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Abstract

Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics.

There are a number of studies carried out to find its effective antiviral, however to date, there

is still no molecule either from peptide or small molecules released as a drug. The present

study aims to identify small molecules inhibitor from National Cancer Institute database

through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaf-

fold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease

inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of

0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding

calculation were conducted to study the interaction mechanism of these compounds with

the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol

compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well

with the experimental observation. Results from molecular dynamics simulations also

showed that both 18 and 21 bind in the active site and stabilised by the formation of hydro-

gen bonds with Asn174.
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Introduction

Dengue, caused by Dengue Virus (DENV), is the most important mosquito-borne viral disease

affecting the tropics and subtropics [1]. Endemic in more than 100 countries [2,3], the virus is

estimated to cause 390 million infections each year [4]. DENV infections can result in serious

diseases including dengue fever, dengue hemorrhagic fever (DHF), dengue shock syndrome

(DSS) and even death [5]. There are no approved antiviral drugs for these diseases and cur-

rently, patients are treated with supportive care to relieve fever, pain, and dehydration [6]. A

tetravalent dengue vaccine (CYD-TDENV or Dengvaxia), the first dengue vaccine has recently

been registered in several countries [7]. Despite being a leading cause of hospitalisation and

death among children in some Asian and Latin American countries [8], this vaccine is not rec-

ommended for use in children under 9 years of age due to safety concerns [7]. Therefore, there

exists an urgent need for antiviral therapies to treat dengue.

DENV carries a positive single strand RNA in its genome and five serotypes (DENV-1 to 5)

have been identified. DENV-2 is the most prevalent type in dengue epidemic, especially in the

South East Asian region and has been associated with severe dengue cases [9]. The new sero-

type (DENV-5) [10] was discovered in 2013 in Sarawak, Malaysia further complicates the pre-

vention and treatment of the disease. The virus genome is encoded by three structural proteins

(C, prM, E) as well as seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and

NS5) [11]. Of these proteins, NS2B/NS3protease (NS2B/NS3pro) has been well studied and

regarded as a promising target in anti-dengue discovery [12–15].

NS3 is a trypsin like serine protease which plays a role in post-translation in the virus matu-

ration. This domain has a catalytic triad made up of His51, Asp75 and Ser135 and its activity is

enhanced by NS2B as the cofactor [16,17]. This cofactor contributes to the NS3 activity

through its hydrophilic region which is responsible for holding and promoting the activation

of NS3 while the hydrophobic region takes part in membrane association upon the cleavage

process [18,19].

Previous discoveries of dengue inhibitors by targeting NS2B/NS3pro activity were mainly

based on the non-prime substrates which were identified by profiling dengue virus using tetra-

peptides [20–22]. Significant challenges arise as the protein possesses a solvent-exposed, topo-

logically shallow active site and dependent on the selectivity for substrates containing basic

amino acids (arginine and lysine) at P1 and P2 positions [23]. Nevertheless, many peptidic or

modified peptidic molecules have been discovered to have good NS2B/NS3pro inhibition

activities [15, 24–30]. In addition, there are also reports of potent small molecule NS2B/

NS3pro inhibitors from natural products (panduratin[31], agathisflavone and quercetin [32]),

from synthetic medicinal chemistry (dehydronaphthalene [33], benzimidazole [34], and thia-

diazoloacrylamide [35]) or from the utilisation of computational methods [36–39].

Here, we report the discovery of potential NS2B/NS3pro inhibitors designed based on thio-

guanine scaffold identified through the virtual screening of compounds library from National

Cancer Institute (NCI) diversity set II. Twenty-four compounds were found as in silico hits

based on the free energy of binding (ΔGbind) ranking from a total of 1990 compounds. Twenty

of them were obtained from NCI for in vitro assay, out of which four demonstrated moderate

inhibition towards DENV-2 NS2B/NS3pro (IC50 = 29–77 μM). Although Diversity0713

(D0713) is not the most potent compound identified in the virtual screening, the structure

contains thioguanine (TG or 6-thioguanine) scaffold can be used as a template to develop a

series of analogues as its simple chemical structure benefits feasible synthetic steps. TG showed

56% inhibition at 200 μg/mL (1.2 mM) indicating that even without any modification to the

structure, the scaffold itself is able to inhibit the protease activity. This compound is a drug

classed as anti-neoplastic agent and used with other compounds in treating leukemia [40] and
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has been investigated in many pharmacological activities such as immunomodulators in auto-

immune diseases [41] and transplant graft rejection [42]. From this initial study, we are inter-

ested to utilise thioguanine scaffold in the design of DENV-2 NS2B/NS3pro inhibitor(s). Thus,

in this study, we designed, synthesised thioguanine analogues and investigated their possible

DENV-2 NS2B/NS3pro inhibition activity. We hope that this study could contribute to the

efforts in discovering novel and potent anti-dengue agents.

