
4 Dombkowski KJ, Hassan F, Wasilevich EA, Clark SJ. Spirometry use
among pediatric primary care physicians. Pediatrics 2010;126:682–
687.

5 Finkelstein JA, Lozano P, Shulruff R, Inui TS, Soumerai SB, Ng M,
et al. Self-reported physician practices for children with asthma:
are national guidelines followed? Pediatrics 2000;106(4 suppl):886–
896.

6 Cloutier MM, Salo PM, Akinbami LJ, CohnRD,Wilkerson JC, Diette GB,
et al. Clinician agreement, self-efficacy, and adherence with the
guidelines for the diagnosis and management of asthma. J Allergy
Clin Immunol Pract 2018;6:886–894.e4.

7 Van Wonderen KE, Van Der Mark LB, Mohrs J, Bindels PJ, Van
Aalderen WM, Ter Riet G. Different definitions in childhood asthma:
how dependable is the dependent variable? Eur Respir J 2010;36:
48–56.

8 National Asthma Education and Prevention Program. Expert panel
report 3: guidelines for the diagnosis and management of asthma.
National Heart, Lung, and Blood Institute, Report No. NIH Publication
No. 09-6147. Bethesda, MD: National Institutes of Health; 2007
[accessed 2018 May 25]. Available from: http://www.nhlbi.nih.gov/
guidelines/asthma/asthgdln.pdf.

9 The International Study of Asthma and Allergies in Childhood (ISAAC)
Steering Committee. Worldwide variation in prevalence of symptoms

of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC.
Lancet 1998;351:1225–1232.

10 Global Initiative for Asthma. Global strategy for asthma management
and prevention. 2012 Mar 13 [updated 2015 Aug 11; accessed 2018
May 25]. Available from: https://ginasthma.org/wp-content/uploads/
2016/01/GINA_Report_2015_Aug11-1.pdf.

11 Reddel HK, Bateman ED, Becker A, Boulet LP, Cruz AA, Drazen JM,
et al. A summary of the new GINA strategy: a roadmap to asthma
control. Eur Respir J 2015;46:622–639.

12 Global Initiative for Asthma. Global strategy for management and
prevention. 2018. [accessed 2018 Aug 15]. Available from: http://
www.ginaasthma.org.

13 Gershon AS, Victor JC, Guan J, Aaron SD, To T. Pulmonary function
testing in the diagnosis of asthma: a population study. Chest 2012;
141:1190–1196.

14 Wright, KB. Researching internet‐based populations: advantages and
disadvantages of online survey research, online questionnaire
authoring software packages, and web survey services. J Comp
Mediat Commun 2005;10:JCMC1034.

15 Nully DD. The adequacy of response rates to online and paper surveys:
what can be done? Assess Eval High Educ 2008;33:301–314.

Copyright © 2019 by the American Thoracic Society

Acquired Cystic Fibrosis Transmembrane
Conductance Regulator Dysfunction and
Radiographic Bronchiectasis in Current and
Former Smokers: A Cross-Sectional Study

To the Editor:

Cystic fibrosis transmembrane conductance regulator (CFTR)
dysfunction is the major pathophysiologic defect leading to
bronchiectasis in cystic fibrosis (CF) (1). Recently published
data indicated that cigarette smoking causes acquired CFTR
dysfunction, manifested by increased sweat chloride (2), altered
sweat rate (3), and reduced CFTR activity in the upper (4)
and lower respiratory tracts (5) measured by nasal and lower
airway potential difference, respectively, in subjects with chronic
obstructive pulmonary disease (COPD) and smokers without
fixed airflow obstruction. The defect continues despite smoking
cessation, which may be related to smoking intensity (2). COPD-
associated bronchiectasis is a common COPD endotype, affecting
between 25% and 69% of patients. It is identified by computed
tomography (CT) and is associated with greater sputum
production, poorer lung function, more frequent exacerbations,
greater bacterial colonization, and worse outcomes compared with
COPD patients without bronchiectasis (6, 7). We hypothesized that

acquired CFTR dysfunction in smokers would be associated with
CT-identified bronchiectasis in patients with COPD, defining a
particular subphenotype and an indicator of the clinical impact of
CFTR dysfunction in individuals without CF.

