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Abstract

Over the past few years, numerous nanotechnology-based drug delivery systems have been 

developed in an effort to maximize therapeutic effectiveness of conventional drug delivery, while 

limiting undesirable side effects. Among these, carbon nanotubes (CNTs) are of special interest as 

potential drug delivery agents due to their numerous unique and advantageous physical and 

chemical properties. Here, we show in vivo favorable biodistribution and enhanced therapeutic 

efficacy of cisplatin (CDDP) encapsulated within ultra-short single-walled carbon nanotube 

capsules (CDDP@US-tubes) using three different human breast cancer xenograft models. In 

general, the CDDP@US-tubes demonstrated greater efficacy in suppressing tumor growth than 

free CDDP in both MCF-7 cell line xenograft and BCM-4272 patient-derived xenograft (PDX) 

models. The CDDP@US-tubes also demonstrated a prolonged circulation time compared to free 

CDDP which enhanced permeability and retention (EPR) effects resulting in significantly more 

CDDP accumulation in tumors, as determined by platinum (Pt) analysis via inductively-coupled 

plasma mass spectrometry (ICP-MS).
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1. Introduction

Despite some advancement over the past few decades in conventional chemotherapy, the 

efficacy of the vast majority of cancer therapeutics is often limited for reasons such as low 

water solubility, rapid elimination, nonspecific biodistribution, rapid breakdown in vivo, 

insufficient accumulation in tumor tissue, undesirable side effects, and development of 

resistance. These limitations necessitate the development of more efficient ways to 

administer anticancer drugs systemically to more selectively target tumor tissue, thereby 

improving efficacy while minimizing undesirable side effects. Over the last decade, with 

advances in nanotechnology and nanomedicine, numerous nanoparticle-based drug delivery 

systems have been developed to enhance tumor-specific delivery. One of the major 

advantages of using nanoparticles as drug delivery vehicle for cancer therapy is that 

nanoparticles, upon systemic injection, can preferentially accumulate in tumor tissue by 

taking advantage of irregular tumor vasculature or vessel leakiness. This phenomenon has 

been termed the enhanced permeability and retention (EPR) effect [1]. Among diverse 

classes of nanomaterials, carbon nanotubes (CNTs) are of special interest in the area of drug 

delivery due to their numerous unique physical and chemical properties such as high surface 

area, high aspect ratio, high thermal conductivity, and remarkable optical and electronic 

properties [2–5]. Owing to their high surface area, CNTs enable the engineering of surface 

modification for a variety of therapeutics molecules either by specific adsorption or by 

covalent bioconjugation [6–11]. Due to their hollow cylindrical structure, CNTs also provide 

internal cavities which are capable of accommodating small molecules or ions [12– 14]. 

While the toxicological effects of CNTs themselves have been widely debated in the 

literature [15–22], it has been recently shown that appropriately functionalized and highly-

purified single-wall CNTs (SWCNTs) can be nontoxic and well-tolerated in vivo [23]. 

Several reports have demonstrated that CNTs readily cross cell membranes due to their 

intrinsic lipophilic character and high aspect ratio (needle-like structure), and thus are able 

to transport biological molecules including drug molecules, proteins, plasmid DNA and 

siRNA into cells [11,24–29].
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Over the years, a number of CNT-based drug delivery systems have been explored. In these 

systems, drug molecules have been mainly attached onto the surface or sidewalls of the 

nanotubes either by specific adsorption or by covalent attachment [6,11,30,31]. In addition 

to surface attachment, it has been shown that such drug molecules can be encapsulated 

within the interior cavity of CNTs [12,13,32–34] to provide an insulating environment for 

drug molecules. This feature prevents degradation and leakage and other unwanted 

interaction in vivo before the drug reaches its target sites. Recent theoretical studies based on 

molecular dynamics simulation have also demonstrated that drug molecules can stay within 

nanotubes for a long period of time during circulation due to the organization of water 

molecules outside the nanotubes, while the release of drug molecules from nanotubes can be 

favored near the cell membrane because of advantageous electrostatic interactions of 

nanotubes with hydrophilic parts of the cell [33,35]. This drug encapsulation approach also 

preserves the external surface of CNTs for further chemical modification for desired cancer 

cell targeting with peptide and/or antibodies. Although the ideal length of CNTs for 

biomedical application is uncertain, ultra-short single-walled carbon nanotubes (US-tubes, 

~1.4 nm × 20 – 80 nm) which are produced from full-length SWCNTs via a fluorination and 

pyrolysis procedure (Figure S1) [36], may be especially well suited for bioactive agent 

delivery due to their short and relatively uniform-lengths (ca. 95% • 5500 nnmm)) which 

could help them avoid the reticuloendotheial system (RES), while enhancing their cellular 

uptake properties and eventual elimination profiles. US-tubes, with sidewall defects from the 

chemical cutting process (Figure S1) [36], have proven a convenient platform as 

nanocapsules for the loading and containment of ions, molecules, and drugs whose 

cytotoxicity may be sequestered within the US-tubes [13,37–40]. Additionally, it has been 

demonstrated that the exterior surface of US-tubes can be modified with chemical moieties 

for enhanced solubilization [41], with peptides for biological targeting purposes [42], and 

with monoclonal antibodies (MAbs) for the specific targeting of cancer cells. Moreover, a 

medical imaging agent derived from US-tubes (Gadonanotubes) has been shown to 

translocate into the cells without exhibiting significant toxicity [43]. Finally, one recent 

study [23] has shown that highly-purified US-tubes are well-tolerated in vivo by Swiss mice, 

even at very high doses (~ 0.5 g kg-1 b.w.).

