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Abstract

Usually, cells balance their growth with their division. Coordinating growth inputs with cell 

division ensures the proper timing of division when sufficient cell material is available and affects 

the overall rate of cell proliferation. At a very fundamental level, cellular replicative lifespan—

defined as the number of times a cell can divide, is a manifestation of cell cycle control. Hence, 

control of mitotic cell divisions, especially when the commitment is made to a new round of cell 

division, is intimately linked to replicative aging of cells. In this chapter, we review our current 

understanding, and its shortcomings, of how unbalanced growth and division, can dramatically 

influence the proliferative potential of cells, often leading to cellular and organismal aging 

phenotypes. The interplay between growth and division also underpins cellular senescence (i.e., 

inability to divide) and quiescence, when cells exit the cell cycle but still retain their ability to 

divide.
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8.1 Introduction

The two cells generated at the end of the cell cycle usually inherit sufficient amounts of 

essential constituents, ensuring their survival. Moreover, the composition of proliferating 

cells varies very little from generation to generation, implying that proliferating cells 

somehow balance their growth (increase in biomass) with their division. Since different 

levels of nutrients and growth factors sustain different rates of cell proliferation, cells have 

elaborate mechanisms to sense nutrient and growth signals, adjusting their metabolic and 

proliferative activity accordingly. A detailed mechanistic understanding of this coupling 

between growth and division has remained elusive. Nonetheless, properly coupling growth 

with division is thought to determine the rate at which cells proliferate [1–6].

Nutrient and growth factor limitations do not delay all cell cycle transitions uniformly. 

Instead, transit through some cell cycle phases is delayed disproportionately. 

Overwhelmingly, poor growth conditions prolong the G1 phase of the cell cycle, preceding 

initiation of DNA synthesis, while transit through the remaining cell cycle phases is not 
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delayed significantly [1, 2, 7–12]. In yeast, the point of commitment to a new round of cell 

division is called START [2] and in animal cells the Restriction Point [6]. Once cells pass 

through these points in late G1 phase, they will initiate and complete their division even if 

they encounter growth limitations [1, 2, 6, 12]. Hence, although there may be some nutrient 

and growth factor inputs in later stages of the cell cycle [13, 14], it is in G1 that cells delay 

committing to a new round of cell division in the face of weak growth prospects.

The consequences of uncoupling growth from division are profound and accompanied by 

changes in the size of cells (see Fig. 8.1 for a schematic). In this Chapter, we describe 

possible outcomes when growth and division are not balanced. We also discuss models that 

envision imbalances between growth and division as a critical component of senescence and 

aging mechanisms [15, 16]. Our discussion will include examples from animal models 

systems and unicellular organisms, especially the budding yeast S. cerevisiae.

8.2 Growth and Division: A Tight Balancing Act

Intuitively, it makes sense that for a cell to successfully divide and give rise to two viable 

cells, it must produce enough macromolecules, membranes, and organelles for the two cells 

that will arise at the end of cytokinesis. Since these cellular components are determinants of 

the cell’s volume, it is not surprising that cell size has often been used as an “umbrella” 

metric for cell growth [3, 5, 14, 17, 18]. Lately, there is renewed interest in the development 

of methodologies that report accurately and precisely on the size of animal cells [5, 19–21]. 

In addition, asymmetric segregation of cellular constituents between two products of a 

mitotic cell division is also tightly regulated and will be discussed below.

Although cell size is a very useful “growth” metric, the events most closely associated with 

cell proliferation are anabolic processes that yield the macromolecules necessary to build 

new cells. Among those macromolecules, proteins are often considered the most important 

component of growth, and for good reason. The protein fraction of dry mass is ≈55% in E. 
coli [22] and ≈40–45% in the budding yeast S. cerevisiae [22, 23]. The protein content of 

mammalian cells varies in different tissues. For commonly used cell lines, such as mouse 

fibroblasts (NIH3T3 cells) or human HeLa cells, the protein molecules per unit volume is 

roughly the same as in budding yeast cells (1–2E + 06 proteins/fL; [22]). Also, a significant 

fraction of the proteome (>20%) is dedicated to making ribosomal proteins and translation 

factors that will, in turn, promote the synthesis of more proteins [24].