Methods
This single-center study of current and former smokers without a
known history of CF was conducted between January 1 and
December 31, 2015, in participants previously enrolled in
COPDGene (Genetic Epidemiology of COPD), a study intended
to define subphenotypes of the disease (8). We collected
demographic data, body mass index, smoking status (current vs.
former), smoking history in pack-years, and self-reported chronic
bronchitis. Spirometry was performed according to American
Thoracic Society/European Respiratory Society standards (9),
and severity of airflow limitation was grouped according to
Global Initiative for Chronic Obstructive Lung Disease
recommendations (10). Inspiratory and expiratory volumetric
computed tomographic scans were acquired using multidetector
CT scanners and image reconstruction algorithms as previously
reported (8). The presence or absence of bronchiectasis was
scored visually by a radiologist blinded to clinical characteristics
as previously reported and validated by a second blinded scorer
(11). Bronchiectasis was defined by the presence of bronchial
dilation (bronchial diameter greater than the diameter of the
accompanying pulmonary vessel). Intraobserver agreement for
visual bronchiectasis was good (Cohen’s k = 0.746). Sweat
chloride was measured by quantitative pilocarpine iontophoresis
using the Macroduct collection system (Wescor) (2). CFTR
genetics were analyzed by complete CFTR sequencing if the
sweat chloride level was abnormal (>40 mmol/L) (12). Never
smokers and subjects who had withdrawn from COPDGene
were ineligible. Fisher’s exact test and a nonparametric test
(Wilcoxon rank-sum test) were used to assess the bivariate
relationships between groups. The results were reported as
median (interquartile range) for continuous variables. Statistical
analyses were performed using SAS 9.4 software (SAS Institute
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Inc.). This study was approved by the University of Alabama at
Birmingham Institutional Review Board (F111209002), and all
subjects provided written informed consent.

Results
Ninety-eight subjects were screened; 11 were excluded owing to
the lifetime absence of smoking (n = 6) or because of missing
radiologic data (n = 5). The baseline characteristics of the 87
subjects included in the study are presented in Table 1. About one-
half (49%) of the cohort were current smokers with a median
(interquartile range) 40 (30–57)–pack-year history. Post-
bronchodilator forced expiratory volume in 1 second (FEV1)
percent predicted was 67.5 (53–88), and FEV1/forced vital
capacity ratio was 0.69 (0.5–0.78). Twelve (24%) of the patients
had chronic bronchitis based on self-report; none used roflumilast,
which can activate CFTR (13, 14).

Twelve subjects (14%) had bronchiectasis visualized by CT.
Among those with bronchiectasis, 33% had COPD defined by
spirometry. Sweat chloride was measured in all subjects. The
median (interquartile range) was 30 (13–43) mmol/L. Sweat
chloride was greater in subjects with bronchiectasis than in
individuals without bronchiectasis (44 [24.5–53] vs. 24 [12–40]

mmol/L; P = 0.03) (Figure 1). Elevated sweat chloride was
associated with a 4.4-fold increased prevalence of visual
bronchiectasis (prevalence ratio, 4.4; 95% confidence interval,
1.5, 13.5; P = 0.008). Among those with visual bronchiectasis, 8
(67%) of 12 patients had elevated sweat chloride (>40 mmol/L)
(15), whereas 19 (25%) of 75 of those without bronchiectasis
exceeded this threshold (P = 0.004). Elevated sweat chloride
was also more common in subjects with mosaic attenuation
visualized by CT (43 [40–49] vs. 22.5 [12–40] mmol/L; P = 0.03).

