
els, traits were predicted as a function of five environmental 
variables incorporated as fixed effects: log-transformed canopy 
openness (%), soil moisture (%  mass), log-transformed total 
soil C (%  mass), total soil N (%  mass) and plant-available 
N (mg kg–1; see Supplementary Data Table  S5). These mod-
els also accounted for nested random effects of plants within 
blocks within management treatments within developmental 
stages (see the Supplementary statistical methods).

RESULTS

Intraspecific leaf trait variation

The largest ITV in G. max leaf traits was observed in traits asso-
ciated with water fluxes including gs and WUE, which varied 
over one and two orders of magnitude, respectively, with CVs 
of 31.3 and 45.5 %, respectively (Table 1). In comparison, ITV 
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in Aarea and Amass was intermediate, with CV values of 24.4 and 
28.5 %, respectively, but still varied widely over approximately 
one order of magnitude (Table 1). Similarly, leaf morphological 
traits, namely LMA and leaf area, also expressed intermediate 
values of ITV (CV = 27.1 and 34.3 %, respectively), ranging 
5- and 3-fold across the entire data set, respectively (Table 1). 
Leaf chemical traits expressed the lowest degree of ITV, with 
CV values of 3.6, 18.7 and 17.6 % for leaf C, leaf N and leaf 
C:N, respectively (Table 1).

An intraspecific LES in soy

In a bivariate framework, nearly all traits were statistically 
significantly correlated with one another, with the exception 
of leaf chemical traits and those associated with leaf hydrau-
lic function (Table 2). Specifically, leaf N and C:N ratios did 
not covary with either WUE or gs, leaf C did not significantly 
covary with WUE, leaf area was unrelated to gs and Aarea, and 
LMA was unrelated to gs. Otherwise all leaf traits significantly 
covaried (Table 2).

Bivariate LES trait relationships in soy were statistically indis-
tinguishable from those observed across plants in the GLOPNET 
database (Fig. 1). Specifically, as in the LES there was a sig-
nificant positive relationship between log leaf N and log Amass 
(r2 = 0.263, P < 0.001), with the slope of the G. max relation-
ship (1.71) being statistically indistinguishable from that of the 
GLOPNET data set (slope = 1.72, slope test P-value = 0.888; 
Fig. 1). Similarly, log Amass and log LMA in soy were signifi-
cantly negatively related (r2 = 0.28, P < 0.001) with a slope that 
was statistically indistinguishable from that in the GLOPNET 
data set (–0.73 vs. –0.75, respectively; Fig. 1). As in the LES, 
log LMA and log leaf N were significantly negatively related 
in soy (r2 = 0.209, P < 0.001); although the slope of this rela-
tionship was qualitatively similar to that observed in GLOPNET 
species (–0.8 vs. –1.28, respectively), these relationships were 
statistically distinguishable from one another (Fig. 1).

In a multivariate framework, soy leaf traits covaried across two 
primary axes that cumulatively explained 66.8 % of the variation 

across the entire data set (Fig. 2). The first PCA axis explained 
38.8 % of the variation, and was consistent with representing an 
intraspecific LES, being positively associated with LMA and 
negatively associated with Amass, leaf N and leaf C (Fig. 2). The 
second PCA axis explained an additional 28.0 % of the variation 
in soy traits and was positively associated with gs, and negatively 
associated with WUE and leaf area (Fig. 2). PerMANOVA indi-
cated that the position of soy leaves in multivariate trait space 
differed significantly as a function of both plant developmental 
stage (r2 = 0.232, P < 0.001) and management system (r2 = 0.346, 
P < 0.001; Fig. 2). Over the course of the growing season, soy 
plants tended to move towards the resource-conserving end of 
the LES along PCA axis 1 (Fig. 2). Differences in multivariate 
soy traits among management systems were largely associated 
with pronounced differences in soy leaf water use traits of plants 
sampled in the monoculture at the first sampling period (Fig. 2).