Making ribosomal components and assembling them into functional ribosomes involves a 

broad repertoire of cellular constituents and processes [25–27]. In budding yeast, the 

cytoplasmic ribosome contains 78 ribosomal proteins encoded by the RP regulon of 138 

genes. Note that 59 of the 78 yeast ribosomal proteins are encoded by pairs of very similar 

paralogs [28, 29]. The ribosomal proteins together with the four rRNAs (5S, 5.8S, 18S, and 

25S) make up the ribosome. The rRNA genes are encoded by rDNA tandem repeats, whose 

number is dynamic (usually ≈100–200) and varies with growth conditions. Greater than 200 

protein assembly and accessory factors are needed at many stages to put a functional 

ribosome together. Their expression is thought to be regulated coordinately, through the 

ribosome biogenesis (Ribi) regulon. In the Ribi regulon, one also finds the various tRNA 

Polymenis and Kennedy Page 2

Adv Exp Med Biol. Author manuscript; available in PMC 2019 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



synthetases, rRNA processing and modifying enzymes, and translation factors, which 

collectively control translational capacity [30, 31]. Most of the cell’s transcriptional activity 

is devoted to building and maintaining the translational machinery. Of all the RNA in the 

cell, 80% is rRNA, 15% is tRNA, and 5% is mRNA, and a large fraction of mRNA is 

devoted to ribosome synthesis [25, 32].

Transcription of RP genes alone is responsible for approximately 50% of all RNA PolII-

mediated transcription initiation events. The energetic cost of making the translation 

machinery is astounding, consuming as much as ≈90% of the total energy of fast-

proliferating yeast cells [25]. Estimates of the ribosome content of cells give an even more 

impressive view of the centrality of ribosome biogenesis in governing the growth of cells. 

From super-resolution, single-molecule imaging techniques, it seems that E. coli cells 

contain 30,000–50,000 ribosomes per fL [33]. Analogous quantitative measurements are 

lacking in eukaryotes, but prior estimates in yeast put the number at about 200,000 

ribosomes per cell [25]. On average then, during one cell cycle lasting ≈100 min, a yeast cell 

must produce ≈2000 ribosomes per minute. Based on these metrics of the cellular economy, 

one can easily see why for decades protein synthesis has been viewed as the fundamental 

measure of cell growth in considerations of balancing growth with cell division [34].

Building and maintaining the ability to synthesize proteins is such a costly process that 

would be expected to influence if, and when, cells commit to a new round of cell division. 

The earliest evidence for specific effects on the cell cycle due to translational control was the 

isolation of budding conditional yeast cdc (cell division cycle) mutants in what turned out to 

be translation factors [2]. Hypomorphic mutations in translation initiation factors impair the 

capacity of cells to initiate a new round of cell division [12, 35–40]. Moreover, signaling 

pathways that control initiation of division, such as the Target of Rapamycin (TOR) 

pathway, may do so, at least in part, by regulating translation initiation. Loss of TOR 

function causes G1 arrest in mammalian cells [41, 42] and yeast [43, 44]. Conversely, 

overexpression of translation initiation factor eIF4E in mammals is oncogenic [45], and the 

translational output of TOR signaling is critical for cancer initiation [46]. Moreover, 

inhibiting translation elongation with cycloheximide also prolongs the G1 phase of the cell 

cycle [12, 47]. In budding yeast, cycloheximide reduces the newborn cell size [12, 47] and 

the rate at which cells increase in size [48]. It also increases the critical size threshold for 

START [47, 48]. Together, these results support the notion that a critical rate of protein 

synthesis is required for G1 transit and completion of START in budding yeast [49] and 

animal cells [50, 51].