We recently developed a new CNT-based drug delivery platform for the treatment of cancer 

that is comprised of US-tubes loaded with the chemotherapeutic drug cisplatin (CDDP) or 

(CDDP@US-tubes) [13]. In these previous studies, the encapsulation of CDDP within US-

tubes was achieved by a loading procedure that is reproducible as detailed in the Materials & 

Methods section and as outlined in Figure S2. The resulting CDDP@US-tube material was 

characterized extensively by several microscopic and spectroscopic methods (Figure S3). 

Moreover, it was also demonstrated that CDDP@US-tubes release CDDP upon dialysis in 

PBS at 37 °C much more slowly when CDDP@US-tubes are wrapped with Pluronic®-F108 

surfactant (W-CDDP@US-tube), which is likely due to the Pluronic wrapping around the 

US-tubes covering the sidewall defects sites and ends of the US-tubes as a sheath to help 

prevent premature drug release (Figure S4). It was shown that the CDDP@US-tube 

exhibited greater efficacy against MCF-7 and MDA-MB-231 breast cancer cell lines in vitro, 

when compared to free CDDP. Finally, it was also shown that the US-tube platform assists 

the delivery of encapsulated CDDP into drug-resistant cells, which suggests that 

Guven et al. Page 3

Acta Biomater. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CDDP@US-tubes help to overcome CDDP resistance by increasing drug accumulation in 

otherwise resistant cell. In this study, we report in vivo biodistribution and therapeutic 

efficacy of cisplatin encapsulated within US-tubes (as CDDP@US-tubes) using three 

different human breast cancer xenograft models.

2. Materials And Methods

2.1. Sample Preparation

US-tubes, CDDP@US-tubes and pluoronic-F108-wrapped CDDP@US-tubes (W-

CDDP@US-tubes) were prepared as previously reported [13]. Briefly, full-length SWCNTs 

(Carbon Solution Inc.), produced by the electric-arc discharge method, were cut into US-

tubes by fluorination followed by pyrolysis at 1000 °C under an inert atmosphere.[36] US-

tubes were first purified in concentrated HCl for 1h by bath-sonication to remove amorphous 

carbon and metal catalyst impurities (nickel and yttrium), then chemically reduced by a 

metallic Na°/THF reduction procedure to produce debundled US-tubes [44]. Next, the US-

tubes were refluxed for 5 min in 6N HNO3 and then repeatedly washed with deionized 

water. The debundled US-tubes were dispersed in deionized water via bath-sonication for 60 

min, and then CDDP was added to the US-tube suspension and vigorously stirred for 24 h, 

which was then left undisturbed overnight whereupon CDDP-loaded US-tubes (CDDP@US-

tubes) flocculated from solution. The CDDP@US-tubes were collected by filtration on a 

glass filter, washed excessively with deionized water to remove all exterior CDDP from 

outer surface of the US-tubes, as judged from platinum analysis on the filtrate aliquots by 

inductive-coupled plasma optical emission spectroscopy (ICP-OES) and then dried at 80 °C. 

The concentration of CDDP within US-tubes was calculated by quantifying the Pt 

concentration of CDDP@US-tube samples via ICP-OES. As an average weight percentage, 

CDDP@US-tubes contained 9.80 % wt (± 0.88) of CDDP. Extensive characterization of this 

CDDP@US-tubes material has been also reported previously [13]. W-US-tubes and W-

CDDP@US-tubes samples were prepared by suspending either dry US-tubes or 

CDDP@US-tube samples in a 0.17% (w/v) Pluronic®-F108 surfactant solution via probe 

sonication for 2 min, followed by centrifugation at 3200 rpm for 10 min (3x) to remove 

unsuspended CDDP@US-tubes. Pluronic®-F108 is a neutrally-charged, non-cytotoxic 

surfactant that is commonly used to administer CNT materials for in vitro and in vivo 
testing.

2. 2. Establishment of Xenografts and Treatment

All animal experiments were performed under a protocol approved by Baylor College of 

Medicine Institutional Animal Care and Use Committee in accordance with the National 

Institutes of Health Guide for the Care and Use of Experimental Animals. MCF-7 and 

MDA-MB-231 human breast cell line xenografts were generated by inoculation of 1×106 of 

either MCF-7 or MDA-MB-231 cells suspended in 20 µL Matrigel-PBS into the epithelium-

free “cleared” fat pads of SCID/Beige mice [45]. Human, patient-derived breast cancer 

xenografts (PDX) (BCM-4272 transplant) were established as described previously [46]. For 

each xenograft experiment, a total of forty human breast-tumor-bearing mice were used. The 

tumor volumes were monitored weekly by caliper measurement. When the average tumor 

volume reached at least 100 mm3, mice were randomly divided into five groups of eight 
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mice each. Animals in Group 1(G1) received saline solution (0.9 % w/v NaCl) as a control. 

Group 2 (G2) was treated with empty Pluronic-wrapped US-tubes as a vehicle control. 

Group 3 (G3) was treated with dissolved CDDP and diluted with saline solution. Group 4 

(G4) was treated with Pluronic-wrapped CDDP@US-tubes. Finally, Group 5 (G5) was 

treated with CDDP@US-tubes dispersed in saline solution via bath-sonication. The final 

concentration of CDDP in G3, G4, and G5 was normalized to be 2.5 mg/kg mouse body 

weight. The quantity of US-tubes was the same for G2, G4, G5, with the concentration being 

calculated from their weight% values obtained by ICP-OES for Ni and Y, which remains 

within US-tubes as remnant metal catalysts from the growth of the original full-lengths 

SWCNTs from which the US-tubes are derived. For treatment, 100 µL of different 

formulations of CDDP, CDDP@US-tubes, W-US-tubes or W-CDDP@US-tubes in saline 

was administered via i.p. once a week. Treatment was performed weekly for a period of 4 

weeks. The administration dose was normalized to be 2.5 mg CDDP per kg (2.5 mg/kg). 