Variance partitioning

Plant developmental stage accounted for the largest portion of 
variation in six of the nine traits evaluated here, explaining between 
28.7 and 57.3 % of the variation in Amass, leaf C, leaf N, leaf C:N, 
LMA and gs (Fig. 3; Supplementary Data Table S1). The excep-
tions to this were Aarea, leaf area and WUE, where developmen-
tal stage accounted for <10.7 % of ITV (Fig. 3; Supplementary 
Data Table S1). Management system accounted for the highest 
proportion of variation in leaf area and WUE (34.7 and 60.6 %, 
respectively). Management system also accounted for 22.7 % of 
the variation in Aarea, while block accounted for the largest propor-
tion of intraspecific variation in this trait (Fig. 3; Supplementary 
Data Table S1). Individual plant identity explained <9 % of over-
all variation across all traits, while 7.7–46.4 % of trait variation 
was unexplained by the nested levels evaluated here (Fig.  3; 
Supplementary Data Table  S1). Consistent with the results of 
our PerMANOVA (Fig. 2), 55.1 % of the variation in PCA axis 1 
scores was explained by plant developmental stage, while 55.7 % 
of the variation in PCA axis 2 scores was explained by manage-
ment (Fig. 3; Supplementary Data Table S1).

Table 1.  Intraspecific variation in leaf traits of Glycine max

Trait n Log-likelihood values Descriptive statistics

Normal Log-normal Range Mean/median S.d./mad CV

Leaf area (cm2) 402 –1505.9 –1492.4 12.1–61.5 29.5 10.1 34.3
LMA (g m–2) 402 –1514.9 –1500.2 23.5–74.9 41.2 11.1 27.1
Aarea (μmol m–2 s–1) 402 –1223.0 –1272.8 3.96–32.39 20.84 5.08 24.4
Amass (μmol g–1 s–1) 402 212.2 175.8 0.08–1.05 0.50 0.14 28.5
Leaf C (% mass) 402 –737.6 –740.3 38.2–45.7 42.8 1.5 3.6
Leaf N (% mass) 402 –460.5 –463.7 2.4–6.2 4.1 0.8 18.7
Leaf C:N 402 –815.0 –798.7 7.1–16.9 10.5 1.9 17.6
WUE (mmol CO2 mol H2O

–1) 399 –873.9 –692.7 1.37–18.98 3.35 1.05 31.3
gs (mol H2O m–2 s–1) 399 –27.0 –138.7 0.019–1.338 0.57 0.259 45.5
Nodules per plant 134 –686.2 –660.0 4–230 54 31.1 65.0
Nodule mass 134 –20.4 24.9 0.01–1.5 0.22 0.2 85.0
Pods per plant 45 –188.0 –165.3 4–82 14 8.9 87.1
Seeds per plant 45 –225.3 –202.4 11–195 32 17.8 86.3

For each trait, the best distribution fit models based on log-likelihood values are highlighted in bold. Where traits were best described by a normal distribution, 
descriptive statistics include mean, standard deviation (s.d.) and coefficient of variation (CV). For traits best described by a log-normal distribution, descriptive 
statistic include median and median absolute deviation (mad); CVs were quartile based (calculated as mad/median).

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy147#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy147#supplementary-data
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http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy147#supplementary-data
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ITV across plant developmental stages and management

All traits varied significantly as a function of plant devel-
opmental stage, management conditions and a developmental 
stage × management interaction term (Fig.  4; Supplementary 
Data Tables S2 and S3), although the largest differences in LES 
traits occurred between the first two stages (vegetative growth/
initial stages of pod formation) and the pod filling stage (Fig. 4). 
These two time periods mark a transition of soy from express-
ing resource-acquiring trait values – higher Amass and leaf N, and 
lower LMA – towards more resource-conserving trait values – 
lower Amass and leaf N, and higher LMA (Fig. 4,; Supplementary 
Data Tables S2 and S3). The primary ontogenetic differences in 
leaf area, WUE and gs were associated with changes from veg-
etative growth to the initial stages of pod formation (Fig. 4G–I).