If ribosome biogenesis and protein synthesis are such integral parts of cell growth, 

propelling cells to divide, how do cells control ribosome biogenesis? In all eukaryotes, the 

principal regulator of catabolic processes leading to energy production is protein kinase A 

(PKA), while the analogous “master” regulator of anabolic, biosynthetic processes is the 

TOR kinase (the TORC1 complex). As we will describe in subsequent sections, these two 

pathways have overlapping roles as determinants of cellular and organismal replicative 

potential and aging. In rapidly proliferating cells, however, for maximal growth and rates of 

cell division, both PKA and TORC1 are active, and they are both needed to activate 

ribosome biogenesis fully by derepressing the Ribi regulon [44, 52, 53].
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In yeast, replicative aging is defined by the number of buds that can be produced by one 

mother cell, indicative of the number of times it can progress through the cell cycle and 

undergo mitosis [54]. An increase in cell size (i.e., cellular hypertrophy) has been linked to 

replicative aging. The cellular hypertrophy model of aging was formulated to account for the 

yeast replicative aging, invoking the existence of a maximal cell size beyond which cells 

could not maintain division [55, 56]. According to the cellular hypertrophy model, the large 

cell size of old yeast mother cells is incompatible with some cellular function that is 

necessary for cell division. Every time mother cells divide, they increase in size until they 

reach the terminal, large size, at which point they will enter a state of proliferative arrest. 

The hypertrophy model predicts that small cells would be able to divide more times before 

reaching the terminal size, resulting in longer replicative lifespan. On the other hand, large 

cells will reach the terminal size after fewer divisions, having a shorter replicative lifespan. 

Overall, the model predicted that changes in replicative lifespan and cell size ought to be 

proportional. However, based on genome-wide measurements of cell size, we recently 

reported that the mean cell size of long-lived yeast mutants was not significantly different 

from the size of mutants that were not long-lived [57]. This finding is incompatible with the 

key prediction of the hypertrophy model that long-lived mutants would have a small overall 

cell size, allowing these cells to divide more times until they reach the terminal size and 

enter senescence. Therefore, based on these experiments in yeast, it seems that the cellular 

enlargement is not a primary determinant of aging.

The factors linked to cell growth and protein translation definitely affect aging, however. 

Reduced mTOR signaling leads to lifespan extension is yeast [58, 59], worms [60], flies 

[61], mice [62, 63], and initial studies suggest possibly humans [64, 65]. The mechanisms 

that underlie lifespan extension remain to be fully determined, partly due to the complexity 

of these signaling pathways, but evidence exists both for altered protein synthesis and 

enhanced protein turnover through autophagy [66]. The former comes from findings that 

reduced expression of several translation initiation factors and ribosomal components also 

lead to lifespan extension in a range of organisms [67]. It is clear at least for replicative 

lifespan in yeast (the number of times one cell can divide to produce daughter cells), 

however, that globally and uniformly inhibiting protein synthesis in insufficient to slow 

aging since cycloheximide is unable to mediate this effect [68]. This finding indicates that 

translational changes to specific mRNAs are likely conferring, at least in part, longevity 

phenotypes in mTORC1 and translation factor mutants.

Interestingly, one downstream factor linked to lifespan extension is GCN4, a transcription 

factor regulated itself by translation and dependent on the presence of small upstream open 

reading frames in its mRNA [68, 69]. Inhibition of mTORC1, reduced 60S ribosomal 

subunit levels and calorie restriction all lead to enhanced GCN4 translation [70–74], which 

in yeast induces expression of stress and nutrient response pathways [69]. Loss of GCN4 at 

least partially abrogates lifespan extension by these interventions. The mammalian ortholog 

of GCN4, ATF4, is also induced in cells and mice from a range of interventions conferring 

long lifespan [75, 76], arguing for conservation of this pathway.

