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Abstract

A new computational strategy is reported that provides a fast approximation of numerical solutions 

of differential equations in general. The method is demonstrated with the analysis of NMR 

adiabatic relaxation dispersion experiments to reveal biomolecular dynamics. When an analytical 

solution to the theoretical equations describing a physical process is not available, the new 

approach can significantly accelerate the computational speed of the conventional numerical 

integration up to 105 times. NMR adiabatic relaxation dispersion experiments enhanced with 

optimized proton-decoupled pulse sequences, although extremely powerful, have previously been 

refractory to quantitative analysis. Both simulations and experimental validation demonstrate 

detectable “slow” (microsecond to millisecond) conformational exchange rates from 102 to 105 s
−1. This greatly expanded time-scale range enables the characterization of a wide array of 

conformational fluctuations for individual residues, which correlate with biomolecular function 

and were previously inaccessible. Moreover, the new computational method can be potentially 

generalized for analysis of new types of relaxation dispersion experiments to characterize the 

various dynamics of biomolecular systems.
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■ INTRODUCTION

Macromolecules in solution intrinsically undergo conformational dynamics representing 

interconversions between thermodynamically linked states on the energy landscape. Such 

protein dynamics have been shown to play crucial roles in various protein functions, such as 

ligand binding, catalysis, and allostery.1–3 A recent study4 illustrated how internal motions 

are critical to ligand-induced opening and functional dimerization in cIAP1. In some cases, 

entropically driven conformational dynamics can directly regulate protein function. For 

example, a mutation affecting only the conformational dynamics in dihydrofolate reductase 

(DHFR) can “knock out” enzyme activity.5 Similarly, the biological function of the 

catabolite activator protein (CAP) is primarily driven by conformational dynamics even 

when a mutant form of the protein adopts an inactive conformation.6 Furthermore, the low-

population (higher-energy) conformation may be the functional conformation, and the 

dynamic exchange between the two conformations is essential to biological function.7 This 

situation is likely to occur more frequently in biology than is generally appreciated, where it 

can become a form of triggerable regulation. Thus, it becomes increasingly important to 

understand the roles of conformational dynamics and interconversion rates associated with 

protein functions.

NMR spectroscopy is one of the few biophysical techniques that can characterize the 

conformational dynamics of biomolecules in aqueous solution at atomic resolution.8 Hence, 

it provides a link to map dynamical information onto the burgeoning structural information 

to form a more complete picture of biological function and identify hot spots with the 

potential for novel therapeutic interventions. Biological function and allostery occur across 

the microsecond to millisecond time scale, and NMR relaxation dispersion experiments have 

the ability to interrogate these processes (slow dynamics). For example, conventional 

rotating-frame relaxation (R1ρ) experiments are used to probe conformational exchange on 

the microsecond time scale (103−104 s−1),9 while Carr−Purcell−Meiboom−Gill (CPMG) 

experiments are sensitive to conformational exchange on the millisecond time scale 

(102−103 s−1).10 In order to quantitatively extract dynamic parameters from these 

experimental data, several approximate analytic solutions have been derived for different 

types of relaxation dispersion experiments using sophisticated specific analytic approaches.
11–14 However, analytical solutions may not be available (or feasible) for newer, more 

complex experiments. Here we introduce a new computational approach, a geometric 

approximation method, as a general tool to provide solutions for relaxation dispersion 

experiments. It is subsequently applied to a sophisticated variant of the traditional R1ρ and 

CPMG experiments, Heteronuclear Adiabatic Relaxation Dispersion (HARD),15 which 

yields rich information on conformational dynamics across an extremely wide range of time 

scales.

Classical Model.

The classical model for exchange between two sites,16 expressed by the Bloch−McConnell 

equation, has been used for many decades to describe the evolution of the bulk 

magnetization of a nuclear spin ensemble under chemical exchange in NMR spectroscopy. 

