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Abstract

There is substantial interest in assessing how exposure to environmental mixtures, such as 

chemical mixtures, affect child health. Researchers are also interested in identifying critical time 

windows of susceptibility to these complex mixtures. A recently developed method, called lagged 

kernel machine regression (LKMR), simultaneously accounts for these research questions by 

estimating effects of time-varying mixture exposures, and identifying their critical exposure 

windows. However, LKMR inference using Markov chain Monte Carlo methods (MCMC-LKMR) 

is computationally burdensome and time intensive for large datasets, limiting its applicability. 

Therefore, we develop a mean field variational Bayesian inference procedure for lagged kernel 

machine regression (MFVB-LKMR). The procedure achieves computational efficiency and 

reasonable accuracy as compared with the corresponding MCMC estimation method. Updating 

parameters using MFVB may only take minutes, while the equivalent MCMC method may take 

many hours or several days. We apply MFVB-LKMR to PROGRESS, a prospective cohort study 

in Mexico. Results from a subset of PROGRESS using MFVB-LKMR provide evidence of 

significant positive association between second trimester cobalt levels and z-scored birthweight. 

This positive association is heightened by cesium exposure. MFVB-LKMR is a promising 

approach for computationally efficient analysis of environmental health datasets, to identify 

critical windows of exposure to complex mixtures.
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1 | INTRODUCTION

There is growing interest from environmental health institutes and regulatory agencies to 

quantify and assess the health impacts of exposure to multi-pollutant mixtures (Carlin et al., 

2013; Billionnet et al., 2012). Multi-pollutant mixtures can be used to describe an array of 

environmental exposures; in this article, we focus on exposures to heavy metal mixtures, 

which may include manganese, arsenic and lead, among others. While the effects of a single 

metal exposure, such as lead, on child development has been well researched, less is known 

about the joint effects of co-exposure to mixtures of heavy metals (Bellinger, 2008; Claus 

Henn et al., 2014). Furthermore, it is hypothesized that there may be certain time windows 

of susceptibility in pregnancy and early life, also called critical exposure windows, during 

which vulnerability to metal mixture exposures is increased. As there are many sequential 

developmental processes in fetal life and early childhood (Stiles and Jernigan, 2010), the 

health effects of heavy metal mixture exposures can be highly-dependent on exposure 

timing. In practice, understanding which chemical exposures to mitigate as well as when to 

intervene provides two important pieces of scientific knowledge. First, this knowledge can 

help inform the most health-protective interventions. Second, knowledge of the particular 

chemical and critical windows of exposure can help inform the biologic mechanism by 

which exposure is affecting health. In many cases, developmental processes occur 

sequentially, rather than concurrently. Hence, we observe a specificity of exposure timing on 

health effects, as exposures might affect a process that is operating at a specific life phase. 

Thus, when a person is exposed to a toxic chemical can be as important as the dose itself and 

can inform how exposures affect health.

Two primary objectives of mixtures research are (1) to quantify the health effects of 

exposure to complex metal mixtures, and (2) to identify time windows of susceptibility to 

the mixture exposures. It is well known that developmental processes occur in a time 

dependent manner and that dose response curves to individual chemicals vary based on the 

timing of exposure. To fit this biological framework, mixtures analysis needs to be able to 

address the role of critical windows. To date, the two objectives of mixtures research have 

mainly been studied separately, however, leaving a gap in the statistical literature for 

methods that link these two issues together. Methods to study the exposure-response 

relationship for complex mixtures include Bayesian kernel machine regression (Bobb et al., 

2015), weighted quantile sum regression (Gennings et al., 2013), random forest and cluster 

analysis (Billionnet et al., 2012). While these methods accommodate a variety of exposure-

response relationships, they do not account for potential time-varying exposures to complex 

mixtures which are a property of critical windows. There have also been recently developed 

methods to analyze time windows of susceptibility to exposures, including single pollutant 

distributed lag models, which have been used to describe the effect of a single chemical 

exposure (Hsu et al., 2015; Warren et al., 2012, 2013; Darrow et al., 2011). However, these 
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methods do not account for interactions, effect modification between two chemicals at a 

time window, complex mixtures or interactions between chemical exposures measured at 

different times. One exception is the work of Bello et al. (2017), who extended the 

distributed lag framework to account for mixtures, but the method only quantifies the 

magnitude, not directionality, of the mixture effects, and also cannot identify the 

directionality of individual mixture components.

In the case of more complex exposure-response relationships, as is hypothesized to occur in 

complex mixtures data, many of the existing methods do not encompass all the desirable 

qualities of a flexible method, such as accounting for non-linear and non-additive exposure-

response functions, accounting for potential time-varying exposures to complex mixtures 

and accounting for interactions. These are important to account for, as prior environmental 

health research has found evidence of nonlinear, or inverted-u relationships between single 

metal exposures and health outcomes (Claus Henn et al., 2010a), as well as evidence of 

interactions among metal mixtures (Claus Henn et al., 2014). Accordingly, Liu (2016); Liu 

et al. (2017) proposed a method that simultaneously estimates the complex exposure-

response relationship between mixtures and health outcomes, and identifies critical 

windows. They termed the model lagged kernel machine regression (LKMR). The authors 

sought to model the exposure-response random effects for the exposures measured at a 

single time window, while controlling for exposures at all other time windows. This 

challenge of modeling random effects models has arisen in different fields of the statistics 

literature. Often, basis functions are used to specify random effects models, as occurs in 

spatial statistics (Gelfand and Schileip, 2016; Higdon, 1998, 2002; Calder, 2008), functional 

data analysis (Delicado et al., 2010), time series (Du and Zhang, 2008), and mixed modeling 

(Scheipl et al., 2015). In the LKMR model, the authors used a kernel function (further 

detailed in Section 3) to specify the random effects model. Kernel functions and basis 

functions are closely related; an unknown exposure response function can be either 

represented under the primal representation through basis functions, or under the dual 

representation through a kernel function.

