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Abstract

A catalytic, enantioselective method for the preparation of chiral, non-racemic, alkylboronic esters 

bearing two vicinal stereogenic centers is described. The reaction proceeds via a 1,2-migration of a 

zwitterionic thiiranium–boronate complex to give exclusively anti carbosulfenylation products. A 

broad scope of aryl groups migrate with good yield and excellent enantioselectivity (up to 99:1 

e.r.). Similarly, a range of di- and trisubstituted alkenylboronic esters are competent reaction 

partners. This method provides access to both secondary and tertiary chiral alkylboronic esters.

Chiral, non-racemic, alkylboronic esters are valuable synthetic intermediates in modern 

organic chemistry.1,2 These compounds undergo stereospecific functional group 

interconversions to afford alcohols, amines, and halides, and serve as useful partners for a 

myriad of transition metal-catalyzed cross-coupling reactions.3 Consequently, numerous 

methods have been reported for the synthesis of enantiomerically enriched secondary and 

tertiary alkylboronic esters.4 Many of these are reductive, oxidative, or isohypsic 

transformations of alkenylboronic esters, which are themselves readily prepared by 

hydroboration of abundant, inexpensive alkynes.5 Of particular utility are the “conjunctive” 

coupling methods recently reported by Morken et al.6 (Scheme 1A), in which a 

tetracoordinate alkenylboronate complex undergoes a 1,2-metalate rearrangement7,8 in the 

presence of an aryl-palladium species. The net result is a secondary alkylboronic ester, and 

the entire process is rendered highly enantioselective by a chiral ligand. This process is 

attractive owing to its modular nature and broad scope. However, previous methods have not 

been widely used to access products with two vicinal stereogenic centers.9

In fact, diastereospecific 1,2-migrations of alkenylboronate complexes have been known for 

many decades. Zweifel et al. first reported the synthesis of olefins from trans-alkenylboranes 

in the presence of iodine and aqueous base (Scheme 1B).10 This reaction proceeds through a 

zwitterionic iodonium–boronate complex. Because nucleophilic opening of haliranium ions 

is stereospecific, 1,2-migration of an alkyl group from the boronate complex results in an α-
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iodinated secondary borane as a single anti diastereomer. Aggarwal et al. have recently 

disclosed the synthesis of α-selenylated secondary boronic esters which proceeds through a 

very similar mechanism (Scheme 1C).11 Treating an alkenylboronate complex with 

phenylselenyl chloride forms a zwitterionic seleniranium ion, which is opened by 1,2-

migration to afford exclusively anti products. This transformation accommodates a broad 

scope of substrates which lead to bench-stable and synthetically useful products, but all in 

racemic form. An enantioselective variant has not yet been reported.

The activation of Lewis acids by chiral Lewis bases for enantioselective, electrophilic 

functionalization of olefins has been extensively developed in this laboratory12 and is ideally 

suited to address this challenge (Scheme 1D). Combining chiral selenophosphoramide 

catalyst (S)-5 with an appropriate Group 16 Lewis acid of type 4 (“sulfenylating agent”) 

leads to a cationic donor–acceptor complex which is highly electrophilic at sulfur. This 

species effects the generation of enantiomerically enriched thiiranium ions with unactivated 

alkenes as well as more nucleophilic alkenes such as enoxysilanes.13 The thiiranium ion is 

opened diastereospecifically by oxygen, nitrogen, and carbon nucleophiles, resulting in 1,2-

anti-sulfeno-functionalized products. The specific challenge was whether alkenylboronate 

complexes could also serve as viable reactants in this process. Such highly reactive, anionic 

boronate complexes would likely be incompatible with the conditions used to generate the 

electrophilic sulfenium ions needed. Even if conditions could be found, the resulting 

thiiranium ions would need to trigger the subsequent 1,2-migration without configurational 

mutation to afford α-thiolated boranes in highly enantio- and diastereo-selective fashion.

Orienting experiments employed boronate complex 3aa, generated from boronic ester 1a 
and phenyllithium 2a, in THF, and its reactivity was examined under a variety of conditions 

(Table 1).14 Different sulfenylating agents (4a, 4b, or 4c) and solvents were evaluated in 

combination with catalyst (S)-5. The anticipated incompatibility of anionic complex 3aa 
with the typical acidic promoters required to activate reagents 4 led to the initial 

investigation of saccharin-derived reagent 4a, which can transfer its sulfenyl group to 

catalyst 5 without the aid of acid.13 In dichloromethane, the desired product 6aa was formed 

in good yield after 3 h at cryogenic temperature (entries 1 and 2). However, this observed 

reactivity simply resulted from background reaction between 3aa and 4a, leading to nearly 

racemic 6aa. To mitigate this background reactivity, less reactive sulfenylating agents 4b 
and 4c were tested (entries 3–6). Although the background reaction was suppressed, no 

catalysis was observed.15

A recent report from this laboratory on Lewis base-catalyzed polyene sulfenocyclization 

revealed the salutary effect of hexafluoroisopropyl alcohol (HFIP) as a solvent for these 

reactions by obviating the need for acidic activators.16 Inspired by these results, we explored 

the effects of polar protic solvents on the present system. Thus, employing 4a in either 

methanol or ethanol led to the formation of 6aa in synthetically useful yield and excellent 

enantioselectivity, with very little background reaction (entries 7–10). Although no reaction 

was observed with 4b in ethanol (pKa = 16),17 a modest yield of 6aa was obtained in 

tetrafluoroethanol (TFE) (pKa = 12)17 with moderate enantioselectivity (entries 11–14). 