The Bloch−McConnell equation assuming a two-site exchange model is given by eq 1:
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=

−ka − R2 kb −δa 0 ω1 0

ka −kb − R2 0 −δb 0 ω1
δa 0 −ka − R2 kb 0 0

0 δb ka −kb − R2 0 0

−ω1 0 0 0 −ka − R1 kb
0 −ω1 0 0 ka −kb − R1

Nax
Nbx
Nay
Nby
Naz
Nbz

+ R1

0
0
0
0

Na0
Nb0

(1)

The forward and reverse reaction rates (ka and kb), the resonance offsets of states A and B 

with respect to the radiofrequency (RF) pulse (δa and δb), the amplitude of the RF pulse 

(ω1), and the longitudinal and transverse relaxation rates (R1 and R2) enable a complete 

description of the system. In principle, analysis of relaxation behavior in the context of this 

mathematical formalism would permit extraction of the exchange/reaction rates, chemical 

shifts/offsets, and populations either by numerical integration or via derivation of analytical 

solutions of the equation as a function of these variables (the conventional approach). 

However, numerical integration is extremely inefficient (vide infra) and approximate 

analytic solutions are available only for CPMG and R1ρ experiments.11–14 Each approximate 

analytic solution was derived using a complicated and widely different approach for each 

experimental scheme. For example, the general solution for the CPMG experiment was 

derived by treating the recursion relations as coupled difference equations,12 while the 

solution for the R1ρ experiment was derived by approximating the largest eigenvalue of the 

evolution matrix of the average density operator.14 Consideration of other relaxation 

experiments requires either derivation of new analytical solutions or an alternative approach.

Adiabatic R1ρ and R2ρ experiments measure longitudinal and transverse relaxation in an 

effective field by replacing conventional continuous-wave (CW) pulses with different (a 

series of) adiabatic pulses (herein we utilize hyperbolic secant (HS)-based pulses, denoted as 

HSn).15,17 These experiments exhibit distinct relaxation dispersion profiles (Rex) as a 

function of the exchange rate (kex) for microsecond to millisecond dynamics.18 The 

combination of adiabatic R1ρ and R2ρ has been shown to have many advantages over the 

conventional R1ρ and CPMG experiments.15 However, several stringent assumptions have to 

date limited its application to a few special biological samples:15,18 (i) the dynamics must be 

in the NMR-defined fast-exchange regime (where the exchange rate is much larger than the 

difference between the chemical shifts of the two states: kex ≫ Δω); (ii) a reference residue 

with no conformational exchange and the same intrinsic autorelaxation rates is required for 

data analysis; and (iii) the cross-correlation relaxation channels19,20 are assumed to have no 

effect on the 15N relaxation rates during the adiabatic spin-lock periods. Assumptions (i) and 

(ii) result from the lack of general solutions to the equations describing the adiabatic 

relaxation rates, and assumption (iii) addresses the need for an optimized proton-decoupling 

scheme. Herein we demonstrate that the combination of adiabatic R1ρ, adiabatic R2ρ, and R1 

experiments can be interpreted by means of a novel geometric approximation method to 

yield accurate dynamic parameters (overcoming (i) and (ii)) and that effective proton-
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decoupling can be achieved (overcoming (iii)), providing a powerful set of tools to probe 

spin dynamics across a wide range of time scales.

■ MATERIALS AND METHODS

NMR Experiments.

All of the experimental tests were performed with 15N,2H-labeled biological samples using 

Bruker Avance spectrometers equipped with a helium-temperature TCI cryoprobe at 800 

MHz and a nitrogen-temperature TCI Prodigy probe at 600 MHz. The composite adiabatic 

pulses were 16 ms long (comprising four 4 ms hyperbolic secants; HS1, HS2, HS4, HS6, 

HS8) and have been described previously.15,18 Experiments were performed with a 1 mM 

sample of the mutant ubiquitin Ub1421 in 50 mM Tris buffer (pH 7.2) containing 10% D2O. 

Further experiments were performed with 0.5 mM samples of the ubiquitin-conjugating 

enzymes UbcH5b22 (17 kDa, τc = 11 ns at 15 °C) and Ube2g223 (18 kDa, τc = 13 ns at 

15 °C) in 50 mM Tris buffer (pH 7.2) containing 2 mM DTT and 10% D2O.