Reduced mTORC1 signaling also leads to enhanced autophagy, which has been linked to 

lifespan extension as well in a range of conditions [77]. In non-vertebrates, for instance, 
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inhibition of autophagy is sufficient to block lifespan extension by mutants that affect 

translation [78–81]. Moreover, at least in flies and mice, induction of autophagy through 

overexpression of autophagy components is reported to lead to lifespan, and sometimes 

healthspan, extension [82–85].

The mTORC1 complex regulates transcription as well and this phenomenon has been 

studied extensively in yeast. For chronological aging, defined as survival in a post-

replicative state, reduced mTORC1 signaling enhances longevity [59, 86], likely through 

mechanisms leading to enhanced transcription of a stress response transcription factor 

network driven by Msn2/4 and Gis1 [54]. Interestingly, reduced PKA signaling promotes 

chronological lifespan extension through overlapping mechanisms [87, 88].

Protein kinase A signaling has been connected to aging in multiple organisms [89]. In yeast, 

under maximal growth conditions in rich media, where both PKA and mTOR collaborate to 

drive protein synthesis, mutations leading to reduced PKA activity promote replicative and 

chronological lifespan extension [90, 91]. Although not studied as extensively in multi-

cellular organisms, this phenomenon may also be conserved as mice lacking the protein 

kinase subunit RIIβ are long-lived [92, 93], as well as those lacking ADCY5, encoding type 

5-adenylyl cyclase (AC5) that converts ATP into cAMP in turn activating PKA. These mice 

are stress resistant and experience a 30% increase in median lifespan [94, 95]. In addition, 

genetic variants leading to reduced production of the adenylyl cyclase-activating β2-

adrenergic receptor, are prevalent in men from a Chinese centenarian population [95].

In conclusion, in balanced growth and division, the increased ribosome biogenesis and 

protein synthesis is coupled to cell division, maintaining the overall cellular homeostasis and 

macromolecular composition. These processes also have robust effects on aging, although 

the links are far from straightforward.

8.3 Asymmetric Segregation During Cell Division

When cells divide, their cellular constituents have to be divided between the two offspring 

and studies have started to address mechanisms underlying this partitioning. In mammalian 

cells, for instance primary fibroblasts in culture, division is symmetric and while partitioning 

may occur, it is hard to distinguish morphologically. Interestingly the culture of primary 

fibroblasts senescences at a similar number of population doublings, suggesting that with 

respect to cellular aging damaged molecules may not be partitioned specifically to one cell 

after division.

Yeast, being a single-celled organism, has to maintain continuous division in the colony in 

the face of the challenges of aging. By virtue of their division by budding, which produces a 

larger mother cell and a smaller bud that are easily distinguishable, yeast offers a great 

opportunity to detect differential segregation of cellular materials. While the mother cell 

ages, the daughter remains youthful, suggesting that damaged cellular constituents driving 

aging may remain in the mother cell [96]. Some components of the daughter cell, such as the 

cell wall are largely the result of new synthesis during division, representing one method of 

segregating old material to mothers. However, many cytoplasmic factors partition and 
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several aging factors are reported to remain in mothers. For instance, extrachromosomal 

rDNA circles (ERCs), small episomes containing rDNA repeats that drive aging possibly by 

competing for replication factors with chromosomal origins [97], are heavily partitioned 

toward mothers [98]. The mechanism likely relates to the closed mitosis of yeast, which 

maintain a nuclear structure. Originally nuclear pore association was proposed as a 

mechanism by which ERCs were retained in the mother, with the assertion that nuclear 

pores have very restricted access to daughters [99]. Later reports called that into question 

[100], and suggested that ERCs may simply not diffuse efficiency through the bud neck 

[101–103]. Thus geometry drives asymmetry.

