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Introduction

Kernel moisture content at harvest stage (KMC) is an im-
portant factor that influences maize production, especially 
maize-growing areas in northern latitudes (Li et al. 2017, 
Sala et al. 2012). Low KMC not only protects maize kernels 
from mildew, but is also beneficial for mechanical harvest-
ing. Conversely, high KMC restricts the popularization of 
mechanical harvesting, increases production costs and seri-
ously affects kernel quality in China (Li et al. 2017). There-
fore, breeding elite varieties with low KMC is a major goal 
for maize breeders.

KMC is normally considered as a quantitative trait that is 
controlled by multiple genes and is sensitive to environmen-
tal factors (Hallauer et al. 2010, Sentz 1971, Song et al. 
2017, Wang and Li 2017). KMC was significantly decreased 
by introgressing tropical germplasm into temperate germ-
plasm via recurrent selection (Hawbaker et al. 1997). How-
ever, evaluating KMC is a labor-intensive procedure and 
therefore not suitable for large segregating populations.

With the development of molecular markers, molecular 

marker-assisted selection (MAS) provides a useful tool to 
enhance the accuracy and efficiency of breeding (Collard 
and Mackill 2008). Consequently, it is necessary to dissect 
the genetic basis of KMC. Previous studies have shown that 
KMC is controlled mainly by additive effects with high her-
itability (Austin et al. 2000, Sala et al. 2006, Sentz 1971, 
Song et al. 2017), suggesting that MAS should be effective. 
Thus far, hundreds of quantitative trait loci (QTLs) for maize 
KMC have been identified in diverse populations by linkage 
analysis (Austin et al. 2000, Beavis et al. 1994, Blanc et al. 
2006, Frascaroli et al. 2007, Ho et al. 2002, Melchinger et al. 
1998, Mihaljevic et al. 2004, 2005, Sala et al. 2006, Song et 
al. 2017). Xiang et al. (2012) and Sala et al. (2012) collect-
ed 96 and 184 QTLs for KMC and subsequently estimated 
44 and 34 meta-QTLs, respectively. Although numerous 
QTLs were mapped, they have rarely been used in maize 
breeding because of the large confidence intervals of these 
QTLs and the restricted allelic sampling between bi-parents.

Considering the limitations of bi-parental mapping, an al-
ternative approach to identify genetic loci is to use genome- 
wide association study (GWAS) based on linkage disequi-
librium. Such method enables researchers to explore a greater 
number of alleles with a higher mapping resolution (Yu and 
Buckler 2006). As a high-resolution gene mapping tool, 
GWAS has been applied in identifying favorable alleles for 
KMC-related traits, such as kernel field dehydration rate 
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10 days after physiological maturity (i.e., the date of kernel 
milk line disappearance and black layer formation accord-
ing to Vieira et al. 1995) was designated as harvest stage.

A set of 18 agronomic traits was also measured, includ-
ing three morphological traits (plant height (PH), ear height 
(EH) and stem diameter (SD)), two maturity traits (days to 
silking (DTS) and tasseling (DTT)), three husk-related traits 
(husk number (HN), length (HL) and weight (HW)), five 
ear-related traits (ear length (EL), ear diameter (ED), kernel 
row number (KRN), kernel number per row (KNPR) and 
cob diameter (CD)), and five kernel-related traits (kernel 
length (KL), width (KW) and thickness (KT), 100-kernel 
weight (HKW) and kernel drying rate after physiological 
maturity (KDR)).

Phenotypic data analysis
The phenotypic data were subjected to descriptive statis-

tical analysis, analysis of variance, correlation analysis, LSD 
test and linear regression analysis using R software version 
3.1.1 for Windows® (https://www.r-project.org/). The broad-
sense heritability (H2) for KMC was estimated using the fol-
lowing formula: H2 (%) = σ2

g/(σ2
g + σ2

ge/n + σ2
e/nr) × 100%, 

where σ2
g is the genotypic variance, σ2

ge is the variance for 
interactions of genotype with environment, σ2

e is the error 
variance, n is the number of environments, and r is the num-
ber of replications (Hallauer et al. 2010). To minimize the 
effects of environment, the best linear unbiased predictions 
(BLUPs) for KMC across two locations were estimated us-
ing lmer function of lme4 package for further analysis.