Materials and methods

Virtual screening

Virtual screening was carried out using AutoDockVina [43] (www.autodock.scripps.edu). The

DENV-2 NS2B/NS3pro model was taken from published article [44], where the model was

built based on the DENV-2 complex cofactor-protease using the crystal structure of NS2B/

NS3pro West Nile Virus (WNV) as the template. The docking procedure was initiated by the

preparation of NS2B/NS3pro as a macromolecule using AutoDock Tools (version 1.5.6) with

default parameters for docking with AutoDock Vina. The exhaustiveness was set to 8 and other

parameters were unchanged. The centre of the grid box was set at 30.71, 50.48 and 4.10 Å in x,

y, z coordinates, respectively, with a box size of 25 x 25 x 25 points. The internal validation was

done by re-docking the tetrapeptide inhibitor (Bz-Nle-Lys-Arg-Arg-H) with the RMSD value

not greater than 2Å. The external validation was done using panduratin A (a competitive inhibi-

tor), that dock at the same binding site of tetrapeptide inhibitor. The in silico screening of 1990

ligands from NCI diversity set (II) was carried out using the docking parameters above. The hit

compounds were ranked according to the free energy of binding (ΔGbind) and analysis of their

binding modes were performed using Discovery Studio 3.5 (www.accelrys.com).

DENV-2 NS2B/NS3pro expression and purification, optimum activity and

inhibition assay

The DENV-2 NS2B/NS3pro expression was carried out according to the established method

by Yusof et al., (2000) [45] with minor modifications according to published articles [46–50].

The plasmid encoding the NS2B/NS3 protease sequence from DENV-2 was transformed into

Escherichia coli strain XL1-Blue transformed with pQE30.CF40.gly(T).NS3pro expression

plasmid were grown in LB medium containing 10 μg/ml ampicillin at 37˚C until the OD600

reached 0.6. First, the cells were incubated at 37˚C, 200 rpm until OD600 reached ~0.6. One ml

of isopropyl-β-D-thiogalactopyranoside (0.5 mM in LB medium) was added to the bacterial

cells for 2 hours to induce protein expression. Expression of the recombinant protein was

induced by the addition of 0.5 M IPTG and the culture was incubated for 2 hours.

The cells were harvested by centrifugation at 8000 rpm (Sorvall RC-5B Refrigerated Super-

speed centrifuge) for 15 minutes at 80˚C. The cell pellets were thawed (1 g) and resuspended

in lysis buffer (5 mL) followed by mixing them using vortex until milky. For purification, cells

were lysed by sonication conducting (6 times 15-second pulse, duty cycle 10%, output control

no 3) using Ultrasonic Cell Disruptor, Branson Sonifier 450, Germany. The lysate was incu-

bated on ice for 1 hour and then centrifuged at 8000 rpm for 1 hour at 4˚C. The soluble 6x-

His-NS2B/NS3protease in its native form was filtered (45 μm), batch-bound to 2 x 2 ml Ni2+-

NTA (nickel-nitrilotriacetic acid) resin (pre-equilibrated with column buffer) and incubated

overnight at 4˚C. The resin was cleaned up from the unbound fraction by centrifugation and

the resin with bound protein was collected and loaded into columns (Bio-Rad; 1 x 3 cm). The

gradient technique columns were washed extensively with 3 x 15 ml of wash buffer and further

eluted with 10 ml of elution buffer for each column while being monitored using Bio-Rad
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Bradford protein assay. The purified protein was then analysed with 12% SDS-PAGE, pooled

and stored at -80˚C for further use in the dengue protease activity and inhibition studies. The

dengue protease activity assay was developed as previously described [51] with a slight modifi-

cation [46,47,50]. Briefly, the assay system comprised of 200 mM Tris-HCl (pH 8.5) buffer,

DENV-2 NS2B/NS3pro and Boc-GRR-MCA as the substrate. Protease optimum assay was

executed to ascertain maximum protease activity at constant concentration of the substrate

(25 μM). The protease concentrations were varied within 0–10 μM. The 7-Amino-4-methyl-

coumarin (AMC) [51] produced was measured as fluorescence intensity at λexcitation of 340 nm

and λemission of 440 nm by using ELISA modulus microplate reader.

The compounds were also checked for its requirement to pass the pan assay interference

compounds (PAINS) (http://cbligand.org/PAINS/) before tested for their inhibition activities

against DENV-2 NS2B/NS3pro at a range of concentrations (0 to 300 μg/mL). The result

shows that all the tested compounds, except for D1855 passed the PAINS filter. The concentra-

tion of the protease being used was 3 μM initially incubated with the compound for 10 minutes

at 37˚C with 200 rpm of rotation. Subsequently, 25 μM of the substrate was added and the

incubation was further prolonged for 60 minutes. The fluorescence intensity at 340/ 440 nm

was measured as the AMC byproduct was released upon the peptide substrate cleavage by the

protease. The experiments were triplicated and Panduratin A was used as the positive control.

Synthesis of thioguanine derivatives

All reactions were carried out using standard techniques for the exclusion of moisture [52,53]

except those in aqueous media. The progress of reaction was monitored using TLC on 0.25

mm silica F254 and detected under UV light, or iodine vapor. 1H-NMR and 13C-NMR spectra

were determined using Bruker Avance 500 spectrometer with TMS as an internal standard

and the mass spectra were determined using XEVO-G2TOF #YCA153. Melting points were

obtained using a STUART SMP electro-thermal apparatus and were uncorrected. Anhydrous

reactions were carried out in over-dried glassware under a nitrogen atmosphere. The detail

method of synthesis, the compounds’ structures as well as the numbering due to NMR assigna-

tion can be seen in S1 Text.