Tumor size was measured by a caliper two times a week and calculated as the volume = 

[(tumor length) × (tumor width) 2] / 2. At the end of the experiment, the animals were 

sacrificed and their tissues collected to obtain a quantitative measurement of the 

biodistribution of CDDP and US-tube samples in each tissue by quantifying the platinum 

(Pt) and yttrium (Y) concentration in each sample via inductively-coupled plasma mass 

spectrometry (ICP-MS). Pieces of tissue (heart, liver, lung, spleen, kidney, and tumor) were 

taken from animals of each group, formalin fixed, paraffin embedded, frozen, and processed 

to 4-µm slides by a tissue-processing core laboratory at BCM. One slide from each tissue 

sample was stained with hematoxylin and eosin.

2. 3. Biodistribution and Blood Circulation Studies

For biodistribution studies, a total of 45 MDA-MB-231 tumor-bearing mice (tumor size, 

~200 mm3) were randomly divided into three groups (CDDP, CDDP@US-tubes, and W-

CDDP@US-tubes) of 15 mice each. Three mice from each treatment group were sacrificed 

at 4, 24, 48, 72, and 168 h after receiving 100 µL of either CDDP, CDDP@US-tube or W-

CDDP@US-tube samples in saline at a dose of 2.5 mg CDDP per kg mouse via an i.p 

injection. The blood samples were collected by cardiac puncture for the blood circulation 

studies. After harvest, the organs/tissues were immediately frozen in liquid nitrogen, 

lyophilized to dryness and weighted. Blood and the dried tissue samples were digested by 

first heating with concentrated HNO3 and then by 26% HClO3. The concentration of Pt and 

Y was then determined by ICP-MS for blood circulation and biodistribution analysis.

2. 4. Inductively-Coupled Plasma Emission Mass Spectrometry (ICP-MS)

ICP-MS analyses were carried out using a Perkin Elmer Elan Optima 9000 DV instrument 

with a CDD detector. The quantity of CDDP in each sample was determined by measuring 

the platinum concentration, which was detected at 265.95 nm. For all ICP-MS 

measurements, the collected samples were transferred into glass vials and digested first 

using 10 ml of concentrated HNO3 at elevated temperature (~ 230 °C), and then with 2 ml 

26% HClO3. Following digestion, the samples were diluted with 2% v/v trace metal grade 

HNO3. The concentrations were determined from an average of five scans for each sample. 

Germanium (371.029 nm) was used as the internal standard.
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2. 5. Histology Staining

For histology analysis, a piece of tissue (tumor, heart, liver, lung, spleen, and kidney) was 

taken from the animals in each group, formalin fixed, paraffin embedded, frozen, and 

processed to 4-µm slides by the tissue-processing core laboratory at BCM. To understand the 

effects of treatment, one slide from each tissue sample was stained with hematoxylin and 

eosin (H&E), standard fluorescent terminal deoxynucleotidyl transferase–mediated dUTP 

nick end labeling (TUNEL) (apoptosis assay), and Ki67 (proliferation assay) staining 

procedures to assess histological alterations by microscopy.

2. 6. Statistical Analysis

All the data are expressed as mean values ± standard error (SE). Graphs were constructed 

and all statistical analyses were performed using GraphPad© Prism 6.0 (GraphPad Software, 

Inc.). Statistical comparison between two experimental groups was done using a t test 

(unpaired, two-sided). Comparison of multiple groups was made with two-way ANOVA 

using Tukey’s multiple comparison test. Time to tumor doubling (tripling for MDA-

MB-231) was computed for each animal. The data were summarized with Kaplan-Meier 

curves and 95% confidence regions (log-log transform) and compared using the generalized 

Wilcoxon test. Pairwise comparisons with Sidak p-value adjustment were used to determine 

which groups differed from each other. A value of less than 0.05 (p < 0.05) was used for 

statistical significance.

3. Results

3.1. Tumor Growth Suppressing Effect of CDDP@US-tubes on MCF-7 Xenografts in SCID/
Beige Mice

In previous in vitro studies [13], we determined the efficacy of CDDP@US-tubes against 

two different breast cancer cell lines (MCF-7 and MDA-MB-231), which are known to be 

CDDP resistant and showed that US-tubes helped increase the accumulation of the drug in 

cells compared to free CDDP. To examine the ability of US-tubes to deliver anticancer drugs 

and to determine the efficacy of CDDP@US-tubes on tumor growth suppression in mice in 
vivo, a series of treatment studies were conducted using three different breast cancer 

xenograft models (MCF-7, MDA-MB-231, and BCM-4272).

To determine the in vivo efficacy of the CDDP@US-tubes, we first tested MCF-7 xenografts 

established in SCID/Beige mice (as detailed in the Materials and Methods Section). Figure 1 

displays the comparative in vivo therapeutics efficacy of the given treatment groups. As 

shown in Figure 1A, a time-related increase in tumor volume was observed in all treatment 

groups except for the CDDP@US-tube treated group. Compared to the control injection, W-

US-tube injected mice showed a similar tumor growth rate, although it was not as effective 

as CDDP alone or the W-CDDP@US-tubes. As showed in Figure 1A, there was also no 

significant difference between the mean body weight changes in all treatment groups over 

the course of the experiment. The mean fold increase in tumor volume (from day 0 to day 

28) of CDDP@US-tube treated mice was significantly lower compared to CDDP alone or 

W-CDDP@US-tubes (Figure 1B). Five out of eight tumors from mice treated with 

CDDP@US-tubes failed to grow at all, while all control groups got larger. Determination of 
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the tumor growth doubling time (Figure 1C) revealed that CDDP@US-tubes significantly 

improved mouse survival.

