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Abstract
Polycystic ovary syndrome (PCOS) is one of the most common and complex endocrinopathies among reproductive-age women.
Polycystic ovary syndrome is characterized by symptomatology of oligomenorrhea and androgen excess, with or without
presence of polycystic ovarian morphology. The etiology of PCOS is multifactorial, including genetic and environmental com-
ponents. It has been previously established that prenatal androgen exposure results in a PCOS phenotype in experimental animal
models and epidemiologic human studies. Investigators hypothesize that prenatal exposure to endocrine-disrupting chemicals
(EDCs) may contribute to PCOS development. This review examines the emerging research investigating prenatal exposure to
3 major classes of EDCs—bisphenol A (BPA), phthalates, and androgenic EDCs—and the development of PCOS and/or PCOS-
related abnormalities in humans and animal models. Highlights of this review are as follows: (1) In rodent studies, maternal BPA
exposure alters postnatal development and sexual maturation;, (2) gestational exposure to dibutyl phthalate and di(2-ethyl-
hexyl)phthalate results in polycystic ovaries and a hormonal profile similar to PCOS; and (3) androgenic EDCs, nicotine and 3,4,4’-
trichlorocarbanilide, create a hyperandrogenic fetal environment and may pose a potential concern. In summary, prenatal
exposure to EDCs may contribute to the altered fetal programming hypothesis and explain the significant variability in severity and
presentation.
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Introduction

Polycystic ovary syndrome (PCOS) is one of the most common

endocrine disorders among reproductive–age women. The esti-

mated prevalence of PCOS ranges between 4% and 12% world-

wide.1-3 The 2003 Rotterdam criteria for diagnosis of PCOS

includes 2 of the following 3 criteria (1) oligo- or anovulation,

(2) clinical or biochemical evidence of hyperandrogenism, and

(3) polycystic ovarian morphology on ultrasonography.4

Androgen excess has been associated with health risks such

as insulin resistance and long-term risk of metabolic syn-

drome.5-9 The etiology of PCOS remains multifactorial with

emerging literature on genetic pathways and environmental

factors.

Although the initial signs and symptoms of PCOS present

during or just prior to the onset of puberty, clinical diagnoses

are difficult to establish accurately and often are not made until

later on in life.10-12 There have been no studies on the time it

takes from first presentation of symptoms to a diagnosis of

PCOS, but it has recently been suggested that diagnosis of ado-

lescent PCOS should wait until at least 2 years after menarche.13

Additionally, as a syndrome, PCOS is characterized by variable

symptom severity and clinical presentation and may dynami-

cally change in phenotype across the reproductive life span.14

Fetal programming is a process where biological or exogen-

ous signals or insults at critical stages of development induce

permanent changes in tissue structure or function.15 These

alterations may be a manifestation of adaptive responses to the

ex utero environment. It is well known that the critical devel-

opmental stages that take place in utero are times of significant

cellular proliferation, differentiation, and functional matura-

tion. Intrauterine exposures may have profound effects based

not only upon the type of exposure but also upon the timing of
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exposure, even at low doses. A study conducted by Webber

et al16 proposed that these adaptations to exogenous insults take

place in utero during ovarian development and oogenesis.

Furthermore, a subset of women with adult-onset PCOS may

be attributable solely to intrauterine exposures that may ulti-

mately induce its metabolic and reproductive sequelae.17

Concern over endocrine-disrupting chemicals (EDCs) as a

health hazard has increased as their exposure is ubiquitous

within the modern living environment. Research findings have

shown that they may pose the greatest risk during prenatal

development by causing irreversible changes to differentiating

tissues.18,19 In particular, extensive work has been done on

6 major classes of EDCs (phthalates, phenols, perfluorinated

compounds, flame retardants, polychlorinated biphenyls

[PCBs], and organochlorine pesticides) to prove that these

EDCs do indeed cross the placental barrier.20 In addition, harm

may be potentiated as the fetal liver has not matured to detoxify

these substances during ovarian/reproductive organogenesis.