Under LKMR, the non-linear and non-additive effects of time-varying mixture exposures are 

estimated while allowing for the effects to vary smoothly over time, similar to a distributed 

lag model. They used a novel Bayesian penalization scheme that combines the group and 

fused lasso (Kyung et al., 2010; Yuan and Lin, 2006; Park and Casella, 2008; Huang et al., 

2012) within a Bayesian kernel machine regression framework (Bobb et al., 2015). Because 

there is often correlation among metal mixtures exposures within a given time window, as 

well as auto-correlation across time windows, the LKMR model uses the group and fused 

lasso penalties to account for these dependencies, respectively. The group lasso penalty 

regularizes the exposure-respone function at each time window, and provides a framework 

for incorporating the kernel matrix, while the fused lasso penalty shrinks the exposure-

response functions of neighboring time windows towards each other. The authors described 

a Markov chain Monte Carlo (MCMC) algorithm using Gibbs sampling for LKMR, and 

focus on an environmental health data application with small sample size (N = 84). 

Specifically, they applied the method to describe how exposures to metal mixtures, captured 

in teeth biomarker, during pregnancy and early life are associated with neurodevelopment. 

However, due to the complexity of the LKMR model, computational time for updating 
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parameters in the MCMC algorithm dramatically increased with the number of subjects or 

time points studied. As many iterations in the MCMC algorithm are needed to ensure that 

the chain converges to the target posterior distribution for the parameters of interest, this can 

be computationally burdensome.

In this article, we propose an approximation method for the LKMR model, in order to 

reduce computation time and allow for the analysis of larger datasets. The approximation 

method uses the mean field variational approximation method for Bayesian inference, or 

MFVB for short. Variational approximations are useful when standard sampling-based 

approaches to posterior approximation are impractical or infeasible. The central idea behind 

variational Bayes is that the posterior densities of interest are approximated by other 

densities for which inference is more tractable. Variational Bayes, shorthand for variational 

approximate Bayesian inference, is a computationally efficient alternative to MCMC 

(Ormerod and Wand, 2010). Unlike MCMC, variational Bayes is a deterministic technique. 

While MCMC tends to converge slowly, variational Bayes provides a fast approximation to 

the true posterior. converge slowly, variational Bayes provides a fast approximation to the 

true posterior.

In this article, we demonstrate the utility of MFVB for LKMR to study health effects 

associated with exposure to time-varying mixtures, and illustrate the method by applying it 

to a children’s environmental health study. Taking advantage of the computational efficiency 

of MFVB-LKMR, we apply it to analyze a larger set of data (N = 391), to describe how 

exposures to metal mixtures during pregnancy are associated with birth weight. We apply 

the method to the Programming Research in Obesity, Growth, Environment and Social 

Stressors (PROGRESS) study, an ongoing, prospective pre-birth cohort study in Mexico 

City. For this analysis, we focus on exposures during three critical peri-natal time windows: 

second trimester of pregnancy, third trimester of pregnancy, and birth. Metal mixtures are 

measured in time-varying maternal blood samples which represent exposures during the 

second and third trimesters of pregnancy. They are also measured in cord blood samples 

collected within 12 hours of delivery, which represent exposures near the time of birth. The 

data contains measurements of exposures to multiple metals, including arsenic (As), cadium 

(Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), manganese (Mn), antimony 

(Sb), and selenium (Se). The outcome of interest is birthweight z-scores, calculated 

according to the international infant growth charts developed by Fenton et al. (2013).

The article is developed as follows. In Section 2, we briefly review MFVB, while in Section 

3, we review kernel machine regression. In Section 4, we detail the LKMR model and the 

corresponding MFVB algorithm. In Section 5, we describe the simulation study to evaluate 

the performance of the MFVB algorithm. In Section 6, we apply the method to data from 

PROGRESS. Finally, in Section 7, we provide the discussion and conclusion.

2 | REVIEW OF MEAN FIELD VARIATIONAL BAYES

In this section, we provide a summary of MFVB; for a detailed review, see Ormerod and 

Wand (2010). Suppose we use a Bayesian paradigm to conduct inference on the continuous 

parameter vector θ ∈ Θ corresponding to an observed data vector y. The posterior 
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distribution p(θ|y) ≡ p(y, θ)/p(y) is used for Bayesian inference, where p(y) is known as the 

marginal likelihood. It can be shown that the logarithm of the marginal likelihood is bound 

by:

logp(y) = ∫ q(θ)log p(y, θ)
q(θ) dθ +∫ q(θ)log q(θ)

p(θy) dθ . (1)

There is an inequality:

∫ q(θ)log p(y, θ)
q(θ) dθ +∫ q(θ)log q(θ)

p(θ y) dθ ≥∫ q(θ)log p(y, θ)
q(θ) dθ, (2)

which holds because the the second term of (2),

∫ q(θ)log q(θ)
p(θ y) dθ ≥ 0 (3)

is the Kullback-Leibler divergence between density q and p(·|y) and is greater or equal to 

zero for all densities q, and equal to zero if and only if q(θ) = p(θ|y) almost everywhere. 

Therefore, the q-dependent lower bound on the marginal likelihood is defined as p_(y; q), 
where

p(y; q) = exp∫ q(θ)log p(y, θ)
q(θ) dθ . (4)

In variational approximation, we approximate the posterior density p(θ |y) using a q(θ). We 

seek to minimize the Kullback-Liebler divergence between q(θ) and p(θ |y), by maximizing 

p_(y; q), so that q(θ) is a good approximation for p(θ |y). A common restriction for q(θ) is the 

product density restriction (Ormerod and Wand, 2010). Approximate Bayesian inference 

under product density restrictions is also called mean field variational Bayes (MFVB). In 

this article, we use MFVB to implement the LKMR model. There is a link between Gibbs 

sampling, which is used in the MCMC implementation of LKMR, and MFVB. Specifically, 

when Gibbs sampling is applicable, as in the case with LKMR, tractable solutions for 

MFVB also exist (Ormerod and Wand, 2010). However, we note that other options for the 

restriction of q(θ) also exist, such as semi-parametric mean field variational Bayes (Rohde 

and Wand, 2016), the restriction that q(θ) belongs to a parametric family of density 

functions (Ormerod and Wand, 2010), and tangent transform variational approximations 

(Jordan et al., 1999).