Molecular docking simulation

To obtain the bound pose of the thioguanine analogues for MD simulation, molecular docking

was carried out. 3D structures of the two most active compounds (18 and 21) were constructed

and minimised using Hyperchem 8.0 [54] with 1000 steps of steepest descent followed by 1000

steps of conjugate gradient. The minimised structures were than subjected to molecular dock-

ing using AutoDock4.2 [55]. The same DENV-2 NS2B/NS3pro model [43] used in the virtual

screening was used here. The protein and its inhibitors (compounds 18 and 21) were subse-

quently prepared using AutoDockTools 1.5.6. Polar hydrogen and Kollman charges were

added into the DENV NS2B/NS3pro. In preparing both the ligands, the non-polar hydrogen

atoms were merged and Gasteiger charges were assigned. The grid box size and the grid spac-

ing were set around the catalytic triad to 60×60×60 dimension and 0.375 Å respectively, with

the centre set at x = 21.517, y = 43.428 and z = -1.743. AutoDock4.2 was used to run docking

with the Lamarckian Genetics Algorithm (GA) search program applied to generate 100 runs.

The conformations with the ones of lowest free energy of binding and of the most populated

cluster were selected. The docked conformation for each compound (18 and 21) was used as

the starting structure for the subsequent dynamics studies. The interaction analysis was con-

ducted using ligplus+ [56] and VMD 1.9. Panduratin A was used as the positive control and

prepared for the simulation, in a similar way as with compounds 18 and 21.
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Molecular dynamics simulation

To gain insight into the binding interaction of compounds 18, 21 and panduratin A with

NS2B/NS3pro, molecular dynamics simulations were carried out using Amber 14 [57]. The

following is the description of the setups of NS2B/NS3pro-18 (compound 18), NS2B/NS3pro-

21 (compound 21) and NS2B/NS3pro-panduratin. All systems were prepared using LEaP pro-

gram. Amber generalised force filed (GAFF) were assigned to the three compounds whilst

amber ff14SB to NS2B/NS3pro. Each system was neutralised with sodium ions and solvated

using TIP3P water in a 53.57, 46.51, 44.05 Å truncated octahedral water box. To eliminate the

steric clashes, each system was subjected to a total of 500 stepwise minimisation using steepest

descent followed by conjugated gradient. The solvent of the system was first heated to 100 K

with an NVT ensemble, followed by heating of the whole system to 300 K with an NPT ensem-

ble. Throughout the MD simulation, a 0.2 fs time step, SHAKE algorithm, periodic boundary,

and 10 Å cutoffs were applied. The analysis for RMSD and gyration was taken from the begin-

ning. The equilibration phase was 1 ns, and the production phase of the simulation was 69 ns,

with a total simulation time of 70 ns for each system. Analysis was conducted using CPPTRAJ

modules in AmberTools 14 and visualised through VMD.

MM/PBSA calculation

A total of 100 frames were extracted from the last nanosecond of the 70 ns simulation trajec-

tory files. MM/PBSA calculations were performed on each frame using MMPBSA.py module

in AMBER 14. Energy compositions of compounds 18, 21 as well as panduratin A with NS2B/

NS3pro was dissected accordingly.

Results and discussion

Virtual screening and the confirmation of activity of the in silico hits

In this study, 1990 compounds from NCI Diversity Set II were docked into the active site

pocket of DENV-2 NS2B/NS3pro. The active site is made up of important amino acid residues

in S1-S4 subpockets such as Asp129_NS3, Ser135_NS3, Tyr150_NS3 and Tyr161_NS3 (S1

pocket); Asp81_NS2B, Gly82_NS2B, Ser83_NS2B, Asp75_NS3 and Asn152_NS3 (S2);

Ser85_NS2B, Ile86_NS2B and Lys87_NS2B (S3); Val154_NS3 and Ile155_NS3 (S4). The 24

top hit compounds were investigated for their interaction with the active site’s residues and

ranked in term of the free energy of binding (ΔGbind = -10 kcal/mol to -5 kcal/mol, see S1

Table. We identified that there are more than 50 ligands docked into the active site with that

ΔGbind range, but only 24 of them shows interesting interactions with the essential amino acid

residues. The selection of ΔGbind range is adopted from the study reported by Shityakov (2014)

that Gibbs free energy of binding < 6.0 kcal/mol is clustered as active when this prediction is

highly correlated with the experimental results with R2 = 0.880; F = 692.4 standard error of

estimate = 0.775 and p-value = 0.0001 [58]. This virtual screening study has a limitation in

which no decoy database is being used to validate the docking protocol. The non-binding mol-

ecule could be selected over the true ligand called as false positive. Decoy database is the false

positive hits which may improve the validity of the test by generating the true positive rate as

well as enrichment factor. Unfortunately, the decoy for this DENV-2 NS2B/NS3pro has not

been available in a database of useful decoy (DUD dude.docking.org), therefore, the validation

of this virtual screening only relies on internal control docking and by in vitro assay [59]. Fig 1

shows the overlay of all 24 compounds docked into the active site of the protease. Most of the

ligands bound to NS3pro, but there are two ligands (D1099 and D1343) also interacting with

NS2B, particularly at Ser83.
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Dengue protease inhibition assay

From the 24 hits identified in the virtual screening, only 20 were available for the inhibition

assay. Of these 20 compounds, only 10 compounds exhibited significant inhibition activity

towards DENV-2 NS2B/NS3pro activity (Fig 2). The other 10 NCI compounds exhibited neg-

ligible inhibition (<5% inhibition at 200 μM) towards the protease activity.