In the case of Ub14, all of the experiments were carried out with a 3 s recycle delay, four or 

eight scans, 256 complex points in the 15N dimension, and 2048 complex points in the 1H 

dimension for adiabatic R1ρ or R2ρ experiments, respectively. Data were processed in 

NMRpipe24a using 64 points of linear prediction in the indirect dimension and subsequently 

analyzed using Sparky.24b The total relaxation delays were 0, 16, 32, 48, and 64 ms (N = 0, 

1, 2, 3, and 4) for both the adiabatic R1ρ and R2ρ experiments, and the 1H π-pulse 

decoupling utilized γB1 = 22 kHz. The adiabatic R1ρ and R2ρ rates were determined by 

fitting the data points with monoexponential decays, and only the initial decays were used 

for data fitting. The R1 experiments were acquired and the data processed in the same way 

as in the adiabatic experiments. The relaxation delays for the R1 experiments were 0.01, 

0.05, 0.1, 0.2, 0.4, and 0.5 s.

In the case of the ubiquitin-conjugating enzymes (UbcH5b and Ube2g2), the experiments 

were carried out with a 3 s recycle delay, eight or 16 scans, 200 complex points in the 15N 

dimension, and 2048 complex points in the 1H dimension for adiabatic R1ρ or R2ρ 
experiments, respectively. Data were processed without linear prediction in NMRpipe and 

subsequently analyzed using Sparky. The total relaxation delays were 0, 16, 32, and 48 ms 

(N = 0, 1, 2, and for the adiabatic R1ρ experiments and 0, 16, and 32 ms (N = 0, 1, and 2) for 

the adiabatic R2ρ experiments, and the 1H π-pulse decoupling utilized γB1 = 22 kHz. The 

R1 experiments were acquired and the data processed in the same way as in the adiabatic 

experiments. The relaxation delays for the R1 experiments were 0.01, 0.05, 0.2, 0.4, 0.6, and 

0.8 s.

Geometric Approximation.

On the basis of the following theorem, the solution surface of any type (or any form) of 

differential equations can be built from a library of solution points as long as the solution is 

continuous and can be computed numerically.

Mathematically, it can be readily proven that any real continuous function for which the 

defined domain is closed and bounded (a compact subset) in Euclidean space can be 
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uniformly approximated by a finite number of polynomial functions defined in the uniform 

grid with any given maximal order or with any given grid spacing. (This theorem can be 

derived from basic concepts in topology, the unique uniform structures of compact sets, and 

the polynomial approximation.25)

In order to demonstrate this principle, the first step is to generate libraries of solution points 

as cornerstones on which to build the solution surfaces. In this work, 10 different libraries 

were computed (comprising R1ρ and R2ρ experiments, each using five different adiabatic 

pulses); each library is six-dimensional, based on the independent parameters. The 

computation of the library is rather time-consuming but must be done only once using a 

multiprocessor cluster. The library then serves as a basis set for analyzing the relaxation 

behavior of any molecule within the boundaries of the library. In order to shrink the size of 

the library, we assume that the adiabatic R1ρ and R2ρ rates are linear functions with respect 

to the intrinsic R1 and R2 autorelaxation rates, as shown in eq 2:

Rxρ = f offset, kex, Δ ω, pa × R1 + g offset, kex, Δ ω, pa × R2
+ h offset, kex, Δ ω, pa

(2)

where Rxρ is either the R1ρ or R2ρ relaxation rate for a given adiabatic pulse (HSn), R1 and 

R2 are the intrinsic autorelaxation rates, f(…) and g(…) are the slopes of Rxρ with respect to 

R1 and R2, respectively, for given dynamic parameters offset, kex, Δω, pa), and h(…) is the 

relaxation rate due to chemical exchange (the so-called Rex). Each six-dimensional solution 

surface is then decomposed into three four-dimensional surfaces ( f(…), g(…), and h(…)). 

The grid spacing can be first estimated by analyzing a one-dimensional projection with 

respect to a given parameter. The final grid spacing can be fine-tuned by constructing and 

analyzing the lower-dimensional solution surfaces or the partial solution surfaces to ensure 

that all of the features accurately represented. The calculated library is saved in a separate 

file for future data analyses.