Under MFVB, we assume that q(θ) can be factored into ∏i = 1
M qi(θi) for some partition {θ1, 

…, θM} of θ. By maximizing the log p_(y; q) over each of the q1,...qM, we obtain the optimal 

densities:
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qi
∗(θi) ∝ exp[E−θi

logp(y, θ)], i = 1, …, M, (5)

where E−θi
 indicates expectation with respect to the density ∏ j ≠ iq j(θ j). Using iteration, 

we can update each qi
∗( ⋅ ) for i = 1,..., M. This MFVB algorithm allows us to obtain 

parameter updates, and then perform Bayesian inference.

3 | REVIEW OF KERNEL MACHINE REGRESSION METHODS

The kernel machine regression framework is used to estimate the effect of a complex 

environmental mixture when exposure is measured at a single time point. Kernel machine 

regression (KMR) is defined as follows: For each subject i = 1, …, N, M components of the 

exposure mixture zi = (z1i,..., zMi)⊤ are associated with the continuous, normally distributed 

health outcome (yi) through an unknown exposure response function, h(·), while controlling 

for C relevant covariates xi = (x1i,..., xCi)⊤. The KMR model is

yi = h(z1i, …, zMi) + xi
⊤β + εi, (6)

where β denotes covariate effects, and εi
iidN 0, σ2 .

The unknown exposure response function, h (·), is of particular interest, as it captures the 

unknown effect of a complex environmental mixture. h (·) can be specified in one of two 

ways. One possibility is to specify it using basis functions. However, explicit basis functions 

may be difficult to specify when the mixture is comprised of a large number of components 

with potentially complex interactions. Therefore, we use a kernel machine formulation to 

represent h (·), which does not require explicit basis functions to be specified. Mercer’s 

theorem (Cristianini and Shawe-Taylor, 2000) shows that under regularity conditions, the 

kernel function K (·,·) implicitly specifies a unique function space, Hk, spanned by a set of 

orthogonal basis functions. Therefore, a kernel function can represent any function h (·) ∈ 
Hk. Intuitively, kernels capture the similarity between exposure profiles zi and zj for any two 

subjects i, j. The specific kernel choice can be used to control the complexity and form of the 

unknown exposure-response function. For example, if a Gaussian kernel is used, the 

similarity is quantified through the Euclidean distance, and if a polynomial kernel is used, 

the similarity is quantified using the inner product. In our analyses, we use a kernel 

representation for h (·) as the exposure-response relationship may be complex, including 

potential nonlinear and non-additive associations.

The connection between kernel machine methods and linear mixed models was made by Liu 

et al. (2007), who developed least-squares kernel machine semi-parametric regression. They 

show that (6) can be alternatively expressed as the mixed model
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yi N(hi + xi
⊤β, σ2) (7)

h = (h1, …, hn)⊤ Gp[0, τK( ⋅ , ⋅ )], (8)

where GP denotes Gaussian Process and K is a kernel matrix with i, jth element K (zi, zj). h 
= (h1,.., hn)⊤ represents the subject-specific random effects, each capturing the contribution 

of the exposure mixture zi = (z1i,..., zMi)⊤ for subject i to the outcome mean for that subject.

4 | MEAN FIELD VARIATIONAL BAYES FOR LAGGED KERNEL MACHINE 

RE-GRESSION

4.1 | Review of lagged kernel machine regression

Next, we review lagged kernel machine regression (LKMR) for estimating the effects of a 

complex mixture when exposures are measured at multiple time points, with the additional 

objective of identifying critical windows of exposure. For each subject i = 1, …, N exposed 

to multi-pollutant mixtures zi t = (z1i,t,..., zMi,t)⊤ at time intervals t = 1,..., ⊤, we use the 

LKMR model to relate the health outcome to the clinical covariates and time-varying 

exposure measurements

yi = β0 + ∑
t

ht(z1i, t, …, zMi, t) + xi
⊤β + εi . (9)

The function ht (zi,t) represents the time-specific effects of exposure mixtures, while 

controlling for exposure at the other time windows. The LKMR model can also be 

represented through mixed models, such that

yi = β0 + ∑
t

hi, t + xi
⊤β + εi . (10)

ht = (h1,t, …, hn,t)⊤ represents the subject- and time-specific effects of the mixture on the 

outcome, for the exposure z1,t,..., zn,t measured at time t, controlling for exposures at all 

other time points.

Liu (2016); Liu et al. (2017) details the LKMR model, which can be represented as a 

hierarchical model. For brevity, we present a brief description of the hierarchical model here, 

with a primary focus on the MFVB approximation. LKMR uses regularization to account for 

collinearity of mixture components within and across multiple time points using a Bayesian 

grouped, fused lasso (Kyung et al., 2010; Yuan and Lin, 2006; Park and Casella, 2008; 

Tibshirani and Saunders, 2005), while allowing for the possibility of non-linear and non-

additive effects of individual exposures. Through a Bayesian kernel machine framework, 
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where the kernel distance functions are incorporated within the group lasso implementation, 

the model allows for specification of the unknown exposure-response relationship. The 

conditional prior of h = (h1
⊤, …, hT

T)⊤ is

π(h |λ1, λ2) ∝ exp −λ1 ∑
t = 1

⊤
ht Gt

− λ2 ∑
t = 1

⊤ − 1
ht + 1 − ht 1 , (11)

where ht Gt
= (ht

⊤Gtht)
1/2

 and Gt = Kt
−1, where Kt denotes the kernel matrix for time t with 

i,j element Kt (zi,t, zj,t). The model applies broadly to many different choices of a kernel 

function. The model allows for interactions within each time point, but not for interactions 

across time points. The form for modeling the interactions is specified via the kernel 

function. A common choice for the kernel function is the quadratic kernel used in Liu et al. 