At the end of the experiment, animals from each treatment group were sacrificed and tissues 

were collected to obtain a quantitative measurement of the accumulation of CDDP and US-

tubes samples in each tissue by quantifying Pt (for CDDP) and Y (for US-tubes) in each 

tissue samples via inductively coupled mass spectrometry (ICP-MS) analysis. ICP-MS 

analysis revealed that the CDDP@US-tube treated mice had significantly more Pt in their 

tumor, spleen and stomach compare to other treatment groups (Figure 2A). By analyzing the 

Y concentration in tissue, we also determined that the level of Y detected in spleen, liver, 

kidneys, and stomach was found to be greatest, while the amount found in other organs was 

much lower (Figure 2B). The analysis showed that CDDP@US-tube treated mice had 

significantly more Y in their spleen and stomach compare to mice treated with empty W-US-

tube, and W-CDDP@US-tubes. To understand the effects of treatment, a piece of tissue 

including tumor, liver, lungs, spleen, and kidneys that was taken from the animals in each 

treatment group was stained by H&E staining to assess histological alterations. From the 

microscopy examination, no obvious damage was noticed in the tissues (Figure S5).

3. 2. Tumor Growth Suppressing Effect of CDDP@US-tubes on MDA-MB-231 Xenografts 
in SCID/Beige Mice

In the second experiment, the in vivo anticancer efficacy of the CDDP@US-tubes material 

was tested in mice bearing MDA-MB-231 human breast cancer xenograft in a manner 

similar to that described above for MCF-7 xenograft. The tumors were established as 

described in Materials & Method Section and i.p. injections were started when the average 

tumor volume reached ~100 mm3. Changes in relative tumor volume and body weight are 

shown in Figure 3A. As plotted in Figure 3A, the mean body weights of mice in all 

treatment groups showed a similar increase and there was no significant difference between 

the treatment groups over the course of the experiment. As also seen in Figure 3A, the 

control and the empty W-US-tubes treated group showed a fast tumor growth pattern, 

resulting in an approximately 12-fold increase in their tumor volume (from day 0 to day 28). 

No significant difference in the relative tumor growth ratio (V/V0) of these two treatment 

groups confirmed that the empty W-US-tubes themselves do not affect the tumor growth in 

mice. The relative tumor growth ratios (V/V0) of CDDP, W-CDDP@US-tubes, and 

CDDP@US-tubes were similar (Figure 3A) and there was no statistically significant 

difference between the treatment groups. On the other hand, the mean fold increase in tumor 

volume (from day 0 to day 28) of CDDP@US-tube (7.45 ± 0.77) treated mice was 

significantly lower than mice in the control treatment group (13.03 ± 2.02, p = 0.03) (Figure 

3B), while the fold increase in mice treated with free CDDP (9.09 ± 1.73) and W-

CDDP@US-tube (9.57 ± 1.88) was not significant different (p = 0.16, and p = 0.24, 

respectively). The determination of tumor growth tripling time shown that the median 

survival of the CDDP@US-tube and W-CDDP@US-tube treatment groups, (10 d and 14 d, 

respectively) was longer than that of mice treated with free CDDP, 7 d (Figure 3C).

Although the efficacy of free CDDP, W-CDDP@US-tube, and CDDP@US-tube on the 

MDA-MB-231 xenograft was found to be similar (Figure 3A), the ICP-MS analysis of tissue 
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collected from the animals at the end of the experiment revealed that the mice treated with 

CDDP@US-tubes (4.28 ± 1.17 ng Pt/mg dry tissue, p = 0.02) and W-CDDP@US-tubes 

(2.16 ± 0.16 ng Pt/mg dry tissue, p = 0.01) had significantly more Pt in their tumor than 

mice treated with free CDDP (1.17 ± 0.18 ng Pt/mg dry tissue) (Figure 4A). Consistent with 

the MCF-7 xenograft study, the level of Y in mice treated with W-US-tubes, W-CDDP@US-

tubes, and CDDP@US-tubes was found highest in spleen followed by stomach, liver, and 

kidney, confirming the higher retention of these materials in these organs.

3. 3. Tumor Growth Suppressing Effect of CDDP@US-tubes on BCM-4272 PDX 
Xenografts in SCID/Beige Mice

To extend our studies beyond cell line xenografts, we evaluated the efficacy of CDDP@US-

tubes material on a human breast cancer patient-derived xenograft (PDX) model, where 

human tumor tissue is surgically resected and transplanted directly into immune-deficient 

mice. Because traditional cell lines have been cultured for many years and have accumulated 

many genetic/epigenetic alterations, there is some argument as to whether their response to 

treatment accurately reflects patient responses. We have shown that PDX models show a 

high degree of similarity in response as the tumor of origin in the patient when challenged 

with a comparable agent [46]. Because of their ability to predict clinical tumor response, 

PDXs are increasingly being considered to be more relevant in vivo preclinical models, and 

thus, are expected to increase the success of identifying new active antitumor agents for 

clinical trials [47]. BCM-4272 xenografts, were established as described previously [46]. As 

shown in Figure 5A, the tumors in the control and the empty W-US-tubes groups showed a 

slow but stable growth. Compared with the control group, the CDDP treatment group slowed 

down tumor growth, but it was not as effective as the W-CDDP@US-tubes or CDDP@US-

tubes treatment groups with both of these treatment groups showing a considerable tumor 

suppression (regression) (p < 0.005) compared to CDDP treatment. There were no 

significant body weight changes between treatment groups until the end of the experiment. 