Four NCI compounds with the percentage of inhibition greater than 50% were selected for

further assay to determine their IC50 (Fig 3). D1855 showed the strongest inhibition towards

the protease activity with IC50 = 29 μM followed by D1498 (48 μM), D0713 (62 μM) and

D1853 (77 μM) (Table 1). Panduratin A was used as a control in this experiment. Previously,

panduratin A was isolated from finger root (Boesenbergia rotunda (L.)) demonstrating com-

petitive inhibition toward DENV-2 NS2B/NS3pro with Ki = 25 μM [31].

Fig 1. Docked conformation of top 24 NCI compounds in the active pocket of DENV-2 NS2B/NS3pro. The NS2B and NS3 domains are presented as surface form

(blue area = NS2B, red area = NS3pro). Insets are the two ligands that bound to the NS2B, instead of NS3pro.

https://doi.org/10.1371/journal.pone.0210869.g001
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D1855 demonstrated the best inhibition towards the protease activity at concentration less

than 50 μM as the relative protease activity dramatically decreased from 100 to 30% (IC50 =

29 μM). This inhibition is probably provided by the hydrogen bonding with Gly153 and His51

and the phenyl ring of the compound formed π-π- interactions with Tyr161 and His51 (Fig 4

(A)). D1498 (IC50 = 48 μM) is the second most potent of these four NCI compounds where

the activity might be contributed by H-bond interaction with Gly151 of NS3, π—π interaction

between its anthracene ring with Tyr161 and π-cation interaction with His51 (Fig 4(B)).

D0713 also demonstrated significant inhibition towards the protease with IC50 = 62 μM. The

docked pose shows the formation of H-bonds between its amino groups with Asn152, Gly151,

and Ser135 and π—π interaction between its guanine ring and Tyr161 (Fig 4(C)). Although

the IC50 of D1853 is approximately 77 μM, this compound showed nearly 70% inhibition of

the protease activity at 200 μM. As with the above NCI compounds, this ligand also formed π-

π as well as π-cation interactions with Tyr161 and His51, respectively, in addition to the H-

bond interaction between its amino groups with Gly151, Ser135 and Gly153 (Fig 4(D)).

Fig 2. In vitro DENV-2 NS2B/NS3pro inhibition assay of Panduratin A and selected NCI compounds; NCI code D0265, D0685,

D0227, D0152, D0126, D1804, D1855, D1498, D0713 and D1853 with D in the code stands for Diversity. The assays contained

0 μM NCI compounds were taken as 0% protease inhibition.

https://doi.org/10.1371/journal.pone.0210869.g002
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In our quest to identify suitable scaffold for designing potential novel and potent dengue

protease inhibitors, we took into consideration the structure of D0713. Although this is not

the most potent compound identified in the virtual screening, the structure contains thiogua-

nine (TG or 6-thioguanine) scaffold. TG, a known drug used with other compounds in treat-

ing leukemia [40] has also been investigated in other pharmacological activities such as in

autoimmune diseases [41] and transplant graft rejection [42]. In addition, its simple chemical

structure also benefits feasible synthetic steps, thus, TG is selected as a template to develop a

series of analogues. Therefore, in order to test our hypothesis, TG was subjected to the protease

inhibition assay and it was found that the molecule showed 56% inhibition at 200 μg/mL (1

mM) indicating that even without any modification to the structure, the scaffold itself is able

to inhibit the protease activity. Thus, TG was chosen as the lead structure in the design and

synthesis of potential anti-dengue compounds.

Design, synthesis and protease inhibition activity of thioguanine derivatives

The various thioguanine derivatives designed are shown in Table 2 with the scaffold being

illustrated in Fig 5. The design was initiated by connecting the aromatic hydrophilic group as

hydrogen bond acceptor (HBA) (1–3) with the amino group; and aromatic hydrophobic

group with sulfonyl in 4–6 at R1. In 7–13, acyl groups such as acetyl, butanoyl, isobutanoyl,

pentanoyl, isopentanoyl and hexanoyl groups were placed at the same position, while benzoyl

group was instead placed in 14. Replacing aliphatic hydrophobic group at R3 with cyclopentyl

group, as present in D0713, yielded 15.

Compounds 1–3 are imine derivatives of TG. Imine itself has an electron withdrawing

nature, albeit weakly. Attaching another EWG such as NO2 (1) and COOH (2) to the

Fig 3. Plot of % DENV-2 NS2B/NS3pro inhibition vs log concentration of the four NCI compounds. Panduratin A

was used as a control in this experiment.

https://doi.org/10.1371/journal.pone.0210869.g003

Table 1. Top in vitro hits from NCI diversity set compounds towards both S1 and S2 pockets of DENV-2 NS2B/

NS3pro.