There is additional concern as EDC exposure is widespread,

is poorly regulated, and can bioaccumulate up the food chain

and also in maternal fat stores. Studies have shown that pre-

natally exposing gestating rats to either a mixture of phthalates

and bisphenol A (BPA),21 jet fuel,22 and vinclozolin23 or a

mixture of N,N-diethyl-meta-toluamide (DEET) and perme-

thrin,24 all lead to PCOS-like characteristics as far as the third

generation. In human studies, PCB exposure was associated

with menstrual cycle abnormalities25 and dose-dependent

implantation failure in human in vitro fertilization (IVF).26 The

organochlorine pesticide, hexachlorobenzene, was associated

with reduced odds of implantation after embryo transfer during

human IVF.27

In an effort to elucidate the current and emerging findings,

this review will discuss 3 major classes of EDCs—BPA, phtha-

lates, and androgenic EDCs and will conclude with a discus-

sion of research challenges and suggested directions that show

promise for further investigation.

Prenatal Androgen Exposure and the Development
of PCOS

Prior research in both humans and animals has examined the

effect of increased exposure to androgens in utero and its asso-

ciation with the incidence of PCOS. The role of excess andro-

gens in the development of PCOS has long been known.28,29

There is evidence that hyperandrogenism in girls is temporally

associated with (precedes) premature pubarche and polycystic

ovaries following puberty,30 while premature pubarche also

increases the risk for hyperandrogenism and polycystic

ovaries.31

Studies in humans. There are few recent studies on the effect of

fetal exposure to excess androgens in humans. One study

describes a cohort of daughters born to mothers with PCOS.32

These daughters have an increased risk of developing the syn-

drome as adults.32 In studies of both women with and without

PCOS, increased maternal testosterone (T) levels at

midgestation (18 weeks) have been shown to predict increased

anti-Mullerian hormone (AMH) levels in female offspring at

adolescence, a clinical feature characteristic of both adoles-

cents and adults with PCOS.33,34 Increased AMH levels are

also prevalent among infants born to mothers with PCOS.35,36

However, in a prospective cohort study, investigators found no

correlation between midgestational maternal blood concentra-

tions of androgens in pregnant women and the development of

PCOS traits in female offspring during adolescence.37 Analysis

of prenatal exposure to excess androgens is performed by

assessment of serum T concentrations in (1) maternal blood,

(2) umbilical cord blood, or (3) amniotic fluid. Any of these

compartments alone may present an incomplete hormonal pro-

file at the time of critical fetal programming.38-40

Studies in rats. Studies with prenatally exposed Wistar rats

found cystic ovarian follicles and elevated numbers of preantral

and antral follicles (P ¼ .07 and P < .01, respectively) com-

pared to unexposed offspring.41 In this rat model, lower num-

bers of corpora lutea were also observed in exposed versus

unexposed offspring (P < .05).41 The offspring also had signif-

icantly altered T levels (1.12 + 0.08 ng/mL in experimental vs

1.33 + 0.05 ng/mL in controls; P < .05) and luteinizing hor-

mone (LH) levels (1.87 + 0.14 mIU/mL in experimental vs

2.29 + 0.14 mIU/mL in controls; P < .05).41 Ovulatory dys-

function and menstrual disorders are a common feature of

PCOS,4 and Sprague-Dawley rats with prenatal androgen expo-

sure have developed irregular and prolonged estrous cycles,

decreased numbers of preovulatory ovarian follicles, higher

levels of LH and progesterone (P), and significant reductions

in ovulation compared to unexposed female rats.42

Studies in monkeys. Prenatally exposed female rhesus monkeys

possess a hormonal profile similar to that of PCOS (increased

serum LH and androgens) as well as insulin resistance in infant

to adult stages of life.43,44 Regardless of timing of exposure

(early or late), prenatally exposed female rhesus monkeys had

ovulatory dysfunction and decreases in menstrual cycle length

by 40% to 50% compared to unexposed female monkeys.17

Another study demonstrated that prenatal excess androgen

exposure resulted in increased numbers of small-, medium-