Among management conditions, plants in the monocul-
ture expressed the highest Aarea values coupled with the high-
est LMA values, and therefore also expressed the lowest Amass 
(Fig. 4; Supplementary Data Tables S2 and S3). Within agro-
forestry conditions, proximity to shade trees did not have a sys-
tematic impact on traits, except for leaf area which was larger 
in the crop rows than in the treeline in both poplar and spruce 
management (Fig. 4). Leaf WUE was highest, and gs the lowest, 
in plants growing in monoculture (Fig. 4H, I; Supplementary 
Data Tables S2 and S3).

ITV root nodules

Simple linear regression indicated that key LES traits includ-
ing Amass, LMA and leaf N all covaried as a function of root nod-
ule mass (P < 0.001, r2 = 0.153–0.421; Table 3; Supplementary 
Data Fig.  S1). However, mixed-effects models indicated that 
within any given plant developmental stage × management con-
dition combination, nodule mass was largely a weak predictor of 
functional traits, explaining only 0.02–8.9 % of ITV (Table 3).

ITV and soy reproduction

When evaluated individually, polynomial regression models 
indicated that certain leaf function traits, particularly Aarea, Amass, 
leaf N, LMA and leaf area, were all statistically significant cor-
relates of both pod and seed counts (r2 = 0.110–0.685; Table 4). 
When accounting for differences in reproduction across blocks 
nested within management conditions, LMA explained more 
than half of the variation in pod and seed counts (64.3 and 54.5 
%, respectively; Table 4). Similarly, Aarea and leaf area explained 
between 19.9 and 34.0 % of the variation in pod and seed counts 
when accounting for random effects (Table 4). Leaf C concen-
trations as well as WUE and gs were generally the weakest pre-
dictors of reproductive output, explaining only between 0.8 and 
6.7 % of the variation in pod and seed counts (Table 4).

ITV and environmental variables

Continuous environmental variables including canopy open-
ness, soil moisture, soil C and N, and plant-available N all dif-
fered significantly across management treatments, and – with the 
exception of canopy openness and soil C – also among sampling 
times (Supplementary Data Table S4). The environmental variables 
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measured here were most closely linked with ITV in LMA, leaf area 
and WUE [variance explained (i.e. marginal r2 = 0.206–0.287)], and 
to a lesser degree Aarea and gs (marginal r2 = 0.136 and 0.123, respect-
ively; Table 5). Continuous environmental variables explained 3.3–
6.7 % of ITV in leaf chemical traits (Table 5). Of all environmental 
variables, canopy openness was arguably the most important pre-
dictor of ITV, being significantly positively associated with LMA, 
leaf area and WUE, and negatively associated with gs. With the 
exception of a positive association between plant-available N and 
Aarea, soil N variables were unrelated to ITV in LES traits (Table 5).

DISCUSSION

Intraspecific variation in LES traits of the world’s most common 
leguminous crop is broad (Table 1) and falls along a defined 
intraspecific LES, the shape of which is remarkably similar 
to, and largely statistically indistinguishable from, the LES 

observed across ‘wild’ plants globally (Figs 1 and 2; Table 2). 
Our study is similar to others (Li et al., 2015; Martin et al., 2017) 
in showing that, within crop genotypes, phenotypic ITV in leaf 
hydraulic properties – namely instantaneous WUE and gs – is 
also considerable, but forms an axis of intraspecific biological 
variation that is distinct from an intraspecific LES (Fig. 2). Our 
results (Figs 3 and 4; Supplementary Data Tables S1–S3) pro-
vide additional evidence suggesting that a considerable propor-
tion of phenotypic ITV within crop genotypes can be captured 
by sampling leaf traits across different whole-plant develop-
mental stages, particularly those related to reproductive onset 
(cf. Thomas, 2010; Martin and Thomas, 2013; Mason et  al., 
2013), and across management systems (Gagliardi et al., 2015; 
Martin et al., 2017). Accounting for these dimensions of ITV 
is critical when designing trait sampling strategies (Carmona 
et al., 2015), compiling crop trait databases (Martin and Isaac, 
2015) and, ultimately, when evaluating relationships between 
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Fig. 1.  Relationships among three leaf economic spectrum (LES) traits in Glycine max compared with global patterns among species in the GLOPNET database. 
Open black circles represent observations of LES traits in G. max. In (A–C), solid black trend lines correspond to standardized major axis (SMA) regression mod-
els fit to log-transformed G. max data, and dashed black lines represent convex hull models surrounding the trait space occupied by G. max; in all cases n = 402 
G. max observations. Grey circles correspond to trait values for species represented in the GLOPNET data set of Wright et al. (2004), and the dashed grey line 
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functional traits and ecosystem functioning such as plant-level 
reproductive output (Table 4).