(2017), which is defined as K (z, z′) = (z⊤ z′ + 1)2. The quadratic kernel allows for both 

linear and nonlinear interactions among mixture components at every time window.

We specify the LKMR model using a hierarchical formulation by introducing latent 

parameters τ2 = (τ1
2, …, τ⊤

2 ) and ω2 = (ω1
2, …, ω ⊤ − 1

2 ) which account for the group and fused 

lasso penalizations, respectively.

y h, X, β, σ2 Nn Xβ + ∑
t

ht, σ2In (12)

h τ1
2, …, τ⊤

2 , ω1
2, …, ω ⊤ − 1

2 Nn ⊤ 0, ∑h (13)

τ1
2, …, τ⊤

2 , Gamma n + 1
2 ,

λ1
2

2 (14)

ω1
2, …, ω ⊤ − 1

2 Gamma 1,
λ2

2

2 (15)

where τ1
2, …, τ⊤

2 , ω1
2, …, ω ⊤ − 1

2 , σ2 are mutually independent.

The form of ∑h
−1 is presented in the Supplementary Materials. ∑h

−1 is parameterized by 

τ2 τ1
2, …, τ⊤

2 , ω2 = ω1
2, …, ω ⊤ − 1

2 , and the parameters in Kt. There are diagonal blocks of 
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size n × n, which arise due to the kernel structure placed on each ht and involve the group 

lasso parameters τt
2. Meanwhile, the off-diagonals involve ωt

2, which correspond to fused 

lasso and shrink the time-point-specific effects of the mixture toward each other. Figure 1 

depicts the directed acyclic graph (DAG) of the Bayesian statistical model.

4.2 | Markov Chain Monte Carlo approach

It can be shown via standard algebraic manipulations that the full conditional distributions 

for this model are given by the following, from which Gibbs sampling can be readily 

implemented:

h rest N ( 1
σ2W⊤W + ∑h

−1 )
−1 1

σ2W⊤(Y − Xβ), ( 1
σ2W⊤W + ∑h

−1 )
−1

(16)

σ2 rest Inverse Gamma n
2 + a, (Y − Wh − Xβ)⊤(Y − Wh − Xβ)

2 + γ (17)

β rest N (X⊤X)−1X⊤(Y − Wh), σ2(X⊤X)−1
(18)

1
τt

2 rest Inverse Gamma
λ1

2

h Gt
2 , λ1

2 (19)

1
ωt

2 rest Inverse Gamma
λ2

2

∑n = 1
N (ht + 1, n − ht, n)2 , λ2

2 (20)

λ1
2 rest Gamma ⊤ (n + 1)

2 + r1, ∑
t = 1

⊤ τt
2

2 + δ1 (21)

λ2
2 rest Gamma ⊤ − 1 + r2, ∑

t = 1

⊤ − 1 ωt
2

2 + δ2 (22)
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4.3 | Mean field variational Bayes approach

We now consider a MFVB approximation based on the following factorization for 

approximation of the joint posterior density function:

p(β, σ2, h, ω2, τ2, λ1
2, λ2

2 Y) ≈ q(β)q(σ2)q(h)q(ω2)q(τ2)q(λ1
2)q(λ2

2) (23)

This leads to the following forms of the optimal q-densities:

q∗(β) N (X⊤X)−1X⊤(Y − Wμq(h)
), (μ

q( 1
σ2)

X⊤X)−1
(24)

q∗(σ2) Inverse Gamma n
2 + a,

(Y − Xμq(β)
− Wμq(h)

)⊤(Y − Xμq(β)
− Wμq(h)

)
2 + γ (25)

q∗(h) N μ
q( 1

σ2)
W⊤W + μ

q(∑
τ2, ω2
−1 )

−1

μ
q( 1

σ2)
W⊤(Y − Xμq(β)

), (26)

μ
q( 1

σ2)
W⊤W + μ

q(∑
τ2, ω2
−1 )

−1

q∗( 1
τt

2 ) Inverse Gaussian
μ

q(λ1
2)

μ
q( ht Gt

2 )

1/2

, μ
q(λ1

2)
(27)

q∗( 1
ωt

2 ) Inverse Gaussian
μ

q(λ2
2)

μ
q ∑n = 1

N ht + 1,n − ht, n
2

1/2

, μ
q(λ2

2)
(28)

Liu et al. Page 10

Environmetrics. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



q∗(μ
q(λ1

2)
) Gamma ⊤ (n + 1)

2 + r1, ∑
t = 1

⊤ μ
q(τt

2)

2 + δ1 (29)

q∗(μ
q(λ2

2)
) Gamma ⊤ − 1 + r2, ∑

t = 1

⊤ − 1 μ
q(ωt

2)

2 + δ2 (30)

where the parameters β, σ2, h, ω2, τ2, λ1
2, λ2

2are updated according to the iterative algorithm 

in Algorithm 1. First, we initialized each of the optimal q-density parameters estimates μq (), 

and updated each of the parameters successively using the current estimates of the other 

parameters. The algorithm is iterated until the increase in log p_(y; q)  is negligible. The form 

of log p_(y; q)  can be found in the Supplementary Materials. The final updated parameter 

estimates μq () are used in the optimal q-densities (24) – (30) to obtain the posterior mean 

and variance estimates for each parameter.