Population structure, relative kinship, and linkage dis
equilibrium

Population structure was estimated using the software 
STRUCTURE 2.3 (Pritchard et al. 2000) with 2,824 SNPs. 
The number of subpopulations (k) was set from 1 to 10 with 
five independent runs for each k. Both burn-in periods and 
Markov chain Monte Carlo replication number were set at 
100,000 in each run under the admixture model. The k value 
was estimated by the log likelihood of the data (LnP(D)) 
and an ad hoc statistic Δk, based on the rate of change of 
LnP(D) between successive k values (Evanno et al. 2005). 
Nei’s genetic distance (Nei 1972) was calculated and used 
to construct a neighbor-joining tree using the software 
PowerMarker 3.25 (Liu and Muse 2005) with the same SNP 
set.

The relative kinship matrix (K) of the 144 maize inbred 
lines was computed using the software SPAGeDi 1.3 (Hardy 
and Vekemans 2002) with negative values between two in-
dividuals set to zero. The linkage disequilibrium (LD) pa-
rameter r2 between pairwise SNPs was calculated by the 
software TASSEL 5.0 with 1,000 permutations (Bradbury et 
al. 2007).

Genomewide association study
GWAS was conducted using the software TASSEL 5.0 

(Bradbury et al. 2007). Six statistical models, namely a 

(Dai et al. 2017, Zhang et al. 2016) and husk traits (Cui 
et al. 2016, Zhou et al. 2016). However, to the best of our 
knowledge, reports on GWAS of KMC are limited. In this 
study, we used the GWAS approach, employing 144 maize 
inbred lines that were genotyped using the Maize SNP3K 
Beadchip and phenotypically evaluated in two field trial 
locations, to detect QTLs and favorable alleles for KMC as 
well as to analyze the phenotypic relationship between 
KMC and other agronomic traits.

Materials and Methods

Plant material and genotyping
An association mapping panel composed of 144 maize in-

bred lines was used as plant material (Supplemental Table 1).
Genotypes of the 144 maize inbred lines were evaluated 

using the Maize SNP3K Beadchip (Illumina, San Diego, 
CA, USA) with methods reported previously by Yang et al. 
(2011), at the National Maize Improvement Center of 
China, China Agricultural University. The Maize SNP3K 
Beadchip contained 3,072 random single nucleotide poly-
morphisms (SNPs) (including 1,884 SNPs within different 
genes and 1,188 intergenic SNPs) of good quality selected 
from 49,585 SNPs that evenly cover the maize genome 
(Ganal et al. 2011). Finally, 2,824 SNPs with minor allele 
frequency >5% and missing data <20% were obtained for 
subsequent analysis.

Field trials and phenotyping
The trials were performed in 2016 at two locations: 

Nantong, Jiangsu Province (NT, 120°E, 31°N), which is 
located in mid-east China and has an average temperature 
of 15.1°C and an average of 1,040 mm of rain per year, as 
well as Sanya, Hainan Province (SY, 108°E, 18°N), which 
is located in south China and has an average temperature of 
25.7°C and an average of 1,347 mm of rain per year.

Before the experimental treatment, the physiological 
maturity of each line was evaluated in the field, and the 144 
maize inbred lines were sown at three dates according to 
their growth periods. They were planted on the 17th, 21st 
and 25th of March, respectively, to obtain a similar physio-
logical maturity in the field in NT, adjusting the harvest 
stage of association mapping panel to between 12th and 16th 
of July. In SY, the association mapping panel was sown on 
7th, 11th and 15th of November also according to its physi-
ological maturity, respectively, and the harvest stage was 
adjusted to between 20th and 24th of February of next year.