Patterns of LES in soy vs. other plants

The relationships between LES traits in soy (Fig. 1) were 
nearly identical to the interspecific patterns observed among 

wild plant species in the GLOPNET data set (Wright et  al., 
2004). This finding differs from studies that have detected a 
decoupling of key LES traits – namely Aarea and leaf N on an 
area basis – in N2-fixing plants in non-agricultural systems 
(Adams et al., 2016). However, finding LES trait relationships 
that did not differ in soy vs. GLOPNET species is similar to 
other studies that have observed that patterns of trait covari-
ation along an intraspecific LES are similar to global LES 
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Fig. 4.  Intraspecific variation in nine leaf functional traits in Glycine max across three plant developmental stages and five management conditions. Points corres-
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Table S3 for values and confidence intervals). Based on the same models, all traits varied significantly across developmental stages, management conditions and as 
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expect for water use efficiency (WUE) and stomatal conductance (gs) where n = 399.
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patterns (Blonder et  al., 2013); other studies also allude to 
similarities between an intraspecific and a global interspecific 
LES, but do not include a formal statistical evaluation (Hu 
et al., 2015; Niinemets, 2015). Although our soy data indicate 
a universal LES that describes both inter- and intraspecific trait 
covariation within a single genotype, this finding is in con-
trast to other studies which have found that plants within a 
crop genotype express significantly different patterns of trait 
covariation along an intraspecific LES (Martin et al., 2017). 
Specifically, relationships between leaf N and Amass in coffee 
(Coffea arabica) – also evaluated across high (monoculture) 

and low light (agroforestry) management systems – were less 
tightly coupled compared with GLOPNET species, which 
was speculated to be related to artificial selection for N-based 
compounds (namely caffeine) that are unrelated to C assimi-
lation (fig. 2 in Martin et al., 2017). In soy, this is not the case 
(Fig.  2), indicating that certain aspects of the domestication 
syndrome of a crop – such as selection for N-based second-
ary compounds as in coffee – may influence the shape of trait 
covariation along an intraspecific LES.

Recent work has shown that crops tend to devote a large frac-
tional allocation of leaf N to C assimilation, as compared with 

Table 3.  Relationships between root nodule mass and leaf functional traits in Glycine max

Trait Simple linear models Mixed model diagnostics

Intercept Nodule mass Model P r2 Marginal r2 Conditional r2

Amass 0.4 –0.2 <0.001 0.275 0.024 0.81
Aarea 21.2 0.5 0.636 0.002 0.002 0.813
Log LMA 1.7 0.2 <0.001 0.421 0.019 0.902
Leaf N 3.6 –0.7 <0.001 0.153 0.002 0.885
Leaf C 42.0 –1.4 <0.001 0.138 0.011 0.928
Log leaf C:N 1.1 0.1 <0.001 0.136 0.001 0.853
Log WUE 0.6 0.2 <0.001 0.122 0.009 0.908
gs 0.5 –0.1 0.265 0.01 0.0002 0.847
Log leaf area 1.6 0.1 <0.001 0.156 0.089 0.736

Simple linear regression models were used to assess relationships across the entire data set, while linear mixed-effects models were employed to describe the 
relationship between traits and nodule mass while accounting for the nested structure of data. Marginal r2 values therefore correspond to the variance in traits 
explained by nodule mass alone, while the conditional r2 value corresponds to the variance in traits explained by both nodule mass and the nested random effects 
(namely sample blocks nested within management conditions nested within plant developmental stages).