4.4 | Prediction at new exposure profiles

An important aim of environmental health studies is the characterization of the exposure-

response surface, particularly for prediction of health effects for unobserved exposure 

profiles at a given time point. Liu et al. (2017) provides details of this prediction approach; 

here, we summarize the approach and its adaptation to the variational Bayes context. In 

order to predict the exposure-response relationship for P new unobserved profiles of metal 

mixture exposures at time t, denoted by z1, t
new, …, zP, t

new where each zP, t
new = (z1P, t

new , …, zMP, t
new )⊤ for 

t = 1,..., ⊤ and p = 1,.., P, we first model the observed exposure data from n subjects 

measured at ⊤ time points. Next, we use the model to predict the exposure-response surface 

for P new time-varying mixture exposure profiles, which correspond to 

ht
new = (h1, t

new, …, hP, t
new)⊤, given the observed data.

Liu et al. (2017) shows that we can define h
∼

 as a reordered h vector with time t, the time 

point of interest, at the end of the vector such that h
∼ = h1

⊤, …, ht − 1
⊤ , …, ht + 1

⊤ , …, h⊤
⊤, ht

⊤ ⊤
, so 

that the covariance matrix of h can be easily defined. ∑∼
h denotes the corresponding 

reordered covariance matrix. The joint distribution of observed and new exposure profiles is

h
∼

ht
new N 0, ∑

∼
h =

∑
∼

11 ∑
∼

12

∑
∼

12
⊤ ∑

∼
22

. (31)
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The conditional posterior distribution of ht
new is

ht
new β, ω2, τ2, σ2 Nnnew

∑
∼

12
⊤ ∑

∼
11
⊤ 1

σ2W⊤W + ∑
∼

11
−1 −1 1

σ2W⊤(Y − Xβ), (32)

∑
∼

12
⊤ ∑

∼
11
−1 1

σ2W⊤W + ∑
∼

11
−1 −1

∑
∼

11
−1 ∑

∼
12 + ∑

∼
22 − ∑

∼
12
⊤ ∑

∼
11
−1 ∑

∼
12 .

The posterior mean and variance of ht
new can be approximated based on the estimated 

posterior mean of the other parameters, such as β, τ2, ω2, σ2, λ1
2 and λ2

2, to reduce 

computation time.

5 | SIMULATION STUDY

In order to evaluate the performance of the proposed MFVB inference procedure, we 

conducted a simulation study for estimating health effects associated with time-varying 

mixture exposures. We compared the results of MFVB approximation to that of Bayesian 

MCMC for LKMR. We considered a three-toxicant scenario, where two toxicants exert a 

gradual, non-additive and non-linear effect over four time windows, and the other toxicant 

exerts a null effect at all four time windows, which are representative of pregnancy and early 

life. We used the following model: yi = xi
⊤β + ∑t ht zi, t + ei where zi,t =(z1i,t, z2i,t, z3i,t)⊤, ei 

∼ N (0, 1), xi = (x1i, x2i)⊤ and x1i ∼ N (10, 1) and x2i ∼ Bernoulli(0.5). We simulated auto-

correlation within toxicant exposures for metal m = 1, 2, 3 across time, and correlation 

among toxicants, using the Kronecker product for the exposure correlation matrix. Three 

choices for auto-correlation (AR-1) within toxicants were considered: high (0.8), medium 

(0.5) and low (0.2). The form of the exposure-response function, ht (zi,t), was assumed to be 

proportional to a constant at all time points and was simulated as quadratic with two-way 

interactions. We assumed there is no effect of exposure to the mixture at time t = 1, and a 

gradual increase in the effect over time, by defining ht (z) = αt h(z), where α = (α1, α2, α3, 

α4) = (0, 0.5, 0.8, 1.0) and h(z) = z1
2 − z2

2 + 0.5z1z2 + z1 + z2.

The results of the simulation are presented in Table 1. MFVB denotes the variational Bayes 

approximation to LKMR, while MCMC denotes the full MCMC algorithm for LKMR. For 

both procedures, we used the quadratic kernel function, such that K (z, z′) = (z⊤z′ + 1)2. 

Under the MCMC procedure, for each simulation we first burn in the sampler for 10,000 

iterations and then run the Gibbs sampler for 10,000 iterations. The trace plots and marginal 

density plots of the different parameters can be found in the Supplementary Materials, 

Supplementary Figures S2a – S2c. Under the MFVB procedure, for each simulation the 

updates were run using the stopping criterion of a negligible change in log p_(y; q)
Specifically, the iterations were stopped when change in log p_(y; q) < 10e − 6. We used R 

3.3.2 to run the simulations, on the Odyssey high performance computing cluster supported 
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by the FAS Division of Science, Research Computing Group at Harvard University. We 

evaluated the performance of the model to predict the exposure-response function by 

regressing the predicted ĥ on h at each time point. We present the intercept, slope and R2 of 

the regressions over 100 simulations, each with a dataset of 300 subjects. The method is 

indicated to perform well when the regression shows an intercept close to zero, and slope 

and R2 are close to one. We also present the root mean squared error (RMSE). Notably, the 

RMSE is generally smaller under MFVB as compared with MCMC. The reduction is most 

apparent in situations of high autocorrelation among mixture components, where there is up 

to 13% reduction in RMSE. We also see that the intercept, slope and R2 tend to be very 

similar under MFVB and MCMC inference, indicating that the MFVB procedure is 

providing an accurate approximation to MCMC.