sized, and primary follicles.45

Studies in sheep. The PCOS phenotype has also been recreated

in sheep, with prenatally androgenized ewes meeting the diag-

nostic criteria for PCOS, in addition to having other abnorm-

alities characteristic of PCOS including insulin resistance, LH

hypersecretion, and reduced negative feedback of P secre-

tion.46 Prenatally administered androgen had a virilizing effect

both on ewe external genitalia (yielding a penis and scrotal

tissue but no testicular tissue) and on internal genitalia (yield-

ing remnants of Wolffian ducts and a dilated uterus with secre-

tions).47 The exposed ewes’ ovaries were also larger and

contained an increased number of large antral follicles, folli-

cular cysts, or increased stroma.47 Ovarian biopsies of the

ewes’ ovaries showed a significantly lower number of
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primordial follicles in exposed ewes compared to controls

(46.9% vs 71.1% at the primordial stage, respectively).47

Environmental Androgens

Due to the existing data on prenatal exposure to excess andro-

gens, it is worth investigating the role of environmental andro-

gens in creating a hyperandrogenic fetal environment. One

agent with androgenic activity is 3,4,40-trichlorocarbanilide,

also known as triclocarban (TCC), a widely used antimicrobial

found in soaps, clothing, carpets, plastics, toys, school supplies,

and pacifiers.48 Triclocarban has been detected in umbilical

cord plasma.49 Alone, TCC has little to no androgenic activity;

however, in the presence of T, TCC amplifies the effects of T

at the level of the androgen receptor (AR) by increasing

AR-mediated transcriptional activity, leading to a 45% increase

in T-induced signal transcriptional activity.50 Such a synergis-

tic effect increases the bioactivity of endogenous T, resulting in

a physiological environment not unlike that created by

increased serum androgen concentrations.

Perfluoroalkyl acids (PFAAs) are a group of chemicals

that have surfactant properties and are widely used in indus-

trial and commercial products.51 One study demonstrated

that members of the PFAA chemical group (perfluorooctane

sulfonic acid [PFOS], perfluorooctanoic acid [PFOA], and

perfluorohexane sulfonic acid [PFHxS]) have androgenic

activity. Adjusted total T concentrations were on average

0.18 nmol/L higher in daughters of mothers with very high

PFOS exposure compared to daughters with very low expo-

sure.51 Similar significant trends were seen for daughters

prenatally exposed to PFOA (b ¼ 0.24; 95% confidence

interval [CI]: 0.05-0.43) and PFHxS (b ¼ 0.18; 95% CI:

0.00-0.35).51

Another compound with androgenic activity is nicotine.

Nicotine has been shown to cross the placental barrier and

accumulate in amniotic fluid at a concentration 88% greater

than in maternal plasma.52 Nicotine has complex and multi-

factorial effects. Women smokers have an elevated T due to the

nicotine. A study conducted among women with PCOS by

Cupisti et al53 found that smokers had increased free T levels

(0.03 [0.02-0.05]) compared to nonsmokers (0.04 [0.02-0.06];

P¼ .02). The literature on age at menarche among daughters of

maternal smokers is mixed. Studies have found that daughters

of mothers who smoked during gestation had an earlier age at

menarche compared to daughters of mothers who did not.54-56

However, 2 studies found that heavy maternal smoking (>20

cigarettes a day) led to a later age at menarche in female

children.57,58

Maternal smoking has also been shown to increase human

fetal estrogen levels, dysregulate cytochrome P450 (which is

involved in the biosynthesis of androgens and metabolism of

nicotine59,60), alter the expression of follicle-stimulating hor-

mone (FSH) receptors, and increase the number of primordial

follicles compared to controls.61 A study in rats also showed

that prenatal exposure to nicotine results in chronically

increased levels of serum T in female offspring.62

During gestation, both elevated maternal sex hormone–

binding globulin (SHBG) and placental androgen metabolism

function to protect the fetal environment from excess androgen

exposure.63 It is not known whether SHBG provides similar

protection from environmental androgens.