Damaged aggregated proteins are also retained in the mother cells, likely through restriction 

of access to daughters and also by active transport of damaged molecules from daughters to 

back to mothers [96]. The former process again has been reported to involved both active 

retention and limits to passive diffusion to daughters, while the latter likely involves the 

actin cytoskeleton and requires Sir2, a protein deacetylase linked to aging [104]. The 

mechanisms underlying these processes remain to be fully elaborated.

Mitochondria are reported to undergo asymmetric inheritance in yeast, with fitter 

mitochondria finding their way to daughters [105]. More work is required to access whether 

and how partition occurs in this and other organelles. In fact, cellular processes to maintain 

asymmetry may be broader that we currently appreciate as recent single cell based screens 

have identified hundreds of asymmetrically partitioned proteins during budding. One screen 

identified 74 proteins partitioned to mothers and 60 to daughters [106]. Interestingly, strains 

lacking genes for the mother-specific proteins are more likely to have an enhanced lifespan. 

Whether it comes to individual proteins, damaged protein aggregates, extrachromosomal 

rDNA circles or organelles, evidence suggests that asymmetry breaks down with the age of 

the mother and this is consistent with observations that daughters from old mothers do not 

enjoy a full replicative lifespan.

Of course, asymmetry in cell division has massive impacts during development and cell 

differentiation throughout the mammalian organism. A classic example is an adult stem cell 

that divides to produce another stem cell and a cell committed to a differentiation pathway. 

Asymmetry of cellular constituents plays a role in defining cell fate in this context and it is 

highly likely that damaged molecules are partitioned to the more committed cell [107]. 

Clearly cell- autonomous and–non autonomous mechanisms are in play and it will be 

intriguing to determine to what extent the more elaborated mechanisms in yeast are 

conserved with the cell autonomous mechanisms.

8.4 Quiescence: Not Dividing, but Keep on Ticking

Cells can enter a quiescent state, in response to a range of signals, in which they do not 

divide, but maintain a metabolically active state and can resume the capacity to divide, when 

conditions permit. When cells adopt a differentiated state they exit the cell cycle, sometimes 

permanently [108]. In all eukaryotes, cyclin-dependent kinase (Cdk) protein complexes are 

at the core of the cell division machinery [109]. Initiation of cell division requires an 

increase in Cdk activity. Later cell cycle transitions also need high Cdk activity, while a drop 
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in Cdk activity triggers exit from mitosis. Cdks are Ser/Thr protein kinases, similar in 

structure to most kinases [110]. However, all Cdks are active only when they bind other 

activating proteins, such as cyclins. Cdk activity is further regulated by phosphorylation or 

binding of additional protein subunits. These layers of control can raise or lower overall Cdk 

activity, depending on the phosphorylated Cdk residue, or the interacting protein, in each 

case.

Changes in Cdk activity underlie transitions from resting to proliferative cellular states in 

health and disease. Indeed, high Cdk activity contributes to most proliferative disorders, 

including cancer cell development [111, 112]. On the other hand, low Cdk activity is 

associated with terminal differentiation [113], and accompanies poor organ regeneration, for 

example, in hepatic [114], cardiac [115], neuronal [116], or appendage tissues [117].

It is clear that in quiescent cells there is a strong albeit potentially reversible block in cell 

division. Maintaining the potential to divide, however, is a key feature that distinguishes 

quiescent from senescent cells. This concept was put to the test almost two decades ago, in a 

particularly lucid experiment. Microinjection of pre-formed active Cdk protein complexes 

was sufficient to initiate cell division in quiescent human fibroblasts, in the absence of 

growth factors [118].

In quiescent cells, the block in cell division is also accompanied by a profound 

reprogramming of cellular metabolism. The cells remain metabolically active, enabling them 

to stay alive (e.g., quiescent yeast cells) or perform the functions prescribed by their 

terminally differentiated state. Interestingly, balanced downregulation of the master 

“growth” signaling pathways we described above, the PKA and the TOR pathways, is 

observed in quiescent yeast cells [119], and this is important for chronological lifespan 

extension [119], which is the period of time a cell can remain viable in a non-proliferative 

state.