We next conduct a simulation to study the effect of varying sample sizes on estimated 95% 

posterior credible interval width and coverage, shown in Figure 2. Under MFVB, the 95% 

posterior credible interval is defined as the posterior mean +/− 1.96 times the square root of 

the posterior variance. Under MCMC, the 95% interval is quantile-based, calculated using 

the 0.025 and 0.975 quantiles of the poterior distribution. The coverage is defined as the 

proportion of times the true hi,t is contained in the 95% posterior credible interval. The same 

three-toxicant scenario was considered as in Table 1 with high AR-1, but for sample sizes of 

N = 100, 200, 300, 400, 500, and 800. Because of the computational infeasibility of applying 

the MCMC procedure to larger datasets, the simulations timed out on the computing cluster 

and were not recorded for sample sizes of N = 400, 500 and 800. The h contains the 

aggregated information for h1, h2, h3, h4. We note that for h, the estimated 95% posterior 

credible interval width is about half as small under MFVB as under MCMC. The interval 

width is also shorter for β and σ2. As sample sizes increase, the interval widths estimated 

under both MFVB and MCMC shrink. Coverage is high for h across the range of sample 

sizes under MFVB. It ranges from 96% for N = 100, to 99% for N = 800. We note that the 

coverage of σ2 increases substantially under MFVB for increasing sample sizes, changing 

from 49% for N = 100 to 87% for N = 800. Coverage of β under MFVB remains relatively 

constant, from 91% for N = 100 to 90% for N = 800.

Because we note that σ2 is estimated to be smaller under VB than under MCMC, we 

expanded the simulation study of N=300 to explore this impact on the ensuing inference. In 

particular, we create plots which are also used in the Application section to understand the 

relative importance of each time-varying mixture component, as well as the interaction 

between two mixture components across time windows, comparing inference under MFVB-

LKMR and MCMC-LKMR. The details regarding these plots can be found in 

Supplementary Materials Part C. We note that in each of these plots, the confidence bars or 

confidence bands are slightly narrower for VB than for MCMC. However, under this 

simulating example, we see that this slight narrowing does not lead to a change in inference 

on the estimated exposure-response relationship across the two estimation methods.

Lastly, Table 2 records the average computation time for MFVB and MCMC methods under 

the simulations in Figure 2. In general, the MFVB procedure is much faster than MCMC 

estimation. For example, for a sample size of N = 300, only 11 minutes is required under 

MFVB, whereas 3.5 days is required under MCMC.
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6 | APPLICATION

We applied the MFVB procedure for LKMR to study the association between birthweight 

and time-varying metal mixture exposures in the Programming Research in Obesity, Growth, 

Environment and Social Stressors (PROGRESS) study conducted in Mexico City. The 

primary outcome was birthweight z-scores, calculated according to the international infant 

growth charts developed by Fenton et al. (2013). Exposures to nine metals were measured in 

the mother’s blood at the second and third trimesters of pregnancy as well as birth. These 

metals included arsenic (As), cadium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper 

(Cu), manganese (Mn), antimony (Sb), and selenium (Se). We controlled for socioeconomic 

status (3 categories: low, middle, high), mother’s hemoglobin during the second trimester of 

pregnancy, mother’s educational level (< high school, high school, > high school), child 

gender and mother’s IQ score from the Wechsler Abbreviated Scale of Intelligence (WASI). 

The largest auto-correlations were seen for time-varying exposures to manganese and 

cadmium, at 0.50 and 0.53, respectively. In our analysis, we logged, then centered and scaled 

metal exposure levels. We also centered and scaled the confounder variables. We considered 

all subjects with complete data, resulting in a sample size of N = 391.

As a primary analysis, we considered a linear regression model that simultaneously 

regressed birthweight on con-founders and metal exposures at all time points. Several metals 

were identified as significant at the α = 0.05 level. Third trimester manganese was positively 

associated with birthweight (p = 0.02), and third trimester antimony was also positively 

associated with birthweight (p = 0.01). Cesium at birth was negatively associated with 

birthweight (p = 0.04), and selenium at birth was positively associated with birthweight (p = 

0.004). As the linear model suggested evidence of a potential exposure-response relationship 

across multiple time windows, we further explored this through the MFVB inference 

procedure for LKMR.

Next, we applied the MFVB inference procedure to analyze the effects of time-varying 

exposures of heavy metals during pregnancy on birthweight. Previous literature (Claus Henn 

et al., 2010b; Zota et al., 2009) has shown an inverted-u relationship between some metals, 

such as manganese, and neurodevelopment. Thus, Kt, the kernel matrix in our analysis, was 

chosen to be a quadratic kernel such that K (z, z′) = (1 + z⊤z′)2. A primary question of 

analysis is quantifying the effect of individual metal exposures on birthweight. Accordingly, 

we used the MFVB procedure to estimate the relative importance of each metal at the three 

time points, as shown in Figure 3. Relative importance is quantified by the difference in the 

estimated exposure-response function between a high level (75th percentile) and a low level 

(25th percentile) exposure for a single metal, holding all other metals constant at their 

median exposure levels. Figure 3 provides evidence that second trimester cobalt may be 

positively associated with birth weight, whereas second trimester copper may be negatively 

associated with birth weight. In addition, third trimester manganese is positively associated 

with birth weight. Lastly, copper and antimony at birth may be negatively associated with 

birth weight. Positive associations between manganese and birthweight have been seen in 

Zota et al. (2009), and are consistent with manganese’s role as an essential nutrient required 

for bone growth and development. As cobalt is an essential trace element that is part of the 
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vitamin B12 complex and other cobalamins (Lindsay and Kerr, 2011), a higher exposure to 

cobalt may be indicative of healthy dietary habits which could lead to a higher birthweight.

There is little known about the effect of co-exposure between cobalt and other metals on 

birthweight. Therefore, we focus on cobalt in this analysis, and identify a significant 

interaction between cobalt and cesium at a critical window of exposure. Because the 

exposure-response surface is nine-dimensional, due to the nine metal co-exposures studied at 

each time window, we use heat maps and cross-sectional plots to reduce dimensionality and 

graphically depict the exposure-response relationship. One way of visualizing the exposure-

response surface between cobalt and cesium is through a heat map, depicted in Figure 4. The 

posterior mean of the exposure-response surface for cobalt and cesium is plotted across a 

range of exposures, while holding the other seven metals at their median exposures. We note 

that it is important to carefully interpret the potential interactions, particularly in areas of 

fewer observations. Therefore, we plot the exposure-response function only within a small 

region (within a 0.5 Euclidean distance) of an observed data point. At each time window, the 

shape of the exposure-response surface is suggestive of an interaction effect between the two 

metals. For example, we see that for exposures at the third trimester of pregnancy, high 

cobalt/high cesium and low cobalt/low cesium are associated with larger birthweights, while 

high cobalt/low cesium and low cobalt/high cesium are associated with smaller birthweights.

