Skip to main content
. Author manuscript; available in PMC: 2019 Jan 24.
Published in final edited form as: J Indian Inst Sci. 2018 Sep;98(3):283–300. doi: 10.1007/s41745-018-0081-5

Table 2. Transport equation at Erev for transporters with different substrate: ion stoichiometries.

Process Transport principle Stoichiometry
Uniport mSain → mSaout

Symport mSain + nIbin↔mSaout + nIbout Erev=Δψ=60mV(bn+am)(nlog[I]in[I]out+mlog[S]in[S]out)
When* a = -2, b =1
Erev=Δψ=60mV(n2m)(nlog[I]in[I]out+mlog[S]in[S]out)
When a = 1, b = 2
Erev=Δψ=60mV(2n+m)(nlog[I]in[I]out+mlog[S]in[S]out)
When a =0, b = 1
Erev=Δψ=60mVn(nlog[I]in[I]out+mlog[S]in[S]out)

Antiport mSaout + nIbin↔mSain + nIbout Erev=Δψ=60mV(bn+am)(nlog[I]out[I]in+mlog[S]in[S]out)
When a = -2, b = 2
Erev=Δψ=30mV(nm)(nlog[I]in[I]out+mlog[S]in[S]out)
When a = 1, b = 2
Erev=Δψ=60mV(2n+m)(nlog[I]out[I]in+mlog[S]in[S]out)

R is the universal gas constant, T is the temperature (in °K), F is the Faraday constant, a and b are the substrate and ion charges, respectively, Δψis the voltage difference across the membrane, m and n denotes the number of substrate and ions respectively. I, S denote ion and substrate respectively. At equilibrium with conversion to the base 10 log, and approximating RT/F as 60mV.