Ligands ΔGbind (Kcal/ mol) Experimental IC50 (μM)

D1498 -7.40 48

D1853 -9.90 77

D1855 -8.90 29

D0713 -7.10 62

Panduratin A -6.30 56

https://doi.org/10.1371/journal.pone.0210869.t001

Thioguanine-based DENV-2 NS2B/NS3 protease inhibitors

PLOS ONE | https://doi.org/10.1371/journal.pone.0210869 January 24, 2019 8 / 21

https://doi.org/10.1371/journal.pone.0210869.g003
https://doi.org/10.1371/journal.pone.0210869.t001
https://doi.org/10.1371/journal.pone.0210869


benzimine (in the para position) as R1 rendered the compounds to be inactive (IC50>

1000 μM). Interestingly, attaching an electron donating group (EDG) to benzimine at R1 (3)

showed high protease inhibition (IC50 = 28 μM). These raised the idea to maintain the EWG

group as a linker between the two aromatic rings of TG and the phenyl group which was modi-

fied to have EDG character.

Compounds 4 and 5 were designed to have sulfonyl (EWG) with CH3 and/ or OCH3

(EDG) on benzenesulfonyl as R1. These compounds demonstrated lower activities than 3 with

IC50 of 68 and 55 μM, respectively. In 6, the same group attached to R1 was also placed at R2

during the synthesis but changes in activity were insignificant. Placing at R1 with acetyl or

extended alkyl chain (7–13), in general resulted in marked reduction in protease inhibition,

with the exception noted for 11 which showed IC50 = 80 μM.

Placing a simple aromatic hydrophobic group (benzoyl) as seen in 14 did not increase the

activity. Exploring placement at R3 with an aliphatic hydrophobic group (15) also did not

Fig 4. Docked poses of (a) D1855, (b) D1498, (c) D0713 and (d) D1853. The NS2B and NS3pro domains are presented as surface form (blue area = NS2B, red

area = NS3pro). The H-bond interactions are assigned as yellow dots inside the white circles.

https://doi.org/10.1371/journal.pone.0210869.g004
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produce a compound with any improvement in the protease inhibition activity. At this point,

it was decided to synthesize six more compounds with expected higher activities.

Table 2. The list of TG derivatives with their experimental IC50 against DENV -2 NS2B/NS3pro.

Ligands R1 R2 R3 IC50 (μM)

1 (4-nitrophenyl)methanimine H H 1995

2 4-(iminomethyl)benzoic acid H H 1367

3 4-(iminomethyl)-2-methoxy-6-nitrophenol H H 28

4 3-methoxybenzenesulfinic acid H H 68

5 4-methoxybenzenesulfinic acid H H 55

6 3-methylbenzenesulfinic acid 3-methylbenzenesulfinic acid H 63

7 acetyl H H 151

8 butanoyl H H 57

9 isobutanoyl H H 3893

10 pentanoyl H H 1037

11 3-methylbutanoyl H H 80

12 hexanoyl H H 168

13 palmitoyl H H 132

14 benzoyl H H 370

15 acetyl H cyclopentyl 556

D0713 H 2-methylpyridine cyclopentyl 62

TG H H H 753

Panduratin A - - - 56

https://doi.org/10.1371/journal.pone.0210869.t002

Fig 5. The structure of thioguanine scaffold.

https://doi.org/10.1371/journal.pone.0210869.g005
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Inspired by 7, 8 and 11 where the compounds have amide group with promising inhibitory

activity, six compounds (16–21, see Table 3) having amide group with diverse alkyl chains

were designed. As the natural substrate of the protease is peptide, it made sense to incorporate

amide groups into the inhibitor structure in order to mimic the peptide character. High activ-

ity of 18, 19 and 21 towards DENV-2 NS2B/NS3pro (IC50 of 0.38, 54 and 16 μM, respectively)

could be due to this mimic of peptide character. Compound 18 with pentanamide chains at

both R1 and R2 possessed the highest activity against the protease. However, attaching benzyl

group at R2 (19) dramatically decreased the activity from 0.38 to 54 μM. Interestingly, attach-

ing benzyl group at R3 significantly increased the activity to 16 μM. Compounds 16 and 17

have amide group extended by shorter alkyl chains showed moderate activity with IC50 = 97

and 80 μM, respectively. To confirm the essentiality of amide group, in compound 20, the

amide group at R1was omitted and at R2, it was replaced with methylnaphthalene whilst at R3

with isopropyl chain. As predicted, the activity of 20 significantly decreased with IC50 =

258 μM. The activity-dose curve of compounds 18 and 21 are presented in Fig 6.

Molecular docking simulation

From the docking results, several interactions were identified between NS2B/NS3pro with 18

and 21. For 18, interacting residues such as Ser157(135), Tyr183(161) and Gly175(153) indi-

cated potential hydrogen bonding interactions. The numbering in the bracket indicates the

Table 3. The structures of six newly designed compounds and their activity against DENV-2 NS2B/NS3pro.