Each line was grown in single rows 5 m long and spaced 
0.6 m between rows with a planting density of 65,000  
plants/hm2, following a randomized complete block design 
with two replications per location. Agronomic management 
of the field experiments was the same at both locations. The 
ears were bagged before silking, and artificial pollination was 
carried out at the same time for each line. The KMC for 12 
uniformly growing plants in the middle of rows was mea-
sured using a hand-held moisture meter (Reid et al. 2010) at 
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tions approximately fitted a normal distribution with little 
skewness and kurtosis (Table 1, Fig. 1a), indicating that 
this trait was controlled by multiple loci in this panel.

Based on the BLUP values across the two locations, 8 of 
the 144 lines (5.56%) showed low KMC below 27% mois-
ture, 49 lines (34.03%) showed high KMC above 35%, and 
the remaining lines showed moderate KMC. The variances 
of genotype (σ2

g) and genotype × environment (σ2
ge) were 

significant at P < 0.01 (Table 1), and the broad-sense herita-
bility was high (82.00%), suggesting that much of the pheno-
typic variation in this panel was genetically controlled.

Correlation analysis of KMC with other agronomic traits
The results of the correlation analysis between KMC and 

18 agronomic traits are presented in Fig. 1b. KMC exhibit-
ed highly significant negative correlation with KDR, and 
there was low but significant negative correlation with KL 
and HKW. In addition, KMC showed significant positive 
correlation with DTS, DTT, SD, HL, HN, HW, CD, and KT, 
with correlation coefficients from 0.17 to 0.59.

Population structure and linkage disequilibrium
The population structure analysis performed using 

naive general linear model (GLM), GLM with Q-matrix 
(GLM (Q)), GLM with PCA-matrix (the top three principal 
components, GLM (PCA)), a mixed linear model with 
K-matrix (MLM (K)), MLM with PCA-matrix and K- 
matrix (MLM (PCA+K)), and MLM with Q-matrix and 
K-matrix (MLM (Q+K)), were applied to control spurious 
associations from population structure and relative kinship. 
As the Bonferroni correction (0.05/2,824 = 1.77 × 10–5) was 
too stringent and its applicability in GWAS is disputed 
(Gupta et al. 2014), a compromised threshold of P ≤ 0.001 
was selected to be significant for association signals.

Results

Phenotypic variation for KMC
The descriptive statistics and analysis of variance for 

KMC in the association mapping panel are presented in 
Table 1. Wide phenotypic variation among the 144 acces-
sions was observed: from 21.50% to 41.00% in NT and from 
19.63% to 43.64% in SY (Table 1). The mean of KMC in 
NT and SY was 33.97% and 33.93%, respectively (Table 1), 
and a highly positive correlation (r2 = 0.71, P < 0.001) was 
observed between the two locations. The KMC at both loca-

Fig. 1. Frequency distribution of KMC and its correlation with other agronomic traits. (a) Histogram of KMC in Nantong and Sanya. (b) Correla-
tion coefficients of KMC with other agronomic traits based on the BLUP values across two locations. PH: plant height, EH: ear height, SD: stem 
diameter, DTS: days to silking, DTT: days to tasseling, HN: husk number, HL: husk length, HW: husk weight, EL: ear length, ED: ear diameter, 
KRN: kernel row number, KNPR: kernel number per row, CD: cob diameter, KL: kernel length, KW: kernel width, KT: kernel thickness, HKW: 
100-kernel weight, KDR: kernel drying rate after physiological maturity. * significant at P < 0.05, ** significant at P < 0.01.