More recently, it was reported that quiescent cells have a massively re-organized chromatin 

structure [120]. In yeast cells entering quiescence, the conserved lysine deacetylase Rpd3p 

establishes a repressive transcriptional state, reducing by ≈30-fold steady-state mRNA levels 

[120]. Cells lacking Rpd3p also have a 2–3 fold reduction in their mean chronological 

lifespan [120]. The replicative lifespan of these cells, however, is not affected [121]. This is 

not surprising since there is no significant overlap of gene deletions that extend lifespan in 

both the chronological and replicative lifespan assays [122], at least under the assay 

conditions tested.

Interestingly, however, there are connections between the two types of yeast aging, as 

chronologically aged cells have reduced replicative lifespan when returned to the cell cycle 

[123–125]. This is clearly linked to metabolic state, as dietary restriction during the 

replicative phase of this experiment results in suppression of the short lifespan [126]. 

Quiescent cells certainly accumulate damage, but once a quiescent cell reenters the cell 

cycle, this damage may stay with the mother cell [127]. In that scenario, the proliferative 

capacity and fitness of the population as a whole would be maintained. While this nice 
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model needs further testing, what is clear is that growth and division are still balanced in the 

quiescent state, and homeostasis is maintained (see Fig. 8.1, the second case from top).

In quiescence, the down-regulation of TOR and PKA leads to significantly reduced 

ribosome biogenesis and overall protein synthesis [128]. Cell growth and metabolic activity 

is generally low in quiescent cells [129]. But because this is happening in the context of cell 

cycle arrest [129, 130], the general properties and macromolecular composition of quiescent 

cells remain stable and they are easily recognized [16, 128]. Overall, quiescence likely 

represents a physiological extreme in the normal range of balancing growth with division, a 

case where both growth and division are coordinately downregulated.

8.5 Senescence: Growing Desperately, with No Possibility of Ever Dividing 

Again

It has become clearer in recent years that cell cycle arrest can come in different flavors, 

especially in the context of unabated cell growth. If a cell continues to make proteins and 

other macromolecules at a high rate in the face of a cell cycle block, then there are only a 

few possible outcomes. (1) The cell must find ways to get rid of the large excess (e.g., 

lysosomal degradation, secretion). (2) The cell must somehow accommodate the extra 

macromolecular amounts within its boundaries, inevitably leading to increased cell size. In 

fact, the above are typical properties of senescent cells [128, 131] (described in more detail 

below) and exemplify a clear case of unbalanced growth and division (see Fig. 8.1, the third 

case from top). The strong growth of senescent cells (often the result of oncogenic 

stimulation), is not balanced with cell division. Instead, it persists in the face of stable cell 

cycle blocks.

An important component in the cell cycle arrest of quiescent and senescent cells is the 

accumulation of Cdk inhibitor molecules. The kinds of Cdk inhibitors employed in each 

case, however, are different. The cell cycle arrest of quiescent or fully differentiated cells is 

usually imposed by members of the p27KIP1 family of Cdk inhibitors, which inhibit multiple 

cyclin/Cdk complexes by interacting with both the cyclin and the Cdk. On the other hand, in 

senescent cells there is a buildup of p16INK4 Cdk inhibitors, which bind to monomeric 

Cdk4/6 and reduce cyclin binding affinity [128, 131].

Likewise, while both in quiescent and senescent cells there is an accumulation of tumor 

suppressors that broadly inhibit transcription associated with entry into the cell cycle, the 

molecular players are different in each case. Quiescence is associated with the pRB-like 

proteins p107 and p130, which interact with the transcription factor E2F during G1 phase to 

inhibit G1/S transcription and commitment to division. Instead, senescent cells have high 

levels of pRB, and there is also a buildup of p53, a regulator of multiple processes (e.g., 