Ligands R1 R2 R3 IC50 (μM)

16 propanoyl propanoyl H 97

17 isopropanoyl isopropanoyl H 80

18 pentanoyl pentanoyl H 0.38

19 pentanoyl benzyl H 54

20 H 2-methylnaphtyl isopropyl 258

21 pentanoyl benzyl benzyl 16

https://doi.org/10.1371/journal.pone.0210869.t003

Fig 6. The log dose dependent curve of Compound 18 and 21 against DENV-2 NS2B/NS3pro.

https://doi.org/10.1371/journal.pone.0210869.g006
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numbering in Wichapong model. Binding stability is contributed by all the hydrophobic inter-

actions surrounding the entire binding site with the free energy of binding– 7.49 kcal/mol (Fig

7). In addition, 21 demonstrated binding affinity (ΔG = -8.10 kcal/mol) with the hydrogen

bonding also observed with Asn174.

Stability and conformational changes in MD complexes

To further substantiate the stability and conformational changes, MD simulation was carried

out to understand the dynamic features of the two best compounds with respect to time at

nanosecond scale. Overall the backbone RMSD values for Apo, NS2B/NS3pro-18, NS2B/

NS3pro-21 are <2 Å throughout the 70 ns simulation time reflecting the stability of the sys-

tems. NS2B/NS3pro-Panduratin adopted a higher RMSD with the range of 2.0 to 2.5 Å at 20 to

50 ns simulation time, however, it stabilised at<2 Å from 50 to 70 ns of simulation time

(Fig 8).

The gyration value indicates the compactness of the protein which in turn reflects directly

on the folding and unfolding of the protein where unfolding of the protein would affect the

kinetic of the protein activity. The gyrations of all the four systems (apoenzyme, 18, 21 and

Panduratin A) are fluctuating in less than 1 Å at 15.5 to 16.5 Å. No unfolding is observed with

a low fluctuation on the gyration.

Hydrogen bonding analysis

Protein-ligand interaction in general is stabilised by various types of weak interactions with

hydrogen bonding interaction is potentially one of the most important interactions. Hydrogen

Fig 7. Binding orientation and interaction mode of compound with compound 18 (A) and compound 21 (B) in molecular docking simulation.

https://doi.org/10.1371/journal.pone.0210869.g007
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bond formation is observed with several important interacting residues such as His73(51),

Asp151(129), Ser157(135), Asn174(152) and Tyr183(161) in both systems (Table 4) (The num-

ber in parenthesis is according to Wichapong model). Asn174 in NS2B/NS3pro played an

important role in forming hydrogen bonds which occupied more than 60% of the simulation

time with 18. Asp97(75) was also found to form hydrogen bonds with both nitrogen groups of

18 with the total occupancy of 8.22% simulation time. It is interesting to note that Tyr183(161)

and Ser157(135) which are important in the protease activity also demonstrated weak hydro-

gen bonds formation with the occupancy of 2.85% and 2.73%, respectively. It is thus postulated

that these hydrogen network together with the hydrophobic clusters contributed to the bind-

ing affinity of 18.

The number of hydrogen bond formation observed with 21 is lesser as compared to 18.

His73 formed a hydrogen bond with nitrogen group in 21 with 27.4% occupancy of the total

70ns simulation time. Two hydrogen bonds between Ser157 and the nitrogen and oxygen

groups of 21 with 5.12% and 4.58% occupancy while very weak hydrogen bonds were

observed with other interacting residues such as Asp97, Asn174 and Tyr183 with less than 1%

occupancies.

Fig 8. (A) Time evolution of RMSD of NS2B/NS3pro backbone CA unbounded (Apo) (black), bounded with panduratin A (red), 18 (green) and 21 (blue). (B)

Time evolution of radius of gyration of NS2B/NS3pro backbone CA unbounded (Apo) (black), bounded with panduratin A (red), 18 (green) and 21 (blue).

https://doi.org/10.1371/journal.pone.0210869.g008
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Table 4. Hydrogen bonds between compound 18 and compound 21 with NS2B/NS3pro that found with at least 0.1% occupancy throughout 70ns simulation time.

Complex Hydrogen bond formation Distance (Å) Occupancy (%)