Phthalates

Phthalates, a class of compounds with antiandrogenic activity,

are used to soften plastic and vinyl.64 Phthalates are found in

numerous consumer products, such as cosmetics, toiletries,

shower curtains, wallpaper, food packaging, and medical prod-

ucts, such as intravenous tubing.64 The prevalence of phthalate

exposure is considered to be widespread in the United States, as

most people in the general population have detectable levels of

13 different phthalates and phthalate metabolites in their

urine.65 A study on maternal urine and amniotic fluid levels

of common phthalates and phthalate metabolites confirmed

that this class of EDCs can cross the placental barrier.66 In

addition, 1 study of infants admitted to the neonatal intensive

care unit (NICU) showed that urine phthalate and phthalate

metabolite concentrations corresponded with categorized lev-

els of exposure to NICU phthalate-containing plastics due to

leaching of the phthalates from the medical equipment (IV

tubing, feeding tubes).67 In rodent studies, phthalate exposure

was associated with increased visceral adiposity and reduced

fertility.68

Dibutyl phthalate. Findings from animal studies indicate that

susceptibility to the adverse reproductive effects of dibutyl

phthalate (DBP) is greater during prenatal exposure compared

to adult exposure.69 In rodents, high level of DBP exposure

during pregnancy is associated with reproductive system and

organ abnormalities in female offspring.69 Another study in

rats gestationally exposed to DBP and di(2-ethylhexyl)phtha-

late (DEHP), as well as BPA, found that all of the females

among the first-generation (F1) and third-generation (F3) off-

spring had a significantly higher incidence of polycystic ovar-

ies characterized by an increased number of ovarian cysts.21

Although these results indicate that such exposure contributes

to a transgenerational establishment of PCOS in offspring, the

study did not verify whether these effects were associated with

combined exposure to both phthalates and BPA or to DBP

exposure alone. Additionally, the dosage of exposure was over

10 000 times the average daily human exposure encountered in

the environment.21

In light of these results, the published research on DBP

warrants further investigation. More specifically, additional

animal studies should be conducted that exclusively assess the

effects of gestational exposure to DBP at environmentally rel-

evant exposure levels before further investigations involving

exposures that include a combination of DBP and other EDCs.

Although an examination of composite EDC exposures has

been proposed to be more representative of human exposure,70

the effect of DBP exposure alone must first be elucidated in

order to determine its impact on PCOS pathogenesis.
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Di(2-ethylhexyl)phthalate. Although studies show that DEHP is a

reproductive and developmental toxicant in humans and ani-

mals,71,72 the current literature reports conflicting findings

regarding the actions of DEHP on female reproduction. Animal

studies have shown that DEHP exposure is associated with

altered ovarian steroidogenesis and low levels of P.73 In adult

rats, studies show that DEHP exposure is associated with

(1) decreases in serum estradiol (E2) levels and (2) cessation

of ovulation.74 These actions are hypothesized to be carried out

by the major metabolite of DEHP, mono(2-ethylhexyl) phtha-

late (MEHP), which has been proposed to directly inhibit ovar-

ian production of E2, resulting in anovulation.74 Polycystic

ovarian morphology has also been described in adult female

rats after adult exposure to DEHP.73 A study of gestational

exposure to DEHP at environmentally relevant levels in mice

found that the ovarian weights of female offspring were

approximately 35% higher compared to offspring without pre-

natal DEHP exposure.75

Phthalates have also demonstrated antiandrogenic effects in

humans. A study conducted by Main et al76 found that serum T

concentration in infants was inversely associated with serum

phthalate concentrations. In women carrying female fetuses,

log serum levels of DEHP and the metabolite of DBP, mono-

butyl phthalate (MBP), have been found to be inversely corre-

lated with log total T concentrations (�0.15, 95% CI: �0.26 to

�0.04, P¼ .04 for DEHP and�0.20, 95% CI :�0.39 to�0.01,

P ¼ .01 for MBP) and log free T concentrations (�0.15, 95%
CI: �0.27 to 0.03, P ¼ .01 for DEHP and �0.21, 95%
CI: �0.42 to 0.004, P ¼ .05 for MBP).77 In a human study,