The second step is to approximate intermediate points on the solution surfaces on the basis 

of the finite solution points in the library. (This step is performed only when the search 

algorithm is analyzing data with a given library.) The strategy is to estimate the adiabatic 

R1ρ or R2ρ relaxation rate for given dynamic parameters on the basis of the nearby solution 

points in the library using the polynomial approximation. The coefficients in the polynomial 

functions are first determined using the nearby solution points in the library, and then the 

approximated relaxation rates can be calculated using these locally defined polynomial 

functions. This is demonstrated in eqs 3 for the two-dimensional case with the second-order 

polynomial approximation:
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R x, y = ax2 + bx + cy2 + dy + exy + f
a = 0.5 ⋅ R 1, 0 + R −1, 0 − R 0, 0
b = 0.5 ⋅ R 1, 0 − R −1, 0
c = 0.5 ⋅ R 0, 1 + R 0, − 1 − R 0, 0
d = 0.5 ⋅ R 0, 1 − R 0, − 1
e = R 1, 1 − R 1, 0 − R 0, 1 + R 0, 0
f = R 0, 0

(3)

In this two-dimensional example, with the assumption that the domain values in the library 

closest to the given dynamic parameters (x, y) are at the origin (0, 0), the coefficients a, b, c, 

d, e, and f can be determined from all of the nearby solution points, where “1” means 

increasing one unit in a given dimension and “−1” means decreasing one unit in a given 

dimension. The relaxation rate R(x, y) can then be calculated using this locally defined 

second-order polynomial function. The same idea can be applied to higher-dimensional 

solution surfaces.

The detailed implementation of the geometric approximation is shown in the Supporting 

Information.

■ RESULTS

In order to utilize the rich information hidden in the adiabatic R1ρ and R2ρ experiments, 

analytic solutions for the relaxation rates during the adiabatic spin-lock pulses, which can be 

described by the time-dependent Bloch−McConnell equation, would be required. Previously, 

the approximate solution for the sadiabatic R1ρ experiment had been proposed as the time 

average of the Trott−Palmer equation14,26 (the approximate solution for the R1ρ experiment). 

However, no approximate solution for the adiabatic R2ρ experiment has been derived for all 

exchange time regimes. In the context of developing our numerical analysis, we found that 

there are two separate effects of adiabatic pulses on the relaxation dispersion profile of the 

adiabatic R2ρ experiment and that both effects need to be considered in deriving any 

approximate analytic solution. One effect is caused by the time-average spin-lock field, and 

the other is generated by the frequency of the refocusing adiabatic pulses (Figure S1). It is a 

daunting task to develop an analytic tool to provide a solution by characterizing these two 

effects at the same time.

Instead of developing a specific mathematical tool for a given experiment, we demonstrate a 

powerful and general approach using a geometric approximation method to provide 

solutions for relaxation of the bulk magnetization, which can be utilized to analyze both 

conventional experiments and the sophisticated adiabatic spin-lock periods. This method 

begins with the construction of solution surfaces defined on closed and bounded domains in 

Euclidean space on the basis of a library of solution points. Topologically, the continuous 

surfaces can be interpolated between the finite solution points in the library with polynomial 

functions (see Materials and Methods and the Supporting Information). The library 

represents six-dimensional computation of the relaxation behavior according to the Bloch

−McConnell equation as a function of variables defining the dynamics in the system. The 
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computation is performed with a moderate to coarse grid that depends on the smoothness of 

the surfaces and the given maximal order of the polynomial approximation. The resulting 

solution surfaces for the decay of the total magnetization (A + B) exhibit high accuracy, with 

an average deviation of less than 0.1% from the results of conventional numerical integration 

(Table 1). Combining the solution surfaces with Monte Carlo sampling27 to search for 

solutions that match the experimental relaxation behavior (Figure 1) makes it possible to 

extract information on spin dynamics across a wide range of long (microsecond to 

millisecond) time scales in the absence of H−X coupling (see the Supporting Information). 