NS2B/NS3-18 Gly173@O-Comp18@H5/Comp18@N4 2.85 27.19

Asn174@OD1-Comp18@H25/Comp18@N2 2.85 21.16

Comp18@N1-Asn174@HD21/Asn174@ND2 2.91 11.21

Comp18@N1-Tyr183@HH/Tyr183@OH 2.83 8.33

Gly175@O-Comp18@H25/Comp18@N2 2.85 6.41

Asp97@OD1-Comp18@H25/Comp18@N2 2.82 4.46

Tyr183@OH-Comp18@H5/Comp18@N4 2.90 2.74

Comp18@O2-Ser157@HG/Ser157@OG 2.77 2.19

Asp97@OD2-Comp18@H5/Comp18@N4 2.83 1.93

Asp97@OD2-Comp18@H25/Comp18@N2 2.84 1.83

Gly35@O-Comp18@H5/Comp18@N4 2.86 1.15

Ser157@OG-Comp18@H5/Comp18@N4 2.89 0.54

Ser36@OG-Comp18@H5/Comp18@N4 2.88 0.51

Comp18@O2-His73@HE2/His73@NE2 2.86 0.45

Asp34@O-Comp18@H5/Comp18@N4 2.85 0.36

Gly175@O-Comp18@H5/Comp18@N4 2.85 0.23

Comp18@O2-Ser36@HG/Ser36@OG 2.78 0.23

Met37@O-Comp18@H25/Comp18@N2 2.84 0.22

Ser36@OG-Comp18@H25/Comp18@N2 2.90 0.15

Comp18@N9-Ser36@HG/Ser36@OG 2.87 0.13

Comp18@O2-Tyr183@HH/Tyr183@OH 2.81 0.12

Gly35@O-Comp18@H25/Comp18@N2 2.88 0.12

Tyr183@OH-Comp18@H25/Comp18@N2 2.92 0.11

Asn174@OD1-Comp18@H5/Comp18@N4 2.94 0.10

Comp18@O1-Arg76@HH22/Arg76@NH2 2.89 0.10

NS2B/NS3-21 His73@ND1-Comp21@HN/Comp21@N 2.89 27.40

Ser157@OG- Comp21@H1/Comp21@N1 2.86 5.12

Comp21@O-Ser157@HG/Ser157@OG 2.79 4.58

His73@ND1-Comp21@H/Comp21@N4 2.82 0.96

Asp97@OD2-Comp21@HN/Comp21@N 2.84 0.39

Asp97@OD1-Comp21@HN/Comp21@N 2.82 0.25

Gly175@O-Comp21@HN/ Comp21@N 2.85 0.15

Asn174@OD1- Comp21@H/Comp21@N4 2.82 0.12

NS2B/NS3-panduratin Phe152@O-Pandu@H10/Pandu@O3 2.68 9.59

His73@O-Pandu@H9/Pandu@O1 2.71 5.74

Phe152@O-Pandu@H9/Pandu@O1 2.71 1.50

Pandu@O-Tyr183@HH/Tyr183@OH 2.79 1.29

Asp151@OD2-Pandu@H9/Pandu@O1 2.65 1.13

Asp151@OD1-Pandu@H9/Pandu@O1 2.67 0.57

Pandu@O2-Tyr172@HH/Tyr172@OH 2.86 0.41

Pandu@O2-Val177@H/Val177@N 2.89 0.40

Pandu@o2-Ser157@HG/Ser157@OG 2.83 0.28

Pandu@O3-Tyr183@HH/Tyr183@OH 2.86 0.22

Pandu@O2-Tyr183@H/Tyr183@N 2.91 0.19

Asp151@OD1-Pandu@H10/Pandu@O3 2.66 0.16

Val74@O-Pandu@H9/Pandu@O1 2.80 0.13

His73@ND1-Pandu@H9/Pandu@O1 2.85 0.13

Pandu@O3-Phe152@H/Phe152@N 2.91 0.12

Gly173@O-Pandu@H9/Pandu@O1 2.79 0.10

Pandu@O-Tyr183@H/Tyr183@N 2.90 0.10

https://doi.org/10.1371/journal.pone.0210869.t004
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In the case of panduratin A, only weak hydrogen bonds with less than 10% occupancies

throughout 70ns were found with residues such as Phe152, His73, Asp151 and Tyr183. The

formation of hydrogen bonding is significantly weaker as compared to 18 and 21.

Comparison of free energy of binding between panduratin A, 18 and 21

The interaction and decomposition energies of the interactions between panduratin A, 18 and

21 were calculated using MM/PBSA. A total of 100 snapshots were extracted every 10 ps inter-

val from the last nanosecond. The absolute binding free energy (Table 5) for panduratin A, 18

and 21 are-11.27 ±2.99, -16.10 ± 2.70 and -18.24 ± 4.66 kcal/mol, respectively. Non-polar

interaction between the binding site residues as well as the aliphatic chain (pentanoyl) of 18

and 21 provides major contribution to the binding energy. The binding of panduratin A

against NS2B/NS3pro is less favourable as compared to 18 and 21. Similarly, major contribu-

tion of panduratin A binding is mainly from the non-polar interaction. This can be inferred

from the fact that only weak hydrogen bonds were found between panduratin A and NS2B/

NS3pro with low occupancies. This reflects that the binding of panduratin A is stabilised

mainly by van der Waals and hydrophobic interactions.

The binding free energy estimated by MMPBSA calculation indicated that 21 has better

binding as compared to 18 but the IC50 for 18 is better. 18 and 21 have identical pentanoyl R1

group but 21 has two aromatic benzyl groups at R2 and R3 instead of a carbonyl chain and

hydrogen for 18 at R2 and R3, respectively. Higher van der Waals interaction was observed

from MM/PBSA calculation for 21 due to the presence of these two benzyl groups at R2 and

R3. However, these interactions might be overestimated using MM/PBSA approach [60].