Table 1. Phenotypic performance, variance component and broad-sense heritability of kernel moisture content at harvest stage

Location Mean ± SDa (%) Range (%) Skewness Kurtosis σ2
g
b σ2

ge
c H2d (%)

Nantong 33.97 ± 0.38 21.50–41.00 –0.18 –0.59 17.50** 6.81** 82.00
Sanya 33.93 ± 0.45 19.63–43.63 –0.38 –0.42
BLUPe 33.95 ± 0.32 23.38–40.43 –0.17 –0.53

a standard deviation; b variance of genotype; c variance of genotype × environment; d broad-sense heritability; e best linear unbiased prediction;  
** Significant at P < 0.01.
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and Q+K) were significantly better than the GLMs (naive, Q 
and PCA). Among the MLMs, PCA+K gave the best fit to 
our data and so it was chosen for the GWAS.

GWAS was conducted by MLM (PCA+K) using the 
BLUP values across the two trial locations. Eight associated 
SNPs were detected at P ≤ 0.001 (with –log10(P) ranging 
from 3.12 to 3.92) on chromosomes 1, 5, 8 and 9, which ac-
counted for 7.73% to 11.18% of the phenotypic variation 
(Table 2, Fig. 2). To further confirm the eight associated 
SNPs, we also identified SNPs for KMC that were signifi-
cant at individual location (either NT or SY). These eight 
significant SNPs were detected in at least one location 
(Supplemental Table 2). In addition to the original eight 
SNPs, one SNP (8_PZE-108103951) was detected only in 
SY (Supplemental Table 2).

Given that some associated SNPs occurred within the 
same LD blocks, the eight associated SNPs were allocated 
to five QTL regions. These QTLs were named using prefix 
“qKMC” plus the chromosome bin identifier number 
(Table 2). Of these, three QTLs, qKMC5.03, qKMC8.04 
and qKMC9.06, were overlapping QTL regions previously 
reported by linkage analysis (see Discussion).

Favorable allele mining
It is necessary to determine which allele is the favorable 

allele to aid in MAS. Accordingly, the mean values for each 
allele corresponding to significant SNPs were calculated, 
based on the BLUP values across the two locations. The fa-
vorable alleles of the significant SNPs were mined (Table 2) 

STRUCTURE software, showed that the LnP(D) values 
continued to increase as K varied from 1 to 10 (Supplemen-
tal Fig. 1a); however, Δk reached its peak at K = 3 (Supple-
mental Fig. 1b), suggesting this association mapping panel 
could be divided into three subpopulations. A neighbor- 
joining tree was constructed based on Nei’s genetic distance 
showing three clusters for this panel (Supplemental 
Fig. 1c), which was consistent with the results of the popu-
lation structure analysis.

The three subpopulations were designated as G1, G2 and 
G3. Subpopulation G1 mainly comprised the Reid germ-
plasm, derived from American synthetic variety BSSS. G2 
comprised the Lancaster germplasm, in which the repre-
sentative inbred line Mo17 was distributed, and a small 
number of tropical germplasm lines. G3 mainly comprised 
the Chinese Tang Si Ping Tou and PB germplasm, but also 
included a few Lvda Red Cob germplasm lines (Supple-
mental Table 1).

The average LD decay distance across all chromosomes 
was ~300 kb, where the LD parameter (r2) dropped to half 
of its maximum value, and the LD decay distance differed 
among 10 chromosomes, ranging from ~200 kb on chromo-
some 7 to ~1000 kb on chromosome 9 (Supplemental 
Fig. 1d).

Genomewide association study
Considering the potential for spurious associations in 

GWAS, six statistical models were compared, as shown in 
the quantile-quantile plots (Fig. 2). The MLMs (K, PCA+K 

Table 2. QTLs/SNPs were detected for kernel moisture content at harvest stage in this study

QTL SNP Bin Position Alleles –log10 (P) R2 (%)a Reference
qKMC1.07 1_PZE-101194927 1.07 241912518 A/Cb 3.15 7.85
qKMC5.03 5_PZE-105042539 5.03 29708107 A/C 3.12 9.74 Ho et al. (2002)
qKMC5.04 5_PZE-105093385 5.04 135189300 A/G 3.34 9.67

5_PZE-105093414 5.04 135233554 A/G 3.54 10.51
5_PZE-105093430 5.04 135278708 A/G 3.76 11.18
5_PZE-105093464 5.04 135302345 A/G 3.40 9.90

qKMC8.04 8_PZE-108064150 8.04 114429371 A/G 3.28 7.73 Blanc et al. (2006)
qKMC9.06 9_PZE-109105795 9.06 147893495 A/G 3.21 9.23 Austin et al. (2000)

a percentage of phenotypic variance explained; b underlined base stand for favorable alleles.