In simulated tests, the algorithm provided accurate dynamic parameters (kex , Δω, and pa ) 

when no error was present (Figure 2). In the presence of up to 5% random errors, the 

extracted kex values were more resistant to errors than the other extracted dynamic 

parameters ( ω and pa) (Figure 3). Moreover, the more precise the fit to the kex values (i.e., 

the smaller the standard deviation), the more accurate the fit results are (i.e., the better the 

coefficient of determination is) (Figure 3a,d,g). In practice, the use of the geometric 

approximation method in analyzing relaxation data can be up to 300 000-fold faster than the 

use of conventional numerical integration (see the Supporting Information). The speed 

increase does not consider the time spent in constructing solution surfaces based on the 

libraries, but this approach does circumvent the task of finding analytic solutions for a 

potentially unsolvable problem. Comparison of previous studies using the time average of 

the Trott−Palmer equation14,26 to the geometric approximation showed that the analytic 

procedure yields a less accurate solution for the adiabatic R1ρ experiment (Table 1) and that 

its performance in computational speed for analysis is 3 orders of magnitude less than that of 

our new approach. The new approach enables complete data analysis (adiabatic R1ρ and 

adiabatic R2ρ) without the need for supercomputing systems to repeatedly perform 

numerical integration and enables the practical examination of a wide range of microsecond 

to millisecond dynamics for many biological systems. Additionally, the wide range of 

dynamic time scales cannot be detected by the well-known CPMG experiments under the 

same conditions that are amenable for the HARD experiments (Figures 2, 3, and S2).28

The validity of the Bloch−McConnell equation in describing the evolution of the bulk 

magnetization depends on two assumptions: (1) the system is in the limit of weak RF field 

and (2) the system is an isolated single-spin system. The first assumption is automatically 

satisfied in solution-state NMR spectroscopy because of the fast tumbling of the molecules 

in solution, according to Abragam’s theory.29 However, for the general application to two-

spin systems (e.g., 15N−1HN), the second assumption holds only under the application of 

complete proton decoupling. The original HARD experiment did not include proton 

decoupling, and the analysis relied on normalizing the complex relaxation behavior utilizing 

a reference amino acid residue within the molecular system, which complicated a 

generalized data analysis.15,18 To determine the most efficient proton-decoupling scheme, 

we examined both simulated and experimental effects of proton coupling. We utilized an 

expanded density matrix (32 × 32) approach combining the classical model16 (Bloch

−McConnell equation, eq 1) and the quantum-mechanical model20,29 (Abragam’s operator 

formalism, eq 4) to calculate the evolution of the magnetization during the adiabatic spin-

lock periods and different decoupling schemes incorporated into the HARD experiment (see 

the Supporting Information).
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Quantum-Mechanical Model.

The quantum-mechanical model can be expressed using Abragam’s operator formalism 

according to eq 4:

dσ*
dt = − 1

2 q, p, p′
J p, p′

q ωq ⋅ Ap′
−q , Ap

q , σ* (4)

where σ* is the density matrix in the rotating frame for the two-spin system, J(ω) is the 

spectral density function, and Aq
p is any operator contributing either dipole−dipole or 

chemical shift anisotropy interactions. Simulations of adiabatic R1ρ and R2ρ experiments 

indicated that proton coupling has only a moderate effect for small biomolecules (τc = 5 ns) 

but rather dramatic effects for larger biomolecules or complexes (τc = 30 ns) (Figure S3). 

Hence, it is essential to incorporate a decoupling scheme, which is resistant to off-resonance 

effects, for the accurate measurement of adiabatic R1ρ and R2ρ rates. The original HARD 

pulse sequence was modified to examine two modes of proton decoupling (Figure 4), either 

continuous-wave (CW) decoupling or π-pulse decoupling. CW decoupling can potentially 

introduce artificial relaxation dispersion and exhibits well-known off-resonance effects 

(Figures S4−S7). Computational and experimental evaluations demonstrated that 

incorporation of an appropriate π-pulse scheme effectively eliminates coupling effects, 

including off-resonance effects, and yields accurate relaxation dispersion data (Figures S6 

and S7). The combination of this proton-decoupled HARD sequence with the geometric 

approximation method to analyze the relaxation data forms the basis of the acronym for the 

approach: geoHARD (geometric approximation on Heteronuclear Adiabatic Relaxation 

Dispersion).