women with relatively higher creatinine-adjusted urinary con-

centrations of MEHP and MBP had lower odds of having

PCOS in comparison to controls with normal levels of the

metabolite.78 Additionally, the only cohort study known thus

far to examine the impact of in utero phthalate exposure on

PCOS development in offspring found that relatively higher

maternal serum levels of phthalate metabolites, including

MEHP, were associated with a lower prevalence of PCOS

among their daughters (P ¼ .005).79 However, this study also

found that maternal levels of another phthalate metabolite,

monoethyl phthalate, were negatively associated with levels

of AMH (r ¼ �.21, P ¼ .031).79

The literature on DEHP and MEHP exposure in utero is

conflicting with regard to ovarian effects. This may be due to

studies using different measures of ovarian function. Classic

cases with PCOS exhibit an ovarian morphology consisting of

many peripheral small antral follicles with relatively larger

stroma compared to normal ovaries as well as an increased

number of primary and preantral follicles.80 There is also

hyperplasia81 of the theca cells around the follicle that accounts

for the production of excess ovarian androgens in PCOS

cases.82 Rodent studies on DEHP and MEHP have shown that

exposure accelerates the rate of primordial follicle recruitment,

leading to lower numbers of primordial follicles and increased

numbers of antral and preantral follicles.83 Furthermore, DEHP

was associated with an increased number of mature ovarian

follicles.83 However, DEHP exposure also decreases the

number of primary and secondary follicles, likely via induced

follicular atresia.83 In addition, in a recent study of in utero

DEHP exposure in rats, the ovaries of exposed female offspring

exhibited a decreased theca cell layer thickness compared to

unexposed offspring.84 In addition, exposure resulted in signif-

icantly increased serum FSH levels and no apparent changes in

offspring fertility.84 Such findings imply that in utero exposure

to DEHP does not appear to be implicated in the pathogenesis

of PCOS. However, the study was not able to accurately assess

the levels of serum LH or the patterns of LH secretion in off-

spring. Since increased levels of LH along with a decreased

periodicity of its secretion are a hallmark of PCOS, additional

studies are warranted. Given the discrepancies from the avail-

able literature, further animal studies are needed in order to

better establish the effects of prenatal phthalate exposure in

offspring.

Bisphenol A

Bisphenol A is an estrogenic monomer largely used in the

making of polycarbonate plastics and epoxy resins with expo-

sure considered to be ubiquitous in the general population due

to detectable levels of BPA in urine at all ages and percentile

levels.65 As BPA has been associated with metabolic issues,

researchers have begun to investigate its potential contribution

to the pathophysiology of PCOS. A study in women found that

serum BPA concentrations in those diagnosed with PCOS were

significantly higher compared to women without PCOS

(1.05 + 0.56 ng/mL vs 0.72 + 0.37 ng/mL, respectively;

P < .0001).85 A study in an adolescent female cohort found

that having a diagnosis of PCOS was the main factor in pre-

dicting elevated levels of serum BPA (P ¼ .029).86 In this

adolescent cohort, serum BPA levels were significantly ele-

vated in girls with PCOS compared to the control group

(1.1 + 0.4 ng/mL vs 0.8 + 0.3 ng/mL, respectively;

P ¼ .001).86 Another study reported a positive correlation

between BPA levels and the severity of insulin resistance in

women with PCOS (1.39 + 1.35 ng/mL in women with insulin

resistance vs 0.57 + 1.11 ng/mL in controls; P ¼ .0003).87

Women with PCOS were found to have a higher serum BPA

mean concentration of 0.7 ng/mL, with a range of 0.1 to

6.0 ng/mL compared to 0.1 ng/mL with a range of 0.1 to 0.6

ng/mL in controls, along with more severe cases of insulin

resistance (homeostatic model assessment score of 3.0 + 1.2

in women with PCOS vs 1.4 + 0.3 in controls).87 Increased

insulin resistance has been reported to be prevalent among

cases with PCOS; PCOS is present in a majority of obese

women and up to 30% of nonobese women with the syn-

drome.88 Genome-wide association studies in China and Eur-

ope have also found specific susceptibility loci for PCOS that

involve the insulin receptor,89,90 suggesting that PCOS and

insulin resistance are closely related. Bisphenol A has also been

proven to induce insulin resistance, with an odds ratio of 2.43

(95% CI: 1.35-4.38; P ¼ .006).91 Additionally, serum BPA

levels positively correlated with body mass index, total T, free

T, dehydroepiandrosterone, and dehydroepiandrosterone
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sulfate for both women with and without PCOS; however, no