Fig. 2. Manhattan (left) and quartile-quartile (right) plots of GWAS results for KMC. Manhattan plot was drawn based on the results of MLM 
(PCA+K) model.
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as temperature, air humidity and rainfall (Wang and Li 
2017), the availability of a reliable methodology to measure 
KMC at similar times in the different lines and locations is a 
prerequisite for QTL mapping. In this study, we used a 
hand-held moisture meter to measure KMC, a method that 
has been reported to be useful for evaluating genetic materi-
als for QTL mapping (Kebede et al. 2016, Reid et al. 2010, 
Sala et al. 2006). The 144 maize inbred lines were sown at 
three dates according to their growth periods, enabling us to 
measure KMC of each line over similar periods. The pheno-
typic values showed a significant positive correlation 
(r2 = 0.71, P < 0.001) between the two locations, indicating 
good reproducibility of the data.

Although the maize ear is enclosed by husks, moisture in 
the kernels can evaporate into the air through the husks, and 
it can also be transported to other plant parts via the cob and 
stem. Therefore, close correlations might be expected be-
tween KMC and some other agronomic traits. Fairly close 
relationships between KMC and some other traits were 
identified (Fig. 1b). As expected, KMC exhibited highly 
significant negative correlation with KDR and moderately 
significant positive correlation with DTS and DTT, as previ-
ously reported (Johnson and Tanner 1972, Li et al. 2000, 
Sala et al. 2006, Wang and Li 2017), and there was low but 
significant correlation with HKW, KL and KT. Three 
husk-related traits (HN, HL and HW) showed positive cor-
relations with KMC, suggesting fewer layers of husk as well 
as shorter and lighter husks, were associated with greater 
loss of kernel moisture. KMC was also positively correlated 
with CD and SD. This was probably because the thicker the 
cob and stem, the more moisture content they would have. 
More moisture might then flow into the kernels under the 
action of water potential difference, resulting in higher 
KMC. Correlations such as these could be important factors 
to consider in maize breeding.

Population structure, a key factor for GWAS, may cause 
significant differences in allelic frequencies within different 
subpopulations, which may lead to spurious associations as 
a result of LD between alleles and nearby polymorphisms 
(Yan et al. 2011). The association mapping panel used in 
this study was divided into three subpopulations (Supple-
mental Fig. 1b, 1c); therefore, spurious associations could 
be expected because of the inherent complexity of the popu-
lation. To control for false associations, we compared six 
statistical models and showed that MLM (PCA+K) provid-
ed the best reduction in false-positive frequencies (Fig. 2).

The Bonferroni correction is often used in multiple hy-
pothesis testing. At the level of α = 0.05, the threshold of 
significant association would be at 1.77 × 10–5, a threshold 
that none of the loci in this study would achieve. The 
Bonferroni correction is thought to be a very stringent stan-
dard and its applicability in GWAS is debatable (Gupta et al. 
2014). As we chose the optimal model to correct for popula-
tion structure, we believed that most of the spurious loci 
were readily corrected. Therefore, we selected P ≤ 0.001 
(–log10(P) ≥ 3) as the threshold for significant association 

and 21 haplotypes (each haplotype including at least two 
lines) were identified across five robust SNPs corresponding 
to the QTLs (Fig. 3). At group level, among lines harboring 
0 to 1 favorable alleles, KMC showed no significant change, 
while KMC declined significantly when harboring two fa-
vorable alleles, as well as the KMC declined linearly with 
increasing numbers of favorable alleles (Fig. 3). We also 
found a significant negative correlation between the KMC 
and the number of favorable alleles in each haplotype (R2 =  
0.35, P < 0.01) using linear regression analysis (Fig. 4).