The mean fold increase in tumor volume (from day 0 to day 28) of control (4.88 ± 0.32) and 

W-US-tubes treated group (5.32 ± 0.49) were similar, however the CDDP@US-tubes (2.57 

± 0.25) treated group displayed a significantly lower fold increase than those of free CDDP 

treated mice (4.02 ± 0.48, p = 0.01) which was also not significantly different than the 

control group (4.88 ± 0.32, p = 0.15). The fold increase in tumor volume for the W-

CDDP@US-tubes (3.21 ± 0.26) was found to be significantly lower than the control group 

(p = 0.001), while it was not statistically different than the free CDDP treatment group 

(Figure 5B). As a result, an increased survival of animals was observed in mice treated with 

CDDP@US-tubes or W-CDDP@US-tubes compared to mice treated with free CDDP 

(Figure 5C).

ICP-MS analysis of the tissues showed that CDDP@US-tube and W-CDDP@US-tube 

treated mice had significantly more Pt in their tumor, spleen and kidney than the mice 

treated with free CDDP, while the free CDDP treated mice displayed higher Pt accumulation 

in heart compare to other treatment groups (Figure 6A). Consistent with measurement from 

MCF-7, and MDA-MB-231 xenograft studies, the Y concentration was found highest in the 

spleen followed by kidney, liver and stomach, indicating higher retention of US-tube 

materials in these organs (Figure 6B). Compared with W-CDDP@US-tubes and W-US-tubes 
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treated mice, the level of Y in the spleen was found significantly higher in mice treated with 

CDDP@US-tubes. To understand the effects of treatment, a piece of tissue including tumor, 

liver, lungs, spleen, and kidneys that was taken from the animals in each treatment group 

was stained by H&E staining to assess histological alterations. From the microscopy 

examination, no obvious damage was noticed in the tissues (Figure S6).

3. 4. Blood Circulation and the Biodistribution Studies

To understand the treatment efficacy of CDDP@US-tube materials, it was important to 

investigate the biodistribution of the CDDP@US-tubes in a time-dependent manner. The 

biodistribution studies have been conducted after a single i.p. administration of CDDP, W-

CDDP@US-tubes, and CDDP@US-tubes (CDDP concentration 2.5 mg/kg) for MDA-

MB-231 tumor-bearing mice by determining the Pt (from CDDP) and the Y (from US-tubes) 

concentrations in plasma and in main organs/tissues (tumor, liver, spleen, kidney, heart, 

lungs, and stomach) via ICP-MS analysis at different time points (4, 24, 48, 72, and 168 h). 

The mice from each treatment groups were sacrificed and harvested for blood circulation 

and biodistribution analysis (see Materials and Methods Section). Figure 7A illustrates the 

comparative blood circulation data of free CDDP, W-CDDP@US-tubes and CDDP@US-

tubes for MDA-MB-231 tumor-bearing mice as a function of time. ICP-MS analysis of the 

blood samples revealed that CDDP@US-tubes and W-CDDP@US-tubes exhibited a much 

longer blood circulation time than CDDP, which was quickly cleared from the blood. At 4 h, 

the Pt concentration in blood for mice treated with CDDP, W-CDDP@US-tubes, and 

CDDP@US-tubes was 271.55 ± 21.51 ng/mL, 250.40 ± 57.03 ng/mL, and 456.00 ± 71.40 

ng/mL, respectively. In comparison, CDDP-treated mice showed a significantly lower Pt 

concentration in the plasma at 24 h (102.78 ± 9.92 ng/mL) which gradually declined until 

the end of the experiment, while the mice treated with W-CDDP@US-tubes and 

CDDP@US-tubes maintained relatively higher Pt concentrations (221.11 ± 33.26 ng/mL 

and 327.03 ± 80.01 ng/mL, respectively) at 24 h, and continued to be relatively higher until 

the end of the study. The concentration of Pt in blood at 168 h p.i., the last point of 

evaluation, in mice treated with W-CDDP@US-tubes and CDDP@US-tubes was 2.3-fold 

(48.27 ± 7.41 ng/mL) and 3.8-fold (78.62 ± 12.83 ng/mL), respectively, higher than in mice 

treated with free CDDP (20.88 ± 5.14 ng/mL, p<0.05). One phase exponential decay 

analysis of the Pt concentration in blood over time for each treatment group showed that the 

plasma half-lifes are markedly extended for W-CDDP@US-tubes and CDDP@US-tubes (80 

h and 130 h, respectively) compare to free CDDP (24.5 h) (Figure S7).

ICP-MS analysis showed that the Pt concentration of CDDP-treated mice in each tissue 

gradually declined over time. The Pt levels detected in liver, spleen, and kidney was highest, 

while the amount measured for other organs was much lower. On the contrary, the mice 

treated with W-CDDP@US-tubes and CDDP@US-tubes displayed a significantly different 

biodistribution than mice treated with free CDDP (Figure 8), with much higher Pt 

concentrations in tumor, spleen, and kidney, while being similar in lung, stomach, heart, and 

liver (Figure 8A).