Sample size for all models was n = 134 plants, except for WUE and gs analyses where n = 133 plants. Nodule mass data were log transformed prior to analyses.

Table 4.  Relationships between leaf functional traits and reproduction in Glycine max

Variable Trait Simple linear models Mixed model diagnostics

Intercept Trait Trait2 Model P r2 Marginal r2 Conditional r2

Pod count Amass –1.2 11.8 –14.1 0.087 0.11 0.071 0.757
Aarea 1.1 –0.1 0.002 <0.001 0.466 0.204 0.751
Log LMA 60.9 –73.2 22.3 <0.001 0.685 0.643 0.75
Leaf N –2.3 1.8 –0.2 0.084 0.112 0.127 0.79
Leaf C –16.2 0.64 –0.01 0.003 0.239 0.043 0.715
Log leaf C:N –14.7 30.5 –14.6 0.164 0.083 0.122 0.799
Log WUE 1.5 –0.4 –0.4 0.232 0.067 0.019 0.743
gs 1.7 –1.4 0.7 0.12 0.096 0.022 0.766
Log leaf area –11.0 14.3 –4.1 <0.001 0.442 0.282 0.792

Seed count Amass –1.0 12.5 –14.9 0.048 0.135 0.088 0.772
Aarea 1.4 –0.03 0.002 <0.001 0.453 0.199 0.77
Log LMA 71.0 –84.0 25.4 <0.001 0.625 0.545 0.714
Leaf N –2.5 2.2 –0.3 0.03 0.153 0.128 0.766
Leaf C –40.1 1.8 –0.02 0.001 0.294 0.067 0.717
Log Leaf C:N –18.2 37.8 –18.0 0.068 0.12 0.119 0.774
Log WUE 2.3 –1.8 0.8 0.291 0.057 0.023 0.782
gs 2.1 –1.4 0.8 0.11 0.1 0.008 0.76
Log leaf area –8.7 11.6 –3.2 <0.001 0.478 0.34 0.839

Simple linear regression models including a second-order polynomial term were used to assess relationships across the entire data set, whereas linear mixed-
effects models were employed to describe the relationship between traits and nodules while accounting for the nested structure of data. Marginal r2 values therefore 
correspond to the variance in pod and seed counts explained by traits alone, while the conditional r2 value corresponds to the variance in reproduction explained 
by traits as well as the nested random effects (namely sample blocks nested within management conditions).

Sample sizes for all models are n = 134 plants, except for WUE and gs analyses where n = 133 plants. Pod and seed count data were log transformed prior to 
analyses.
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non-domesticated plants (Ghimire et al., 2017), and that over-
all artificial selection has, either directly or indirectly, selected 
for traits that confer high rates of resource acquisition (Milla 
et al., 2014, 2015; Roucou et al., 2018). Taken together with 
our results here (Fig. 1), these lines of reasoning suggest that 
some of the world’s most common crops, particularly annual 
herbaceous and graminoid crops such as wheat, maize and soy, 
now occupy the most extreme resource-acquiring end of the 
LES. Defining the dominant positions of crops along the LES, 
as well as the intraspecific trait space occupied by the world’s 
most common domesticated crops (as in Fig. 1), is a key step in 
further refining and understanding the role that crop expansion 
or diversity plays in driving global models of net primary prod-
uctivity (Martin and Isaac, 2015).

Causes of intraspecific trait variation

In standardizing our analysis by leaf age and canopy posi-
tion, our data and analysis suggest that phenotypic ITV within 
a single soy genotype across the LES is largely explained 
by changes in traits observed over the course of whole-plant 
development, and to a lesser degree across management sys-
tems that differ in broad environmental conditions (Fig.  4; 
Table 5). There was significant ITV in all traits across all soy 
life stages evaluated here, with the largest differences in suites 
of LES traits occurring between the stages of initial pod for-
mation and pod filling (Fig.  4). These ontogenetic shifts are 
consistent with expectations that resource allocation to repro-
duction influences ITV in LES traits, particularly in terms of 
declines in Amass and leaf N, and increases in LMA, that occur 
following reproductive onset (Thomas, 2010, 2011; Martin 
and Thomas, 2013; Mason et al., 2013).