Likewise, a modest yield was observed with 4c in HFIP (pKa = 9)17 with similar 

enantioselectivity (entries 15 and 16), although significant decomposition of the boronate 

Tao et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complex was observed in this more acidic medium. These results suggest that, whereas 

protic solvents can attenuate the background reactivity of boronate complex 3aa, only the 

most active sulfenylating agent 4a is capable of sulfenyl group transfer to catalyst 5 in 

higher-pKa alcohols, which are necessary to avoid decomposition of the boronate. Therefore, 

the conditions in entry 10 were selected to evaluate the scope of this transformation. The 

attenuation of boronate reactivity in protic solvents likely arises from hydrogen-bonding 

interactions that stabilize the anionic character of the pinacolate complex 3aa.

The exploration of reaction scope began with an examination of the migrating groups (Table 

2). Throughout this paper, compounds are identified by the nomenclature Nxy where N is 

the compound class (3 = boronate complex, 6 = functionalized borane product, and 7 = 

alcohol resulting from borane oxidation), x is the alkenyl fragment being functionalized, and 

y is the migrating group. Tetracoordinate boronate complexes 3aa–3ai were accessed by 

addition of organolithium reagents 2a–2i to alkenylpinacolborane 1a (Path A). Aryllithium 

reagents 2a–2d, bearing electronically diverse 4-substituents, added and migrated efficiently 

to afford products 7aa–7ad in high yields and excellent enantioselectivities after oxidation 

of the alkylboranes. To prevent self-condensation of 4-cyanophenyllithium 2e, this reagent 

was generated in situ in the presence of 1a to ensure immediate formation of “ate” complex 

3ae. Subsequent migration and oxidation afforded product 7ae in good yield and high 

enantioselectivity. Complex 3af led to the desired product 7af in acceptable yield (60%), 

demonstrating that styrenyl olefins do not react at an appreciable rate under the reaction 

conditions. Using pyridinyl-substituted phenyllithium 2g afforded product 7ag in acceptable 

yield but diminished enantiomeric purity. Employing n-butyllithium as the nucleophile 

resulted in modest yield and enantioselectivity of 7ah, demonstrating that alkyl groups 

migrate less efficiently.

Because the alkenylboronate complexes are sterically and electronically distinct from any 

previously investigated class of alkenes, it was deemed prudent to establish the absolute 

stereochemical course of this reaction. This circumspection was prescient, as an X-ray 

crystallographic structure determination18 of intermediate 6ai (derived from 2,6-dimethyl-

phenyllithium 2i, and en route to 7ai) revealed that it possessed the (S,S)-configuration, 

opposite to that expected on the basis of our previous results and predictive models for facial 

selectivity.12b Evidently, the modes of interaction between the catalytic donor–acceptor 

complex and the boronate are much different than those which exist between this complex 

and simple alkenes.

Alternatively, boronate 3 can be generated from alkenyllithium reagent 8a and arylboronic 

esters 9j–9n (Path B). Products 7aj and 7ak were accessed in this manner from 2-

tolylpinacolborane 9j and 2-napththylpinacolborane 9k, respectively. Path A could not be 

used to access boronate 3al because halogen–lithium exchange of 5-bromo-N-tosylindole 

resulted in lithiation at multiple positions. Path B circumvented this problem, allowing the 

isolation of 7al in 55% yield and 98:2 enantiomeric ratio (e.r.). Likewise, Path B was 

required to form boronate complex 3am containing a 3-bromophenyl group, which afforded 

product 7am in 85% yield after migration. Finally, even using Path B, product 7an bearing a 
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methyl ester was isolated in only 32% yield, owing to the incompatibility of this functional 

group with organolithium reagents.19

The second stage of exploration of reaction scope focused on those alkenylboranes which 

could engage in carbosulfenylation (Table 3). It has been previously demonstrated that 

trans-1,2-disubstituted alkenes are optimal substrates for catalyst 5, affording sulfeno-

functionalized products in high yields and enantioselectivities. Accordingly, all trans-1,2-

alkenylboronates 3ba–3ea are excellent substrates for the present transformation. Pendant 

silyl ethers, primary alkyl chlorides, and primary alkyl bromides are compatible with the 

reaction conditions (products 7ba–7da). A more congested trans-alkenylboronate 3ea still 

affords product 7ea in high yield and enantioselectivity. 1,2,2-Trisubstituted alkenylboronate 