As shown in Figure 8A, the concentration of Pt in tumors of all treatment groups were 

similar at 4 h, and then started to increase, and became significantly higher at 48 h and 
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peaked at 72 h in CDDP@US-tubes-treated mice (3.09 ± 0.48 ng/mg dry tissue), which was 

more than 5-fold higher than in mice treated with free CDDP (0.56 ± 0.08 ng/mg dry tissue) 

and approximately 3-fold higher than W-CDDP@US-tube-treated mice (1.08 ± 0.12 ng/mg 

dry tissue). There was also a significant difference between the CDDP and W-CDDP@US-

tube treatment groups at 72 h (p = 0.024). At 168 h, the Pt concentration levels in tumors of 

all treatment groups decreased; however, the accumulation of Pt for the CDDP@US-tubes 

(1.96 ± 0.44 ng/mg dry tissue) was still significantly higher than that in the CDDP treated 

groups (0.34 ± 0.1 ng/mg dry tissue, p = 0.022).

The Pt concentrations detected in kidney, liver, and spleen after free CDDP administration 

was found to be highest, while the amount found in other organs was much lower. The Pt 

concentration in kidney of mice treated with free CDDP (9.27 ± 1.26 ng/mg dry tissue), and 

W-CDDP@US-tubes (7.64 ± 0.18 ng/mg dry tissue) were the highest and found to be 

significantly higher than mice treated with CDDP@US-tubes (4.87 ± 0.05 ng/mg dry tissue) 

at 4 h and then gradually declined until the end of the study. In contrast, the CDDP@US-

tubes treated mice displayed a relatively constant Pt concentration in kidney up to 48 h, 

followed by a decreased and significantly higher Pt concentration at 72 h (4.14 ± 0.3 ng/mg 

dry tissue) compare with both the free CDDP (1.38 ± 0.49 ng/mg dry tissue, p = 0.005) and 

W-CDDP@US-tube (2.16 ± 0.82 ng/mg dry tissue, p = 0.02) treatment groups. Although the 

Pt levels detected in the liver were lower than those measured in the kidneys in the first 24 h, 

in the long-term (at 168 h), the Pt levels were greater in the liver than in the kidneys. The 

liver Pt levels in all treatment groups displayed a similar trend at all evaluated time points 

except at 4 h, with a greater Pt concentration for CDDP@US-tubes (6.05 ± 0.32 ng/mg dry 

tissue) compared to free CDDP (4.87 ± 0.11 ng/mg dry tissue, p = 002).

Figure 8A shows that the CDDP@US-tubes and W-CDDP@US-tubes afforded considerably 

higher Pt accumulation in the spleen compare to free CDDP at 48 h and 72 h, while the mice 

treated with free CDDP exhibited higher Pt accumulation only at 4 h, and then gradually 

decreased over time. As shown in Figure 8B, ICP-MS analysis confirmed the high retention 

of the CDDP@US-tube and W-CDDP@US-tube materials in the spleen, where the Y 

concentration was higher than for all other organs.

4. Discussion

Although CDDP is one of the most potent anticancer drugs, its use in cancer therapy is 

hampered due to severe side effects caused by the lack of selectivity and resistance issues 

which is mainly attributed to reduced drug accumulation in tumor cells [48–50]. Because of 

its reactive nature, CDDP has limited bioavailability. Upon administration, CDDP rapidly 

binds to albumin and other plasma proteins and spontaneously degrades in the bloodstream, 

leading to irreversible deactivation of nearly 90% of the injected dose, and it is rapidly 

cleared from the blood by glomerular excretion [51]. Because this form of CDDP is inactive, 

it has no therapeutic effect [52]. It is important to note here that during current clinical 

administration of CDDP, only ~1% of administered dose reaches its cellular target by the 

EPR effect [53]. Thus, an ideal drug delivery systems is expected to not only increase the 

concentration of CDDP in tumor cells, but also protect it from plasma deactivation.
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Recently, we developed a new CNT-based drug delivery system that is comprised of CDDP 

encapsulated within the US-tubes (CDDP@US-tubes) that showed enhanced in vitro 
antitumoral efficacy against two different breast cancer cell lines, MCF-7 and MDA-

MB-231, which are known to be CDDP resistant against free CDDP [13]. Although the in 
vivo biodistribution of platinum-based drugs (CDDP and an inert Pt(IV) complex) trapped 

within the interior of multi-walled CNTs (MWCNTs) has been previously reported [32], the 

present study is the first to explore both the biodistribution and in vivo efficacy of CDDP 

encapsulated within a SWCNT (US-tube) material in mice for three different breast cancer 

xenograft models.

The in vivo biodistribution and pharmacokinetic studies of CNTs have been extensively 

studied by a number of research groups using different CNT materials, different surface 

functionalization, different tracking techniques, and after different administration methods 

(i.p. vs. i.v.) resulting in varying and sometimes controversial results [54]. Previous in vivo 
toxicity assessment studies have demonstrated that high doses of US-tubes (up to 1000 

mg/kg b.w.) after i.p. administration are well tolerated by Swiss mice. The study also 

showed that small aggregates and well-individualized US-tubes reached the systemic 

circulation and subsequently accumulated in a variety of tissues and cells, by way of the 

lymphatic system and that these US-tubes eventually escaped the reticuloendothelial system 

to be excreted though the kidney and bile ducts, as evidenced by US-tubes in the urine and 

feces [23]. It was also observed that the US-tubes had a strong interaction with organ 

surfaces, and that contrary to full-length SWCNTs, they rapidly diffused inside the organs. 