In order to experimentally validate geoHARD, we first tested the approach using Ub14, a 

phage-display-selected ubiquitin mutant (∼8 kDa).21 Ubiquitin is well-known for its roles in 

proteasome-mediated protein degradation and cellular signaling. Several studies have shown 

that the internal conformational dynamics in Ub has dramatic effects on its interaction with 

other binding partners.21,30 Ub14 is a selected multiresidue mutant and was used to illustrate 

that increased conformational dynamics is correlated with stronger affinity for USP14 

deubiquitinase.21 The conformational dynamics of this mutant has been well-characterized 

by conventional CPMG and R1ρ methods in a previous study,21 and a synchronized motion 

(1600−2000 s−1) of the mutant protein has been proposed on the basis of simultaneous 

analysis of CPMG data for several residues;21 hence, it was an excellent candidate to 

validate the geoHARD approach. Adiabatic R1ρ, adiabatic R2ρ, and R1 experiments were 

measured at two magnetic fields (corresponding to 1H frequencies of 600 and 800 MHz) and 

25 °C (see the Supporting Information), and the data were then analyzed by the geometric 

approximation method (Figures S8−S10). The microsecond to millisecond dynamics in 

Ub14, probed by the apparent Rex in the adiabatic R2ρ experiments (Figure 5a), covers the 

complete range of microsecond to millisecond dynamics detected by the conventional 

relaxation dispersion experiments reported previously.21 Moreover, by mapping the apparent 

Rex and kex onto the structures, we are able to categorize the residues exhibiting different 

ranges of kex values, spanning from 102 s −1 to 105 s−1 (Figure 5b,c and Table S1). Instead 
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of fitting all of the relaxation data to get a single kex value by assuming that all of the 

motions are synchronized, we can dissect the heterogeneous distribution of microsecond to 

millisecond conformational dynamics in the whole protein. We are able not only to detect 

motions (residues at the C-terminal core opening) with a range of kex values similar or 

identical to the proposed synchronized motion but also to find those with completely 

different kex ranges (Figure 5c and Table S1). In fact, by combining our experimental data 

(Figure 5c) and the cluster analysis in the previous study,21 we can further support that the 

breathing at the C-terminal core opening is important in the binding of ubiquitin to USP14 

deubiquitinase. Therefore, these data provide a new window into the correlation of structure 

and motion with biological function that requires more exploration.

In a second application, we used geoHARD to detect the microsecond to millisecond 

conformational dynamics of two different ubiquitin-conjugating enzymes (UbcH5b and 

Ube2g2) (Figure 6). In the case of UbcH5b at 15 °C (Figure 6a), there is exchange 

distributed around the molecule that has not been previously accessible in a routine fashion.
22 This can now be examined. It is reasonable to expect that such observations will be much 

more prevalent in biological molecules than has been previously recognized because of the 

experimental limitations that our new method alleviates. It is interesting that a high rate is 

observed on the “back side”, where ubiquitin has been shown to interact with UbcH5b,31 

and is in the region where other E2 proteins have been shown to interact with allosteric 

effector domains from cognate E3 proteins.23,32,33 In the case of Ube2g2 at 15 °C (Figure 

6b), the presence of dynamics is quite revealing in areas that have been demonstrated to play 

roles in the dynamic allostery arising from interactions between this E2 and its cognate E3, 

gp78. In particular, rapid dynamics occurs at the “back side” binding site of the allosteric 

effector domain, G2BR, in the N-terminal α-helix and in the extended loop adjacent to the 

active site, which is also key to the allosteric enhancement of binding to the RING domain 

of gp78.23,32 These data are consistent with molecular dynamics studies on apo-Ube2g2 

(data to be published). The above results again demonstrate the potential impact of this new 

technique to increase our understanding of biomolecular systems.