Discussion

Because KMC is vulnerable to environmental factors such 

Fig. 3. Haplotypes identified using five SNPs and their phenotypic 
effects. Different letters indicate significant difference at P ≤ 0.05 esti-
mated by LSD test. Marked base stand for favorable alleles.

Fig. 4. The correlation of the KMC with the number of favorable al-
leles in each haplotype.
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these eight lines (‘JS06730’ and ‘T1011’) have only two or 
one favorable alleles (Supplemental Table 3). This phe-
nomenon may be because rare alleles could be missed in this 
relatively small association mapping panel (Yan et al. 2011).

In summary, GWAS was successfully employed to iden-
tify genetic loci for KMC in maize. Eight significant associ-
ated SNPs, which could be converted into five QTLs distrib-
uted on chromosomes 1, 5, 8, and 9, were identified. The 
genetic loci and elite inbred lines with low KMC identified in 
this study will have potential application in maize breeding.
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to either reduce the false-positive frequency or detect a set 
number of true positive loci, as reported in previous studies 
(Feng et al. 2016, Hwang et al. 2014, Shi et al. 2014, 
Vagndorf et al. 2017).

Using the BLUP data set, eight significant associated 
SNPs were identified at P ≤ 0.001 by the MLM (PCA+K) 
model and could be converted into five QTLs distributed on 
chromosomes 1, 5, 8, and 9 (Table 2, Fig. 2). Furthermore, 
these eight SNPs were validated at each trial location (Sup-
plemental Table 2). Of the five QTLs, three (qKMC5.03, 
qKMC8.04 and qKMC9.06) have been described previously 
(Austin et al. 2000, Blanc et al. 2006, Ho et al. 2002), while 
the remaining two were putatively novel loci. qKMC5.03 
was located within a QTL region identified by Ho et al. 
(2002). qKMC8.04 and qKMC9.06 were consistent with the 
QTL region identified by Blanc et al. (2006) and Austin et 
al. (2000), respectively. Interestingly, qKMC5.04 was locat-
ed in a QTL region for KDR detected by Liu et al. (2010), 
Sala et al. (2006) and Wang et al. (2012). qKMC9.06 was 
~75 kb away from a locus for KDR detected by Zhang et al. 
(2016). The occurrence of pleiotropic QTL regions better 
supports the result that KMC is highly significantly correlat-
ed with KDR in this and other studies (Johnson and Tanner 
1972, Sala et al. 2006, Wang and Li 2017). Given the large 
genomic region, we cannot be confident whether these two 
traits are controlled by a single gene that has pleiotropic ef-
fects or multiple genes that are tightly linked in these two 
regions. Thus, further QTL fine mapping may be required.

GWAS has been widely applied for detecting genetic loci 
for various traits in many crop plants to enhance the effi-
ciency of molecular breeding (Ogura and Busch 2015). The 
identified favorable alleles and QTLs could be transferred 
or pyramided into a plant line for genetic improvement by 
MAS. For example, Liu et al. (2015) transferred a major 
QTL for KRN (KNR4) into two maize inbred lines using 
MAS. The lines with introgressed favorable alleles of KNR4 
showed KRN improved by almost two rows. Zheng et al. 
(2017) pyramided three disease-resistance QTLs to enhance 
resistance to Fusarium crown rot in common wheat. The 
pyramided lines with three resistant alleles exhibited better 
resistance than those lines with two, a single or no resistant 
alleles. Our results showed that as few as two favorable al-
leles significantly reduced KMC, and each additional fa-
vorable allele further reduced KMC (Figs. 3, 4), suggesting 
that pyramiding of these favorable alleles could reduce 
KMC effectively.

To keep the kernel quality suitable for mechanical har-
vesting, the KMC of a maize variety should be less than 
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