Although small aggregates of US-tubes did not induce granuloma formation, they persisted 

inside cells for up to 5 months after administration. From this study, it was reasoned that i.p. 

administration of CDDP@US-tube materials would also avoid possible complications 

associated with i.v. injection such as mechanical blockage of the vasculature system. In 

addition, i.p. administration of free CDDP has been also studied extensively, and the dose of 

free CDDP that can be given safely by i.p. is substantially higher than by i.v. administration. 

Moreover, the concentration of active cisplatin in the plasma is not decreased after i.p. 

administration compared to i.v. injection. To determine the pharmacokinetics and tissue 

specific distribution of CDDP vs. US-tubes, we quantified the Pt (from CDDP) and Y (in the 

US-tubes as remnant metal catalyst) concentrations in samples via ICP-MS analysis which 

allowed the determination of precise Pt and Y concentrations in tissue samples because of its 

high sensitivity (1 ppb) and specificity due to the absence of background Pt and Y in 

biological samples. To our knowledge, this is the first study that has measured remnant 

metal catalyst concentration (Y in our study) to trace and quantitatively determine blood 

clearance and biodistribution behavior of a CNTs material in vivo. To date, most of the in 
vivo biodistribution and pharmacokinetic studies of CNT materials reported in the literature 

have been determined using radiolabels or spectroscopic tags for indirect detection of CNTs 

[55–58]. In other studies, rather insensitive CNT Raman scattering intensities have been 

sometimes employed as a tracer [59].

The results of the present study demonstrate that CDDP@US-tubes have greater tumor 

suppression efficacy than free CDDP in both MCF-7 and BCM-4272 PDX breast tumor 

models, while it was found to have a similar effect in a MDA-MB-231 xenograft. In all three 

xenograft studies, the CDDP@US-tubes have afforded higher CDDP uptake in tumors 
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compared to free CDDP. The similar tumor suppression effects of CDDP@US-tubes and 

CDDP on the MDA-MB-231 xenograft is possibly due to more aggressive tumor growth of 

the MDA-MB-231 xenograft compared to MCF-7 and BCM-4272 PDX xenografts, which 

resulted in considerable lower Pt concentration in the tumor per mg of dry tissue. In fact, it 

was observed that the mean fold increase (from day 0 to day 28) in tumor volume of the 

control (saline) treated group for the MDA-MB-231 xenograft (11.415 ± 1.906) was notably 

higher compared to the MCF-7 (3.486 ± 0.494) and BCM-4272 PDX (4.88 ± 0.319) 

xenografts.

The reason for the higher CDDP uptake in tumors for CDDP@US-tubes and W-

CDDP@US-tubes is likely due to their prolonged blood circulation time compare to free 

CDDP which facilitates substantial tumor targeting by the EPR effect. Consistent with 

previous reports, we observed a short blood circulation time for free CDDP [60,61]. 

However, the CDDP@US-tubes and W-CDDP@US-tubes displayed significantly higher and 

an almost constant Pt concentration in blood with time. This observation can be explained 

by the long-term retention of CDDP within US-tubes throughout the circulation time. As 

previously observed and reported[62], blood proteins coat the US-tubes in vivo which 

apparently limits the release of CDDP from both the CDDP@US-tube and the W-

CDDP@US-tube samples until this coating is likely stripped away during transit through the 

cell membrane. This view agrees well with previously observed extensive aggregation of 

US-tubes within stem cells [43] and some recent theoretical reports [33,35]. The adsorption 

of free CDDP by various organs occurred very rapidly, especially for kidney, liver and 

spleen. However, the mice treated with W-CDDP@US-tubes and CDDP@US-tubes 

displayed a significantly different biodistribution than mice treated with free CDDP, with 

much higher Pt accumulation in tumor, spleen, and kidney, while being similar in lung, 

stomach, heart, and liver. By also analyzing the Y concentration in various tissues, we 

determined a higher retention of US-tubes in spleen, liver, kidneys, and stomach, while the 

amount found in other organs was much less.

From the above encouraging results, we believe that it might be possible to control CDDP 

release from CDDP@US-tubes by wrapping them with covalently-attached activatable 

cancer-specific peptide sequences instead of surfactant molecules. Recently, a catalytic 

method to functionalize US-tubes with various amino acids and peptides was reported which 

improved solubility, biocompatibility, and biological targeting capabilities [42]. In future 

work, using this functionalization protocol, a peptide chain, containing an enzyme-specific 

substrate sequence for a cancer cell antigen, such as the well-known prostate specific antigen 

(PSA) and/or matrix metalloproteinase-2 (MMP-2) might be synthesized and covalently-

attached to CDDP@US-tubes. This peptide chain should cover the sidewall defect sites and 

ends of the US-tubes as a sheath and help prevent premature drug release until the peptide is 

cleaved upon PSA and/or MMP-2 activation either within or in the extracellular environment 

of cancer cells, as shown schematically in Figure S8. Inserting different cancer specific 

peptide sequences into the peptide chain could also allow for the treatment of a wide variety 

of cancers. Using this strategy, peptide-wrapped CDDP@US-tube could become a smart 

drug delivery platform that will not only activate CDDP drug release within or in the 

extracellular environment of cancer cells but could also allow administration of a higher 

dose of CDDP without producing undesirable side effects.
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5. Conclusion

In this study, in vivo biodistribution and therapeutic efficacy of CDDP@US-tube materials 

have been evaluated against three different breast cancer xenograft mouse (SCID/Beige) 

models, and found to exhibit greater efficacy in suppressing tumor growth than free CDDP 

for both a MCF-7 cell line xenograft model and a BCM-4272 patient-derived xenograft 