such correlation between serum BPA and any other sex hor-

mone (LH, FSH, and E2) concentrations was found.85,92

Bisphenol A therefore seems to be uniquely estrogenic in its

receptor binding and androgenic in its correlated hormone

profile.

Currently, BPA has been identified as a possible hazard to

fetal development.93 Bisphenol A has been identified in fetal

serum and full-term amniotic fluid, confirming its ability to

pass through the placental barrier.94 Additionally, the fetus

may be susceptible to BPA bioaccumulation during the first

half of fetal development as BPA concentration in amniotic

fluid assayed at 15 to 18 weeks gestation was found to be 5

times higher than maternal serum samples collected during early

pregnancy as well as maternal serum samples collected during

late pregnancy.94 The precise mechanism of prenatal metabolic

clearance of BPA is unknown—it is unknown whether the pla-

centa or fetal liver/fetal kidney participates in BPA metabolism.

Bisphenol A accumulates in amniotic fluid into midterm gesta-

tion. Amniotic fluid concentrations of BPA then decrease as

fetuses reach full term, possibly indicating that the fetus gradu-

ally metabolizes BPA as fetal liver function matures.94

In a study investigating BPA in rodents, in utero exposure

during early ovarian development resulted in decreased fertility

among the F1 offspring.95 The effect of such exposure has also

been proposed to span across generations, as impaired oocyte

meiotic maturation has also been reported to occur.96,97

For many chemical hazards, the time of exposure that poses

the greatest risk to health and future development is during the

prenatal period when organ systems and physiological home-

ostasis are being established. For example, prenatal exposure of

female rats to the no observed adverse effect level (NOAEL) of

BPA established by the Environmental Protection Agency was

observed to have a greater percentage of longer estrous cycles

compared to controls.98 Additionally, mouse studies of prenatal

exposure at levels far less than the NOAEL for BPA found that

female offspring had a significantly earlier onset of

puberty.99,100

While the findings from animal studies appear to correlate

with the research on adult BPA exposure and the incidence of

PCOS (Table 1), the effects of human prenatal exposure to

BPA remain largely unknown. As of this review, no human

studies on prenatal BPA exposure have been published to

investigate its potential longitudinal association with PCOS

development during adolescence or adulthood. However, stud-

ies of other EDCs have shown that those with estrogenic activ-

ity may affect the development of estrogen-sensitive organs.101

Taking into account the findings from animal studies, which

indicate that BPA impacts prenatal programming and thus

leads to alterations in endocrine and reproductive function,

future research should longitudinally examine the relationship

between prenatal exposure in humans and the development of

PCOS. Future research directions proposed by the field include

the usage of developmental biomarkers, particularly those

involved in reproductive development, to explore this associa-

tion in female infants and children in a longitudinal cohort.102

Transgenerational Inheritance Reaching
From Prenatal Exposure

Aside from the study of phthalates and BPA mentioned ear-

lier,21 other studies have shown that prenatal exposure to

Table 1. Reported Effects of Prenatal Exposure to Bisphenol A (BPA) in Rodent Models.a

Species
Developmental
Stage of Exposure Dosage Effects References

Mouse Days 11-17
(organogenesis)

2.4 mg/kg/d
(environmentally relevant)

Advanced onset of first estrous Howdeshell et al99

Mouse Days 11-birth
(ovarian
development)

0.5 mg/kg/d (mimics
exposure from bottle
feeding)

Decreased number of primordial follicles; shortened estrous
period; decreased fertility (impaired ovulation)