Further discussion

Thioguanine was identified as a potential scaffold for DENV-2 NS2B/NS3pro inhibitor based

on virtual screening, in vitro assay and molecular modelling. The thioguanine scaffold is com-

posed of pyramidine and imidazole rings attached to an amine and a thiol group which may

contribute to the compound’s activity. As far as we are aware, no report of pyrimidine inhibi-

tion to DENV-2 NS2B/NS3pro, however, 2-(benzylthio)-6-oxo-4-phenyl-1,6-dihydropyrimi-

dine has been reported to demonstrate an activity against SARS-CoV-3C like protease [61]. In

addition, pyrimidine has also been shown to actively stop the growth of DENV-2 but it relies

on the capability of pyrimidine to inhibit dihydroorotate dehydrogenase (DHODH), an

enzyme required for viral pyrimidine biosynthesis [62]. Imidazoles have also been investigated

against dengue virus [63] however the exact molecular mechanism or which protein they tar-

get is still unknown. The 6-thioguanine scaffold has been reported to non-competitively

inhibit ubiquitin specific protease in various cancers [64]. With this background, we postu-

lated that thioguanine derivatives might potentially be good inhibitors against DENV-2 NS2B/

NS3pro.

Table 5. Binding free energy predicted using MM/PBSA calculation for 18, 21 and panduratin A.

Energy Component Binding Free Energy (kcal/mol)

Compound 18 Compound 21 Panduratin A

Polar component electrostatics -30.05 ± 8.77 -264.23 ± 17.87 -1.90 ±6.37

Electrostatics solvation 42.54 ± 8.73 292.37 ± 17.63 14.21 ± 4.22

Non-polar component van der Waal -26.22 ± 2.6 -44.36 ± 2.83 -21.18 ± 2.54

Non-polar solvation -2.66 ± 0.15 -4.73 ± 0.10 -2.40 ±0.17

TOTAL Binding Free energy -16.37 ± 3.22 -20.95 ± 4.12 -11.27 ± 2.99

https://doi.org/10.1371/journal.pone.0210869.t005
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Two most active compounds (18 and 21) against DENV2-NS2B/NS3pro have an amide

functional group (instead of an amino group). Amide is a part of peptide which is recognised

as the key point for the protease substrate. In the docking study, the amide group is marked as

a HBD with N-amide interacts with O-phenol of Tyr161 (in 18) and Asn152 (in 21) via H-

bond. Previously, amide, such as α-ketoamide [65], arylcyanoacrylamide [66], and aminoben-

zamide [67] has been incorporated in the design of DENV NS2B/NS3pro inhibitors. The alkyl

chain of 18 and phenyl-benzyl group of 21 demonstrate hydrophobic features and agreeable to

docking results which show that these groups bound at the hydrophobic pocket surrounded by

Val154, Ile86, Met84 and Val155. These also correlate with the decomposition energies as

computed by MM/PBSA which highlight that the major contribution to the interaction with

DENV-2 NS2B/NS3pro is from non-polar interaction.

It is interesting to note that the binding orientations from the MD simulations for both

compounds are different despite sharing similar thioguanine (Fig 9). The thioguanine moiety

is facing toward His73 and Tyr183 for 18 and 21, respectively. Compound 18 has an acyl

group at R2 which provides additional electron lone pair enabling the formation of hydrogen

bonds that can strengthen its binding towards NS2B/NS3pro. This reflected clearly in the

hydrogen bond analysis where 18 formed more hydrogen bonds as compared to 21. Regardless

of the slightly lower absolute binding energy from the MM/PBSA prediction, the binding

interaction analysis of 18 with NS2B/NS3pro agrees well with experimental results. The

Fig 9. Binding orientation and interaction mode of compound with 18 (A), 21 (B) and panduratin A (C) in molecular dynamics simulation.

https://doi.org/10.1371/journal.pone.0210869.g009
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absolute free energies of binding for both two active compounds are also more negative than

panduratin A supporting the in vitro results in which compound 18 and 21 better IC50 value

(0.38 and 16 μM, respectively) than panduratin A (56 μM).

Conclusions

We presented here the computational design of potential DENV-2 NS2B/NS3pro inhibitors.

From the virtual screening of National Cancer Institute Database, four compounds including

D0713 were observed to have moderate inhibition activity on the protease. D0713 has a thio-

guanine scaffold in its structure prompting us to consider the scaffold for designing the new

thioguanine derivatives as potential DENV-2 NS2B/NS3pro inhibitors. Fifteen compounds

were synthesised and the bioactivity against dengue protease showed variation in inhibition

activity from inactive to moderately active (1000>IC50>18 μM). Based on this information, a

further design of six new compounds was conducted by concentrating on the attachment of

amide group. All the compounds showed inhibition activity against the dengue protease with

compound 18 being the most potent (IC50 of 0.38 μM). This result agrees well with the MM/

PBSA calculation which showed that the interactions are mainly contributed by polar and

non-polar interactions. Hydrogen bonding analysis demonstrates the importance of amino

acid residues Asn174 (occupancy 60%), Asp75 (8.22%), Tyr183 and Ser157 (2.85 and 2.73%).

This is further supported by the experimental results which showed that 18 could be further

developed as DENV-2 NS2B/NS3pro inhibitor. It is hoped that the results obtained from this

study could be used in designing more active compounds as potential dengue protease

inhibitors.
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