■ DISCUSSION AND CONCLUSIONS

The geometric approximation method is a general strategy to provide specific solutions of 

differential equations provided that certain assumptions are satisfied (see Materials and 

Methods). Compared with conventional numerical integration analysis, this new approach 

allows us to significantly shorten the computational time for each sampling step as well as to 

massively sample through the complete multidimensional solution surfaces (see the 

Supporting Information). The current pure statistical Monte Carlo sampling of the solution 

surfaces may not be the most efficient way to find the solution, and a better sampling 

scheme may be incorporated to improve the efficiency and precision of the sampling in the 

future. However, accurate solutions are accessible without concern for the efficiency of 

convergence in the numerical integration approach once the library is computed. For 

example, numerical integration to calculate the adiabatic R2ρ relaxation rates converges 

much slower than that for adiabatic R1ρ relaxation rates (see the Supporting Information); 

however, the computational analysis times using the geometric approximation with 

precomputed libraries are the same for R1ρ and R2ρ. Extraction of accurate solutions for 
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each experimental data set via the geometric approximation method is rapid for any 

molecular system and requires minimal computational power. Here we successfully applied 

this new approach to determine adiabatic relaxation rates, described by the time-dependent 

Bloch− McConnell equation, and we are able to extract rich information from the 

sophisticated experiments to improve our understanding of protein dynamics. This suggests 

that the present computational technique may be applied to benefit other disciplines in the 

future as well as to allow the design and analysis of new relaxation dispersion experiments 

to reveal important functional motions in biological systems.

We have utilized the geoHARD method to demonstrate the facile ability to detect and 

quantify conformational dynamics across a broad range of time scales while avoiding an 

assumption of synchronized motion. Of particular interest is the ability to characterize a 

heterogeneous distribution of conformational dynamics across a wide range of time scales 

(102−105 s−1) that may imply important biological processes, including binding, allostery, 

and enzymatic turnover. Compared with conventional methods, geoHARD has many 

advantages. CPMG methods (102 ∼ 103 s−1) are rendered insensitive and error-prone by the 

constant time period and the large transverse relaxation in the laboratory frame, and the off-

resonance effect due to imperfect π pulses can generate additional complications. In the case 

of R1ρ experiments (103−104 s −1), accurate calibration of the offsets and power levels of 

CW pulses is extremely important because of the high sensitivity of relaxation dispersion to 

these two factors. Conversely, HARD experiments are generally more sensitive and contain 

smaller experimental errors in real applications, and the relaxation dispersion is, in general, 

offset-independent. The HARD experiments with the optimized proton-decoupling scheme 

are designed for protein samples with high deuteration levels and without 13C labeling. 

Although the π-pulse decoupling can efficiently remove the cross-correlation, the spin-flip 

mechanism resulting from incomplete deuteration in large molecules can potentially affect 

its decoupling efficiency. For additional 13C labeling, although theoretically the same π-

pulse decoupling scheme can be used to remove the effects of the carbon coupling, this has 

not yet been examined and may suffer from bandwidth considerations. Thus, a high level of 

deuteration without 13C labeling is recommended when geoHARD is used. With the ability 

to accurately and rapidly analyze the data using the geometric approximation, the broader 

time scale probed by geoHARD will be powerful in examining allosteric effects and 

correlating with long molecular dynamics trajectories. The distribution of heterogeneous 

conformational dynamics in biomolecules, as revealed by this powerful tool, can help not 

only to increase our understanding of the tunable functions of proteins but also to accelerate 

the design of better modulators.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental data points (left) are used to match solutions within the approximate solution 

surfaces during the Monte Carlo search (right). The algorithm can rapidly approximate any 

solution point on the surfaces on the basis of a precomputed library within realistic boundary 

constraints. Massive Monte Carlo sampling combined with geometric interpolations is used 

to minimize the difference between the experimental data and approximate solutions to 

extract the desired dynamic parameters.
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Figure 2. 
Data analysis of adiabatic R1ρ, adiabatic R2ρ, and R1 at single (18.8 T), two (14.1 and 18.8 

T), or three (14.1, 16.5, and 18.8 T) magnetic fields using the geometric approximation. At 

these three magnetic fields, 300 relaxation data sets were simulated using the Bloch

−McConnell equation with random input dynamic parameters. The fit results are plotted 

against the input values, and those with large standard deviations (SD of kex > 100.2, SD of 

Δω > 0.4 ppm, SD of pa > 2.5%) during Monte Carlo sampling are not shown. The 

coefficient of determination (R2) was calculated for each dynamic parameter. The numbers 

in parentheses are the percentages of data that remained after the results with large standard 

deviations were filtered out.
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Figure 3. 
Effects of random errors on the fit results for adiabatic relaxation dispersion experiments. 