Various authors have noted that quantifying the continu-
ous ontogenetic variation in leaf traits of perennial plant spe-
cies occurring throughout growing seasons (McKown et  al., 

2013; Fajardo and Siefert, 2016) or across plant size continua 
(Thomas, 2010; Martin and Thomas, 2013; Sendall and Reich, 
2013) is critical for understanding the structure, function and 
dynamics of terrestrial ecosystems (e.g. Herault et al., 2011). 
However, considering constraints on how in-depth ITV sam-
pling protocols may feasibly be (Carmona et  al., 2015), our 
results (Fig. 2; Supplementary Data Table S1) and those of oth-
ers (Mason et al., 2013) indicate that sampling traits at distinct 
crop developmental stages is critical and feasible for capturing 
a significant proportion of trait variation within genotypes in 
agricultural systems.

Soy traits also expressed within-genotype phenotypic ITV 
among management systems, but the species identity of nearby 
trees within the agroforestry systems did not have a large effect 
on leaf traits (Figs 3 and 4). Instead, ITV associated with man-
agement in our data set was due to major differences in trait 
values observed between plants in the monoculture as com-
pared with all agroforestry management conditions (Fig. 3). 
Most notably, monoculture plants expressed extremely high 
values of WUE, LMA and Aarea along with the lowest rates of 
Amass and gs (Fig. 4H). These patterns – in particular high values 
of LMA and Aarea in monoculture – are consistent with studies 
evaluating responses of shade-intolerant species (such as soy) 
to high light (Table 5; Valladares and Niinemets, 2008; Lusk 
et al., 2008; Poorter et al., 2009). Selection for rapid growth 
under high light has probably resulted in soy plants express-
ing greater symplastic cell components (i.e. mesophyll and/or 
parenchyma per unit area) under high irradiance (Bunce et al., 
1977). These light responses should lead to higher LMA and 
Aarea and lower Amass for soy plants in high light monocul-
ture (Lusk et  al., 2008; Poorter et  al., 2009). Our data are 
therefore consistent with expected crop trait acclimation to 
above-ground environmental gradients, as compared with a 
relatively small role for below-ground resource availability in 
driving ITV in LES traits of crops (Table 5; Gagliardi et al., 
2015; Martin et al., 2017).

Table 5.  Results of the linear mixed-effects model evaluating relationships between nine leaf functional traits in Glycine max and five 
environmental variables

Trait n Fixed effects Explained variance

Intercept Log canopy  
openness (%)

Soil moisture  
(%)

Log soil  
C (%)

Soil  
N (%)

Log plant-available  
N (mg kg–1)

Marginal r2 Conditional r2

Aarea 134 –16.99 3.98 0.08 6.07 0.48 1.19 0.136 0.875
Amass 134 0.43 –0.1 0.002 0.11 0.02 0.02 0.079 0.857
Leaf C 134 35.92 0.49 0.09 1.32 –0.17 0.01 0.033 0.932
Leaf N 134 0.73 0.09 0.07 0.72 –0.15 0.03 0.056 0.924
Log leaf C:N 134 3.23 –0.02 –0.02 –0.19 0.02 –0.01 0.067 0.906
Log LMA 134 2.4 0.39 –0.01 0.004 –0.04 0.02 0.287 0.92
Log leaf area 134 0.21 0.37 0.03 0.38 0.18 0.05 0.28 0.818
Log WUE 133 –1.04 0.53 –0.004 0.07 0.08 0.04 0.206 0.92
Log gs 133 –0.32 –0.63 0.04 0.43 0.05 –0.001 0.123 0.933

Numbers shown are the parameter estimates for each variable, with parameters that differ significantly from 0 (P ≤ 0.001) highlighted in bold. Each model was 
fit assuming non-independence of errors such that observations in blocks were nested within management nested within time. Marginal r2 values therefore corres-
pond to the variance in pod and seed counts explained by traits alone, while the conditional r2 value corresponds to the variance in reproduction explained by traits 
as well as the nested random effects (namely sample blocks nested with management conditions).