Wang et al95

20 mg/kg/d (previously
shown to disrupt oocyte
meiosis)

Decreased number of primordial follicles; shortened estrous
period; decreased fertility (impaired ovulation)

50 mg/kg/d (EPA referenced
safe dose)

Decreased number of primordial follicles; advanced puberty
onset; decreased fertility (impaired gestation)

Mouse Days 11.5-18.5
(oocyte
maturation)

20 mg/kg/d Increased incidence of meiotic aberrations in oocytes Susiarjo et al96

Mouse Days 11-12, 12.5,
13.5, and 14.5

20 mg/kg/d Changes in oocyte gene expression within 24 hours of
exposure onset; increased incidence of meiotic
aberrations in oocytes

Lawson et al97,b

Rat Days 6-21 50 mg/kg/d (NOAEL) Longer estrous cycles Schönfelder et al98

Mouse Days 11-17 20 mg/kg/d Advanced onset of first estrous Honma et al100

Abbreviations: EPA, Environmental Protection Agency; NOAEL, no observed adverse effect level.
aThe effects of BPA exposure during fetal development vary by dosage in micrograms or milligrams per kilogram per day (mg/kg/d or mg/kg/d) and prenatal
developmental stage of exposure. Reported reasoning for dosage and timing of exposure are listed, as available.
b Exposure measured over multiple lengths of time. Results apply to all durations of BPA exposure.
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different EDCs can induce epigenetic transgenerational inheri-

tance of PCOS. Gestating F0 female rats exposed to jet fuel

(a hydrocarbon mixture with known toxicologic effects) during

the fetal gonadal development period led to significantly

increased numbers of ovarian cysts in F1 and F3 rats and sig-

nificantly increased levels of E2 in F3 rats.22 Increased pubertal

abnormalities (either early or late onset of puberty) were seen

in both F1 and F3 rats but did not reach significance.22

Another study exposed gestating F0 female rats to vinclo-

zolin (a fungicide known to cause transgenerational epigenetic

diseases such as prostate disease, kidney disease, and female

reproductive defects).23 Researchers found that all F1 to F3

female rats had a significant increase in ovarian cysts that had

a predominant theca cell layer but were lacking in granulosa

cells and oocytes.23

Another study exposed gestating F0 female rats to vinclozo-

lin, a mixture of permethrin (the most commonly used insecti-

cide that can cause minor toxicologic effects in mammals) plus

DEET (an insect repellant with negligible toxic effects), a plas-

tics mixture (BPA, DBP, and DEHP), dioxin, and jet fuel.24 The

F1 and F3 generations all had significantly decreased primordial

follicles regardless of their exposure.24 Only the F3 generation

showed a significant increase in total number of large and small

ovarian cysts as well as number of small cysts regardless of

exposure.24 An increase in the number of large cysts in the F3

generation was seen in the vinclozolin, pesticide, low-dose plas-

tics mixture, and jet fuel treatment groups.24 The F1 generation

exposed to the low-dose plastics mixture, jet fuel, or vinclozolin

showed a significant increase in small antral follicles.24 Finally,

only the F3 generation from the vinclozolin lineage showed

significantly elevated androgen levels compared to controls.24

Conclusion

Although this review examined literature on 3 major classes of

EDCs that are well studied, it is clear that their role in the

pathogenesis of PCOS via prenatal exposure is still far from

being defined. In addition, the effect that prenatal exposure to

other EDCs has on the development of PCOS needs to be deter-

mined, particularly since there is a vast array of EDCs that can

cross the placental barrier and affect fetal development.

Further investigations are necessary to resolve currently dis-

crepant findings, to explore other pathways of biological influ-

ence (including 2-hit models of exposure at different

susceptible time windows103), to clarify mechanisms of action,

and to determine more effective methods of exposure and out-

come assessment. In order to improve accuracy of exposure

assessment, future human studies should better characterize the

critical periods in fetal development and use the best tools for

exposure assessment. Longitudinal cohort studies show prom-

ise in efforts to analyze associations between fetal exposure to

particular EDCs and the incidence of PCOS.
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