In order to better quantify the time-varying interactions between cobalt and cesium and show 

estimates of the posterior uncertainty of the exposure-response function, we present plots of 

a cross-section of the exposure-response surface in Figure 5. Here, the cross-section of the 

exposure-response surface is plotted for cobalt, at low (25th percentile) and high (75th 

percentile) cesium exposures, while holding the other seven metals at their median exposure 

values. We see evidence suggestive of a positive interaction between cobalt and cesium at 

the second and third trimesters. At the second trimester, the top graph (low cesium) suggests 

a null effect of cobalt exposure on birthweight, while the bottom graph (high cesium) 

suggests a positive linear effect of cobalt exposure on birthweight. Thus, there appears to be 

effect modification for cobalt based on the level of cesium co-exposure. At the third 

trimester, a similar effect is seen. Here, cobalt exposure in the presence of high cesium levels 

is found to be positively associated with birthweight. Because the cross-sectional plots have 

graphically suggested an interaction between cobalt and cesium co-exposure in the presence 

of the seven other metals, we next quantify the estimated interaction effect at the three 

critical windows. First, we estimated the exposure-response effect for high (75th percentile) 

versus low (25th percentile) cobalt exposures, at high cesium levels and median levels of the 

seven other metals. Next, we estimated the exposure-response effect for high versus low 

cobalt exposures, at low cesium levels and median levels of the seven other metals. The 

difference between these two estimated exposure-response effects quantifies the cobalt-

cesium interaction, which is depicted in Figure 6. We see that there is a significantly positive 

interaction between cobalt and cesium at the second trimester of pregnancy.

7 | DISCUSSION AND CONCLUSION

In this article, we have developed a MFVB inference procedure for the LKMR model, which 

allows for computationally efficient analysis of environmental health datasets to study 
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complex mixtures. In recent years, there has been growing interest in the concept of the 

exposome, i.e. the totality of human exposures over a lifetime (Stigone et al., 2017; Buck 

Louis et al., 2017). This interest, in turn, led to the rapid growth of research into statistical 

methods to address complex mixtures (Herring, 2010; Park et al., 2014; Braun et al., 2016; 

Gennings et al., 2013; Bobb et al., 2015). In parallel, the growing recognition of the role of 

critical windows in toxicology has led to new methods to address finding critical windows 

(Wright, 2017). These issues converge biologically, as complex mixtures likely have time-

specific critical windows. However, addressing both issues simultaneously is 

computationally challenging, as mixture datasets are large and are repeatedly measured. A 

key contribution of the article is the dramatic decrease in computational time required for 

MFVB as compared with MCMC, while also maintaining accuracy in estimation of the 

exposure-response relationship. We applied the MFVB algorithm to analyze a prospective 

cohort study of children’s environmental health in Mexico City, where we found evidence of 

interaction and effect modification for exposure to a pair of heavy metals. Specifically, we 

identified a possible positive interaction between cobalt and cesium at the second trimester 

of pregnancy. Cobalt is part of the vitamin B12 complex and other cobalamins (Lindsay and 

Kerr, 2011), which may account for its positive association with birthweight. In small 

quantities, cobalt is an essential element, and is naturally present in food (Caserta et al., 

2013). Meanwile, the literature on cesium chronic toxicity and metabolism is sparse 

(Melniknov and Zanoni, 2010), but it is not an essential nutrient like cobalt. Our results 

suggest that in the presence of high cesium levels, the positive effect of cobalt on 

birthweight is more pronounced. As the literature on metal mixture exposures is sparse, 

these detected potential effects could serve as a starting point for future environmental health 

studies.

We note that because of the computational efficiency of the algorithm, we were able to 

analyze a prospective cohort study of moderate size (N =391) with ease. Simulations 

demonstrated that inference using MFVB-LKMR took minutes, while inference using 

MCMC-LKMR took hours or days. We showed that depending on the sample size, MCMC-

LKMR may not be computationally feasible for larger sample sizes (e.g. larger than a few 

hundred participants when multiple time windows are studied). Furthermore, it may be 

untenable in a real-world application to run the MCMC-LKMR algorithm for even a 

moderate sample size, due to the frequent desire to run multiple secondary and sensitivity 

analyses.

Notably, we showed that MFVB inference maintains high accuracy for the key parameter of 

interest, h, which quantifies the unknown exposure-response relationship. Under varying 

simulation scenarios, MFVB estimates h well, often with smaller RMSE than using MCMC 

estimation. Posterior credible interval coverage is consistently 96-99% for h under MFVB 

for a range of sample sizes.

We also demonstrated that the coverage of the variance parameter, σ2, varies significantly 

across the range of sample sizes. For small datasets, coverage can be poor, but increases 

considerably for larger sample sizes, reaching 87% under N = 800. When sample sizes are 

small, one could easily use MCMC estimation; thus, the coverage would not be a concern. 

However, MFVB inference was specifically created for large sample sizes, when it would be 
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nearly impossible to conduct analysis under MCMC without a significant time burden. In the 

situation of large sample sizes, the coverage of σ2 is much higher, albeit still smaller than 

than of MCMC. Thus, MCMC and MFVB are complementary approaches. For smaller 

datasets, the full MCMC is applicable as it has more accuracy than MFVB, whereas for 

larger datasets, MFVB is feasible and sufficiently accurate while MCMC is infeasible.