Subjects with elevated sweat chloride underwent full-gene
CFTR sequencing (n = 25). No individuals carried two CF-causing
variants on separate chromosomes. Four carried a variant that
required further consideration, although none had visual
bronchiectasis. One subject carried the common CF-causing
variant p.Phe508del (c.1521_1523delCTT), which was not
unexpected, given the carrier frequency. A second subject had
two variants (p.Arg74Trp [c.220C.T] and p.Asp1270Asn
[c.3808G.A]), which are likely to be in cis and which have been
associated with CFTR-related disorders (16). The remaining two
variants identified (p.Glu528 [c.1584G.A] and p.Ser1235Arg
(c.3705T.G]) are rare and unlikely to be deleterious (17). CFTR
variants of unknown significance (n = 5) were not more prevalent

Table 1. Baseline characteristics

Variables Total (N = 87) Presence of Bronchiectasis (n = 12) Absence of Bronchiectasis (n = 75) P
Value*

Age, yr 64 (57–71) 68.5 (61–74) 68.5 (57–70) 0.20
Sex 1.00
Male 50 (57%) 7 (58%) 43 (57%)
Female 37 (43%) 5 (42%) 32 (43%)

Race 1.00
Non-Hispanic white 54 (62%) 8 (67%) 46 (61%)
African American 33 (38%) 4 (33%) 29 (39%)

Body mass index, kg/m2 28.1 (24–32.6) 27.4 (21.2–31.4) 28.7 (24–33.2) 0.28
Smoking status 0.76
Current smoker 43 (49%) 5 (42%) 38 (51%)
Former smoker 44 (52%) 7 (58%) 37 (49%)

Smoking intensity, pack-years 39.8 (29.5–57) 43.8 (35–76.5) 39.7 (28.5–52.6) 0.29
COPD severity 0.45
GOLD 1 2 (2.3%) 1 (8.33%) 1 (1.33%)
GOLD 2 23 (26.4%) 2 (16.67%) 21 (28%)
GOLD 3 13 (14.9%) 1 (8.33%) 12 (16%)
GOLD 4 6 (6.9%) 0 6 (8%)

No COPD 43 (49.5%) 8 (66.67%) 35 (46.67%)
Symptoms of chronic bronchitis 21 (24%) 2 (17%) 19 (26%) 0.72
Spirometry
FEV1, % predicted 67.5 (53–88) 86 (56.5–97.5) 66.5 (52–87) 0.14
FEV1/FVC 0.69 (0.5–0.78) 0.72 (0.58–0.77) 0.65 (0.48–0.78) 0.61

Sweat chloride level, mmol/L 30 (13–43) 44 (24.5–53) 24 (12–40) 0.03
Sweat chloride >40 mmol/L 27 (31%) 8 (67%) 19 (25%) 0.007
Chest CT findings
Bronchial wall thickening 23 (26%) 5 (42%) 18 (24%) 0.29
Percent emphysema 6.56 (1.9–17.1) 4.29 (1.4–10.1) 6.96 (2.1–18.3) 0.30
Pi10 3.68 (3.6–3.8) 3.69 (3.6–3.8) 3.68 (3.6–3.8) 0.47
Mosaicism 9 (10.3%) 1 (8.3%) 8 (10.7%) 1.00

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; CT = computed tomography; FEV1 = forced expiratory volume in 1 second;
FVC = forced vital capacity; GOLD = Global Initiative for Chronic Obstructive Lung Disease; Pi10 = square root of wall area of an airway of 10-mm
internal perimeter.
Data are expressed as median (interquartile range) or frequency (percent).
*Estimated using Wilcoxon rank-sum test and Fisher’s exact test for continuous and categorical variables, respectively.
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in patients with visual bronchiectasis. We also assessed for the
presence of variants in the epithelial sodium channel genes
(SCNN1A, SCNN1B, SCNN1D, and SCNN1G) and CA12, which
are known or suspected to associate with bronchiectasis. Overall,
seven patients had one or more variants in the epithelial sodium
channel; these were not more prevalent in patients with visual
bronchiectasis. The lack of detectable genetic contribution is
consistent with experimental modeling (18), although heterozygosity
may serve as a susceptibility risk factor and should be evaluated in
well-powered studies.