Sample sizes for all models were n = 134 plants, except for WUE and gs analyses where n =133 plants.
Mean values, s.e. and confidence limits surrounding environmental data are presented in Supplementary Data Table S4.

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy147#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy147#supplementary-data
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Intraspecific trait variation and agroecosystem function

Leaf economics traits are largely hypothesized to underpin 
individual plant performance, with implications for ecosystem-
scale functioning (Reich et al., 1992; Reich, 2012; Violle et al., 
2007). In agroecology, this general ecological hypothesis is 
explicitly incorporated into many of the most prominent simu-
lation models that employ leaf economics traits, notably Aarea 
and specific leaf area (the inverse of LMA), as key data inputs 
when predicting crop yield under climate change scenarios (e.g. 
Jones et al., 2003; Martin et al., 2018). In addition to leaf area, 
LMA and Aarea covaried most strongly with individual repro-
ductive output in soy, explaining 45.3–68.5 % of the variation 
in individual seed or pod output (Supplementary Data Fig. S2). 
Beyond the individual scale, observational studies also indi-
cate that ITV in LES traits scales up to influence reproduction 
rates at the plot or farm scale, across management gradients 
(Reynolds et  al., 2007). From a modelling perspective then, 
accounting for phenotypic ITV in certain traits – particularly 
leaf area, Aarea and LMA which are all explicitly incorporated 
into crop models – is key for refining predictions and projec-
tions of soy yield into the future.

CONCLUSIONS

In addition to an extensive literature on the benefits of ITV for 
agroecological processes (reviewed by Brooker et  al., 2015), 
recent analyses indicate that phenotypic ITV among cultivars 
of the same crop species contributes significantly to the main-
tenance of agroecological functions (Reiss and Drinkwater, 
2018). Our findings show that phenotypic ITV within genotypes 
across ontogenetic stages and managed environmental gradi-
ents also influences rates of agroecological functioning. When 
taken with other research (Milla et  al., 2014, 2015; Martin 
et al., 2017), our results also give insights into the constraints 
that might predict or limit ITV in crops, and inform an under-
standing of the ecological consequences of artificial selection. 
Research that explores patterns of ITV across a greater range of 
key plant life history traits, within and across a greater number 
of crops, presents a major stepping stone towards applying the 
principles of trait-based ecology into agricultural management.

SUPPLEMENTARY DATA

Supplementary data for this article are available online at 
https://academic.oup.com/aob and consist of the following. 
Supplementary information on statistical methods. Table  S1: 
variance partitioning of nine leaf functional traits and two 
multivariate indicators of leaf trait syndromes of Glycine max, 
across four nested levels, namely plant developmental stage, 
management, block and plant. Table  S2: results of ANOVA 
evaluating intraspecific variation in nine leaf functional traits, 
two nodule traits and two reproduction traits in Glycine max 
across three plant developmental stages and five different man-
agement conditions. Table S3: leaf functional traits, root nod-
ule counts and mass, and pod and seed counts in Glycine max 
across three plant developmental stages and five management 
conditions. Table  S4: environmental variables across three 
plant developmental stages and five management conditions 

in Guelph Agroforestry Research Station, Ontario, Canada. 
Table S5: variation in five environmental variables across three 
plant developmental stages and five different management 
conditions at Guelph Agroforestry Research Station, Ontario, 
Canada. Figure S1: intraspecific variation in root nodule mass 
in Glycine max across three plant developmental stages and 
five management conditions. Figure S2: intraspecific variation 
in pod count and seed count in Glycine max across five man-
agement conditions.
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