DNA damage response) that impinge on the cell cycle [128, 131]. Hence, the molecular 

effectors of the cell cycle arrest are different. Furthermore, the exit point of the cell cycle 

may be different in quiescent vs. senescent cells. Quiescent cells uniformly exit the cell 

cycle before initiation of DNA replication in G1 phase [128, 131]. G1 arrest is also common 

in senescence. Surprisingly, however, in several cases senescent cells appear to have a 

permanent G2 phase block in later stages of the cell cycle [128, 132–135].
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The unbalanced growth and division observed in senescence is associated with a variety of 

phenotypes typical of extremely stressed cells. The exact signatures are still a matter of 

debate [128]. In addition to the cell cycle markers we mentioned above, other traits 

associated with senescence often include: short or dysfunctional telomeres, lysosomal stress 

and expression of β-galactosidase, DNA damage response, stress granule formation, hyper-

secretory functions, formation of heterochromatic foci, and the senescence-associated 

secretory phenotype (SASP) [128, 131, 136]. Overall, senescent cells have been aptly 

compared to automobiles that simultaneously attempt to accelerate (i.e., hyperactive growth 

pathways) and stop (i.e., strong, permanent cell cycle block), putting the cell on its way to a 

highly stressed, irreversibly aged state [15, 16, 137].

The phenomenon of cell senescence was discovered more than 50 years ago and it was 

almost immediately hypothesized to be associated with organismal aging [138]. While it has 

been clearly established that cell senescence serves as a tumor suppressive mechanism [131], 

support for the aging theory has waxed and waned over the years. Currently, it is buoyed by 

a series of recent studies linking cell senescence to aging in mice.

A principle argument against a role for cell senescence in aging has been that even in old 

individuals, only a small fraction of cells within a tissue appear to be senescent. How could a 

phenomenon affecting only a small percentage of cells seriously impair an entire tissue? 

This question has been potentially resolved with the discovery and characterization of the 

SASP, wherein senescent cells secrete a novel panel of factors in part comprised of 

inflammatory cytokines that can have potent paracrine and endocrine effects on non-

senescent cells [139, 140]. Moreover, a better understanding has emerged regarding the 

events that can drive cellular senescence. These now include a wide range of cellular stresses 

[131], which are associated with chronic diseases of aging, suggesting that aging events may 

drive cell senescence that in turn promote increased aging.

Senescent cells do accumulate with aging and the Cdk inhibitor, p16INK4, has been proposed 

as a biomarker of aging [128]. Indeed, in selected T cell populations, p16INK4 levels do 

show a statistically significant predictive value for human age. In addition, panels of 

inflammatory cytokines have been proposed as aging biomarkers and these may be at least 

in part related to the SASP. Several recent studies have reported mechanistic insights into 

SASP induction in senescent cells. Several pathways appear to be involved, including those 

related to cell growth, such as mTOR, and cell proliferation, such as p53. Rapamycin 

suppresses aspects of the SASP, but must be delivered continuously to have this effect [141]. 

This is in contrast to organismal aging, where a transient three-month exposure to rapamycin 

in middle age is sufficient to extend the lifespan of mice [142, 143].

To test the role of senescence in aging, two different strategies were employed to 

conditionally ablate senescent cells, both related to the specificity of p16INK4 expression in 

this cellular condition. Findings in these mice appear promising as ablation of senescent 

cells is linked to partial suppression of pathology in a mouse progeria model, the BubR1 

mice [144], and can extend the lifespan and some healthspan parameters in normal mice 

[145].
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The connection between BubR1 and progeria is interesting in its own right as the gene 

encodes a component of the mitotic spindle assembly checkpoint, which prevents cells from 

initiating anaphase if one or more kinetochores are not attached to the mitotic spindle [146]. 