(PDX) model. The studies have shown the potential of the US-tube platform to assist 

delivery of encapsulated CDDP by increasing the accumulation of drug in cancer resistance 

cells. The CDDP@US-tube materials also demonstrated a prolonged circulation time 

compared to free CDDP, which enhanced permeability and retention (EPR) effects to 

produce significantly more CDDP accumulation in tumors. Together, these studies have 

suggested that tumor specific accumulation of CDDP might also be further enhanced by 

covalently functionalizing the CDDP@US-tube platform with activatable cancer-specific 

peptide sequences.
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STATEMENT OF SIGNIFICANT

Over the past decade, drug-loaded nanocarriers have been widely fabricated and studied 

to enhance tumor specific delivery. Among the diverse classes of nanomaterials, carbon 

nanotubes (CNTs), or more specifically ultra-short single-walled carbon nanocapsules 

(US-tubes), have been shown to be a popular, new platform for the delivery of various 

medical agents for both imaging and therapeutic purposes. Here, for the first time, we 

have shown that US-tubes can be utilized as a drug delivery platform in vivo to deliver 

the chemotherapeutic drug, cisplatin (CDDP) as CDDP@US-tubes. The studies have 

demonstrated the ability of the US-tube platform to promote the delivery of encapsulated 

CDDP by increasing the accumulation of drug in breast cancer resistance cells, which 

reveals how CDDP@US-tubes help overcome CDDP resistance.
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Figure 1. 
Suppression of tumor growth by intraperitoneal injection of CDDP@US-tubes to an MCF-7 

breast cancer xenograft. (A), Tumor growth of MCF-7 tumor-bearing mice after receiving 

different treatments as indicated. (* and # indicates p < 0.05, unpaired, two-sided t-test, n=8; 

error bars= s.e.) The mean body weight changes is also plotted in A. Fold increase in tumor 

volume (B) and Kaplan-Meier survival curves (C) depicting the tumor doubling times for 

different treatment groups.
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Figure 2. 
Platinum and yttrium concentration in tissue from MCF-7 tumor-bearing mice treated over a 

period of ~ 45 d with weekly saline, W-US-tubes, CDDP, CDDP@US-tubes, and W-

CDDP@US-tubes administration via i.p. injection. (A) Concentration of platinum (from 

cisplatin) and (B) yttrium (from US-tubes) in tissue (mean ± s.e., n = 8). Statistically 

significant different (p < 0.05) are marked with symbols as indicated above (unpaired, two-

sided t-test).
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Figure 3. 
Suppression of tumor growth by intraperitoneal injection of CDDP@US-tubes to an MDA-

MB-231 breast cancer xenograft. (A), Tumor growth of MDA-MB-231 tumor-bearing mice 

after receiving different treatments as indicated. ( p < 0.05, unpaired, two-sided t-test, n=8; 

error bars= s.e.) The mean body weight changes is also plotted in A. Fold increase in tumor 

volume (B) and Kaplan-Meier survival curves (C) depicting the tumor tribling (3X) times 

for different treatment groups.
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Figure 4. 
Platinum and yttrium concentration in tissue from MDA-MB-231 tumor-bearing mice 

treated over a period of ~ 45 d with weekly saline, W-US-tubes, CDDP, CDDP@US-tubes, 

and W-CDDP@US-tubes administration via i.p. injection. (A) Concentration of platinum 

(from cisplatin) and (B) yttrium (from US-tubes) in tissue (mean ± s.e., n = 8). Statistically 

significant different (p<0.05) are marked with symbols as indicated above (unpaired, two-

sided t-test).
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Figure 5. 
Suppression of tumor growth by intraperitoneal injection of CDDP@US-tubes to an Patient-

derived, 4272 transplant, xenograft. (A), Tumor growth of Patient-derived tumor-bearing 

mice after receiving different treatments as indicated. (*p < 0.05 CDDP@US-tubes vs. 

CDDP, #p < 0.05 W-CDDP@US-tubes vs. CDDP, unpaired, two-sided t-test, n=9; error 

bars= s.e.) The mean body weight changes is also plotted in A. Fold increase in tumor 

volume (B) and Kaplan-Meier survival curves (C) depicting the tumor doubling times for 

different treatment groups.
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Figure 6. 
Platinum and yttrium concentration in tissue from Patient-derived tumor-bearing mice 

treated over a period of ~ 45 d with weekly saline, w-US-tubes, CDDP, CDDP@US-tubes, 

and w-CDDP@US-tubes administration via i.p. injection. (A) Concentration of platinum 

(from cisplatin) and (B) yttrium (from US-tubes) in tissue (mean ± s.e., n = 8). Statistically 

significant different (p < 0.05) are marked with symbols as indicated above (unpaired, two-

sided t-test).
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Figure 7. 
Blood circulation data of CDDP, W-CDDP@US-tubes, and CDDP@US-tubes in MDA-

MB-231 tumor-bearing mice were determined by measuring (A) Pt (from CDDP) and (B) Y 

(from US-tubes) concentration in blood via ICP-MS at different time points post injection. 

(*p < 0.05 CDDP vs. CDDP@US-tubes, #p < 0.05 CDDP vs. W-CDDP@US-tubes, 

unpaired, two-sided, t-test, n=3, error bars = s.e)
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Figure 8. 
Time-dependent in vivo biodistribution of intraperitoneally injected CDDP, W-CDDP@US-

tubes, and CDDP@US-tubes in MDA-MB-231 tumor bearing mice. (A) Concentration of 

platinum (from CDDP), (B) Concentration of yttrium (from US-tubes) in tissue (mean ± s.e., 

n = 3). Statistically significant different (p < 0.05) are marked with symbols as indicated 

above (unpaired, two-sided t-test).
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