3fa was not an effective substrate for this transformation, as product 7fa was isolated in low 

yield and poor enantio-selectivity.20a In contrast, a 1,1,2-trisubstituted alkenylboronate 3ga 
reacted quite efficiently to form product 7ga in 76% yield and 96:4 e.r. Boronate 3ha also 

reacted efficiently to form product 7ha in 74% yield and 95:5 e.r. This outcome was 

unexpected, as geminal 1,1-disubstituted olefins are traditionally very poor substrates for 

catalyst 5. Nevertheless, products 7ga and 7ha highlight the utility of this method for 

generating chiral, non-racemic, tertiary alcohols. Unsubstituted vinyl pinacolboronate 3ia 
reacted to form product 7ia in good yield but more modest enantioselectivity (84:16).20b As 

expected from previous work, a cis-alkenylboronate 3ja was not well-recognized by catalyst 

5, and product 7ja was isolated in acceptable yield but poor enantioselectivity (69:31).21

The stability of the sulfenyl pinacolborane products provides an ideal opportunity to 

examine their synthetic utility (Scheme 2). Reduction of enantiomerically enriched (99:1 

e.r.) α-sulfenylated borane 6aa led to different products depending on the exact conditions 

used. Addition of lithium metal to a solution of 6aa and tert-butanol in ammonia afforded 

C–S cleavage product 11aa in good yield, provided the reaction is quenched in a timely 

fashion. Alternatively, if 6aa was treated with LDMAN (lithium N,N-dimethyl-1-

aminonaphthalenide)22 and the reaction aged for 1 h in the absence of any electrophile, an 

unusual rearrangement product 12aa was observed, which displayed a modest erosion in e.r. 

(82:18).23 This rearrangement likely proceeds through a boratirane ion intermediate.24,25 

Finally, treating 6aa with LDMAN and an electrophilic reagent (isopropoxy pinacolborane) 

in the same pot afforded diborylated compound 13aa in 68% yield, albeit with poor 

diastereoselectivity.26 All attempts to oxidize α-sulfenylated borane 6aa to a sulfoxide 

resulted only in elimination to form a trans-olefin.27 Of course, 6aa could first be oxidized 

to alcohol 7aa using sodium perborate, and subsequent treatment with hydrogen peroxide 

afforded α-hydroxy sulfoxide 14aa in 93% yield as a mixture of diastereomers. Treating this 

mixture with sodium carbonate in refluxing xylenes formed elimination product 15aa in 

89% yield with predominantly (E)-geometry. Finally, mesylation of 7aa followed by 

treatment with 4-methoxyaniline afforded secondary amine 16aa in 87% yield. The 

displacement is net retentive, indicating that the reaction proceeds through a thiiranium ion 

intermediate.28

In conclusion, an enantio- and diastereoselective, Lewis base-catalyzed carbosulfenylation 

of alkenylboronates has been described. The reaction proceeds by 1,2-boronate migration to 
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open a thiiranium ion, affording chiral, non-racemic alkyl boronic esters with two vicinal 

stereogenic centers.
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Scheme 1. 
Stereoselective Construction of Chiral Alkylboranes by 1,2-Migration of Alkenylboronate 

Complexes
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Scheme 2. 
Product Manipulations
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Table 1.

Reaction Optimization

Entry 3 Cat Solvent Temp (°C) Time (h) Yield (%)
a,b e.r.

1 4a none CH2C12 −78 3 56
a --

2 4a (S)-5 CH2C12 −78 3 68
a 55:45

3 4b none CH2C12 −78 18 ll
b --

4 4b (S)-5 CH2C12 −78 18 16
b 57:43

5 4c none CH2C12 −20 36 31
b --

6 4c (S)-5 CH2C12 −20 36 37
b 53:47

7 4a none MeOH −60 24 10
b --

8 4a (S)-5 MeOH −60 24 47
a 94:6

9 4a none EtOH −60 24 14
b --

10 4a (S)-5 EtOH −60 24 80
a 98:2

11 4b none EtOH −20 24 7
b --

12 4b (S)-5 EtOH −20 24 10
b --

13 4b none TFE −20 2 10
b --

14 4b (S)-5 TFE −20 2 32
b 85:15

15 4c none HFIP 0 2 0
c --

16 4c (S)-5 HFIP 0 2 27
a,c 83:17

a
Yield of isolated alcohol product 7aa from oxidation. Conditions: NaBO3 (4 equiv), THF/H2O, 25 °C.

b
Yield of pinacolborane 6aa by 1H NMR integration with an internal standard.

c
Some decomposition of boronate complex observed.
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Table 2.

Organolithium Scope

a
Isolated yields of analytically pure material.

b
Enantiomeric ratio determined by chiral stationary phase NP-HPLC or SFC.
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c
2e generated in the presence of 1a.

d
Conditions for oxidation of 6 to 7: NaOH/H2O2/THF, 0 °C.
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Table 3.

Alkenylboronate Scope

a
Isolated yields of analytically pure material.

b
Enantiomeric ratio determined by chiral stationary phase NP-HPLC or SFC.

c
7 oxidized to sulfone 10 with m-CPBA prior to isolation.

d
Tentative absolute configuration shown.

e
Conditions for oxidation of 6 to 7: NaOH/H2O2/THF, 0 °C.
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