Up to 5% random errors were introduced into the simulated data in Figure 2 before data 

analysis. The fit results are plotted against the input values, and those with large standard 

deviations (SD of kex > 100.2, SD of Δω > 0.4 ppm, SD of pa > 2.5%) during Monte Carlo 

sampling are not shown. The red data points are those with smaller standard deviations (SD 

of kex < 100.1). The coefficient of determination (R2) was calculated for each dynamic 

parameter. The numbers in parentheses are the percentages of data that remained after the 

results with large standard deviations were filtered out.
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Figure 4. 
(a) Pulse sequences for the measurement of 15N adiabatic relaxation dispersion experiments. 

The sequences were modified from the original ones proposed by Mangia et al.15 Adiabatic 

hyperbolic secant pulses were used for the 15N spin-lock periods. (b, d) R1ρ experiments and 

(c, e) R2ρ experiments are included with a purge element and different proton-decoupling 

schemes. During 15N spin-lock periods, the offset of the proton decoupling was placed in the 

center of the amide proton region. The phases were ϕ1 = x, −x, x, −x; ϕ2 = x, x, y, y; and ϕrec 

= x, −x, x, −x. The gradient magnitudes for G1−G5 were 16.5, 44, 19.8, 13.2, and 8.9 G/cm, 

respectively, with a fixed length of 1 ms.
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Figure 5. 
Dynamic parameters of amide groups in Ub14 characterized by geoHARD. (a) Plot of 

apparent Rex values against the primary sequence. Unassigned residues are marked with 

asterisks. (b) Ribbon representation of the structure (1UBQ), wherein the diameter of the 

ribbon/sausage is directly proportional to the apparent Rex derived from the adiabatic R2ρ 
experiment. The larger the sausage, the larger is the value of Rex. Colors: purple, >39 s−1; 

red, 21−39 s−1; yellow, 3−21 s−1; green, <3 s−1; missing data are shown in gray. (c) Mapping 

of kex (SD < 100.5 and Rex > 2 s−1) onto the ribbon structure. The kex values are classified 

into three groups: blue, >10000 s−1; purple, 1000−10000 s−1; red, <1000 s−1.
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Figure 6. 
Dynamic parameters of amide groups in (a) UbcH5b and (b) Ube2g2 characterized by 

geoHARD. Values of kex (SD < 100.5 and Rex > 2 s−1) have been mapped onto the ribbon 

structures (UbcH5b, 1W4U; Ube2g2, 2KLY) and are classified into three groups: blue, 

>10000 s−1; purple, 1000−10000 s−1; red, <1000 s−1.
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Table 1.

Deviation of the Approximate Solution Surfaces and the Approximate Analytic Solution from the Numerical 

Solutions
a

time average of the Trott−
Palmer equation geometric approximation

adiabatic R1ρ adiabatic R1ρ adiabatic R2ρ
b

average error     0.9%   0.05%   0.06%

standard     0.6%   0.04%   0.1%

 deviation

largest error     12.4%   0.6%   3.2%

a
The library for each solution surface is composed of 4 million solution points with an offset range of (−10 to 10) × 103 s−1, a Δω range of (−8 to 

8) × 103 s−1, a kex range of (0.1 to 1000) × 103 s−1, and a pa range of 55% to 100%. To compare the approximate solutions with the numerical 

ones, 10 000 random points were chosen. Errors are expressed as percentages of the deviations from the numerical solutions.

b
Only experimentally accessible relaxation rates for adiabatic R2ρ (<500 s−1) were used for statistical analysis, and there is no approximate 

analytic solution for adiabatic R2ρ that can be defined in all exchange regimes for the comparison.
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