Mice hypomorphic for BubR1 rapidly develop aging features, including kyphosis, cachexia, 

and cataracts [147, 148]. They also have a severely reduced lifespan. With age, BubR1 

expression declines in a number of tissues, suggesting that reduced expression of the protein 

late in life may contribute to normal aging [147]. Moreover, overexpression of BubR1 delays 

aspects of aging [149]. A potential unifying model is that reduced BubR1 expression leads 

to mitotic defects, driving cell senescence and that the senescent cells drive aging 

phenotypes through the SASP or other mechanisms [144]. Ablation of senescent cells 

improves a range of healthspan parameters.

The promise of research in senescence has led to drug discovery approaches designed to 

specifically kill senescent cells. Several candidates have already emerged, and these 

compounds have shown efficacy in preclinical models of chronic disease states [150–153]. 

While the clinical work remains to be done, the last 10 years have seen cell senescence 

emerge as one pathway likely to modulate organismal aging and many new pathways of 

therapeutics for age-associated diseases.

8.6 Division Without Growth

In the classic experiments by Hartwell and colleagues, it was established that in most cases 

growth controls cell division and not the other way around [1, 2, 12]. Stopping cell growth 

will also stop cell division, but stopping cell division does not usually stop cell growth (as 

displayed in senescent cells, see discussion in the previous section). From these principles, it 

follows then that cell division in the absence of growth is untenable, at least when the mass 

of the daughter cells is reduced below a threshold necessary to sustain their viability. This is 

precisely what happens during the early embryonic cell cycles after fertilization until the 

mid-blastula transition ([154]; see Fig. 8.1, last case). At the mid-blastula transition, before 

the re-establishment of the normal somatic cell cycles, the block in cell division is imposed 

by Cdk inhibitors. In mutants lacking these inhibitors, cells usually undergo just one extra 

division [154–156]. Overall, these early embryonic cell cycles do not necessarily violate the 

fundamental need to balance growth with division. They just reflect the fact that growth 

needs have been satisfied during oogenesis.

8.7 Outlook

In yeast, it is implicit that aging, both replicative and chronological, must be linked to 

critical cell cycle decisions. Balancing cell growth with division to maintain cellular 

homeostasis is a critical component of this process, whether cells are dividing or in a non-

proliferative state. The key pathways that coordinate cell growth signals are intimately 

linked to aging in yeast, and considerable evidence suggests that they have conserved effects 

on aging in multicellular organisms. Therefore, continued efforts to understand yeast aging 

in the context of cell growth and division are likely to continue to inform about human 

aging. A major challenge now in yeast is to understand aging at the systems level, taking a 

holistic approach to integrate the contributions of different aging mechanisms and pathways 
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in order to model the aging condition. This approach involves combining large-scale studies, 

including transcriptomics and epistasis network analysis, with directed studies with the goal 

of establishing as complete as possible a picture of single cell aging that can set the stage for 

similar studies in multicellular organisms.

In the multi-cellular context, a major challenge has been to understand the links between 

aging at the level of the organism and (causal?) changes to cells in the aging body. In that 

context, cell senescence has emerged as a major candidate driver of aging processes. Major 

insights in this arena have led to the identification of candidate therapeutics to kill senescent 

cells as means of offsetting or treating age-related chronic diseases. The next few years will 

help define the merits of this new therapeutic route based on aging studies.

More broadly, aging is linked to several pathways involved in cell growth and specifically in 

protein synthesis and turnover. It is clear for instance that reduced mTORC1 signaling leads 

to lifespan extension, but further work needs to be done to identify whether aging benefits 

come from altered protein translation, increased turnover of damaged macromolecules, 

suppression of the SASP, or some other mechanism. Moreover, it is important to identify in 

what tissues reduced mTOR signaling, and other pathways such as PKA, promotes 

longevity. With dramatic increases in the aging population and new insights from research 

on aging and longevity, the promise is there for major new advances that could refocus 

medical care toward interventions that slow aging and keep people healthy longer. 

Understanding links between cell growth, division and aging are integral to achieving this 

goal.
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Fig. 8.1. 
Schematic representation of all possible outcomes when growth and division are balanced or 

unbalanced
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