Discussion
CFTR dysfunction identified by elevated sweat chloride is
associated with CT bronchiectasis among current and former
smokers. To our knowledge, this is the first study to evaluate this
relationship, and it suggests a possible underlying
pathophysiologic mechanism that contributes to the development
of bronchiectasis in COPD (and in smokers without recognized
COPD). The degree of sweat chloride abnormality reflects a 20–
30% decrement in CFTR function based on genotype–phenotype
correlations, levels comparable to those of individuals with CF
who have CFTR-related disorders that manifest with bronchiectasis
later in life (19). Of note, this association was independent of chronic
bronchitis symptoms by self-report.

In addition to bronchiectasis, mosaic attenuation visualized
by high-resolution CT is a sign of airway disease by inducing gas
trapping and heterogeneity of the parenchyma. The association of
mosaic attenuation with elevated sweat chloride further supports the
concept that CFTR abnormality may contribute to airway disease. Of
note, air trapping was rapidly reversible in G551D CFTR patients with
CF with administration of the CFTR potentiator ivacaftor (20).

Our study has important implications for the understanding
of the relationship between acquired CFTR dysfunction
and CT bronchiectasis. Smoke-induced acquired CFTR
dysfunction should be considered when evaluating the etiology of

bronchiectasis, especially when patients have elevated sweat
chloride but normal CFTR genetic analysis. Recent studies
suggested that CFTR potentiators can reverse acquired CFTR
abnormalities in vitro (2, 4, 21, 22) and that ivacaftor may restore
CFTR function and improve symptoms in patients with COPD
with chronic bronchitis (22). Thus, these results have potential
therapeutic implications, given that CFTR potentiators used
for treatment of CF may also restore CFTR activity in patients
with COPD (22).

Limitations of the present study to consider include the
observational design; the relatively small number of individuals
with bronchiectasis; and that alternative etiologies of
bronchiectasis, such as infection, immunodeficiency, and
chronic aspiration (23), were not available for evaluation.
Although our study did not reveal an association of bronchiectasis
with lung function or chronic bronchitis (2, 4, 21, 22), the
present analysis was underpowered for this analysis. The
potential for CFTR dysfunction to contribute to worsened
airway disease in patients with smoking-related lung disease
and to identify a specific subphenotype warrants further
investigation.
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Obstructive Sleep Apnea with Chronic Obstructive
Pulmonary Disease among Medicare Beneficiaries

To the Editor:

The term “overlap syndrome” was introduced to describe the
coexistence of chronic obstructive pulmonary disease (COPD) and
obstructive sleep apnea (OSA) in a single individual (1), and it is
associated with a severe clinical course. An OSA-related nocturnal
desaturation is more profound in the presence of COPD, and
daytime hypoxemia due to COPD is worse in the presence of OSA
(2). Patients with overlap syndrome are far more likely to develop
pulmonary hypertension and right heart failure than patients with

either condition alone (3, 4). As a result, patients with overlap
syndrome have significantly worse quality of life, greater risk of
morbidity and mortality, and a substantially higher medical care
use and cost than those with either diagnosis independently (5–7).
We conducted a claims-based study of Medicare beneficiaries to
examine the diagnosed prevalence and trend of overlap syndrome,
as well as its patient characteristics.

Methods

Data Source. This study used enrollment and claims data over 2004-
2013 from a 5% national sample of Medicare beneficiaries. Data
used in this study were gathered from multiple files: 1) Medicare
Denominator File, 2) Medicare Provider Analysis and Review File, 3)
Outpatient Standard Analytic File, 4) 100% Physician/Supplier
Data File, and 5) Durable Medical Equipment File (8).
Study Cohort. All patients with COPD were identified as

previously reported (9). Exclusion criteria were age 65 years or
younger, residence in a nursing facility or enrollment in a health
maintenance organization plan, or lack of completed enrollment in
Medicare parts A and B for 12 months or longer or until death in
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