We also note that the width of the posterior credible intervals for β, σ2, h are smaller under 

MFVB inference than under MCMC estimation. It is known that due to the form of the 

Kullback-Leibler divergence used in the variational Bayes framework (Bishop, 2006; Rue et 

al., 2009; Wang and Titterington, 2005), the procedure can underestimate the posterior 

variance. While this may be a contributing factor to the reduced coverage of the σ2 

parameter, in which interval widths may have been too short to properly capture the truth, 

this factor does not seem to hinder our analyses, as h is estimated well. If one was interested 

in adjusting for the sometimes underestimated posterior variance estimates, a grid-based 

method proposed by Ormerod (2011) could be used. However, in situations where the 

number of parameters estimated exceeds the sample size, as is in the case described in this 

article, the approach of calculation over the grid values can render the grid-based method 

computationally infeasible.

There may be alternative modeling approaches to the MFVB implementation of LKMR 

described here. For example, the computational MCMC challenges may be overcome by 

using a parallel Gibbs sampler to accelerate Gibbs sampling. This has been proposed by 

several authors such as Doshi-Velez et al. (2009) using the Indian Buffet Process, and 

Gonzalez et al. (2011) using the Chromatic sampler and the Splash sampler. Furthermore, 

mean field variational Bayes may also be parallelized, as proposed by Tran et al. (2016). 

However, because of the connection between MFVB and Gibbs sampling for LKMR, the 

method proposed here performs well for reduced computation time while maintaining 

reasonable accuracy.

Given the connection between the mixed-model representation of a kernel machine 

regression and spatial mixed models, a referee raised the interesting question of how the 

regularized estimation of the time-varying exposure-response associations impact estimation 

of the fixed regression coefficients β in the model. In the spatial statistics literature, Hodges 

and Reich (2010) have demonstrated that spatial confounding can occur, in which a random 

effect, or a spatially correlated error term, could alter the estimated fixed effects. They 

proposed restricted spatial regression to deal with spatial confounding, and others have 

explored the use of Bayesian group lasso to improve predictive ability for the spatial 

generalized linear mixed model by accounting for the collinearity between regression 

coefficients and spatial random effects (Hefley et al., 2017). In this work, estimation of these 

regression coefficient estimates were not of primary interest, but future work should explore 

the potential for such biases in the multivariate exposure setting and the utility of similar 

restricted spatial regression strategies in this setting.

In conclusion, we note that the complexity of the LKMR Bayesian model, coupled with the 

computational burden of estimation using MCMC, warrants and necessitates the variational 
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Bayes approach. Furthermore, the high accuracy and similar coverage of key parameters 

between MCMC and MFVB illustrates the usefulness of the variational Bayes approach.

Additional information and supporting material for this article is available online at the 

journal’s website.

ALGORITHM 1

MFVB algorithm for lagged kernel machine regression.

Initialize: μ
q(1/σ2)

> 0, μq(β) = 1, μ
q(1/τ2)

= 1, μ
q(1/ω2)

= 1.

Cycle:

  ∑q(h) μ
q(1/σ2)

W⊤W + μ
q(∑

τ2, ω2
−1 )

−1

  μq(h) μ
q(1/σ2)

∑q(h)W⊤(Y − Xμq(β))

  μq(β) (X⊤X)−1
X⊤(Y − Wμq(h))

  μ
q(1/σ2)

n + 2a

(Y − Xμq(β) − Wμq(h))
⊤(Y − Xμq(β) − Wμq(h)) + 2γ

  μ
q(1/τt

2)

μ
q(λ1

2)
μ

q( ht Gt

2

1/2

  μ
q(1/ωt

2)

μ
q(λ2

2)
μ

q(∑n = 1
N (ht + 1, n − ht, n)2)

1/2

  μ
q(λ1

2)

⊤ (n + 1) + 2r1
∑t = 1

⊤ μ
q(τt

2)
+ 2δ1

  μ
q(λ2

2)

⊤ − 1 + r2
1
2 ∑t = 1

⊤ − 1 μ
q(ωt

2)
+ δ2

until the increase in log p_(y; q)  is negligible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Distributed acyclic graph representation of Bayesian hierarchical model
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FIGURE 2. 
Coverage and posterior credible interval width of key parameters, using mean field 

variational approximation method for Bayesian inference and Markov chain Monte Carlo 

(MCMC). Performance estimated across 100 simulated data sets for key parameters h, βσ2 
across a range of sample sizes (N = 100, 200, 300, 400, 500, 800). Width denotes the length 

of the 95% posterior credible interval. Coverage denotes the proportion of times that the true 

parameter falls within the 95% posterior credible interval. The dotted horizontal line marks 

95%
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FIGURE 3. 
Mean field variational approximation method for Bayesian inference procedure for lagged 

kernel machine regression estimated relative importance of each metal at three critical 

windows for Programming Research in Obesity, Growth, Environment and Social Stressors 

data. Plot of the relative importance of each metal, as quantified by the difference in the 

estimated exposure–response function at the 75th percentile versus the 25th percentile of a 

given metal exposure while holding all other metal exposures constant at their median values
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FIGURE 4. 
Mean field variational approximation method for Bayesian inference procedure for lagged 

kernel machine regression estimated time-specific Co–Cs exposure response functions 

applied to Programming Research in Obesity, Growth, Environment and Social Stressors 

data. Plot of the estimated posterior mean of the exposure–response surface for Co and Cs, 

at the median of As, Cd, Cr, Cu, Mn, Sb, and Se
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FIGURE 5. 
Mean field variational approximation method for Bayesian inference procedure for lagged 

kernel machine regression estimated time-specific exposure–response functions for Co at 

low and high Cs levels applied to Programming Research in Obesity, Growth, Environment 

and Social Stressors data. Plot of the cross-section of the estimated exposure–response 

surface for Co, at the 25th (top panel) and 75th (bottom panel) of Cs exposure, holding As, 

Cd, Cr, Cu, Mn, Sb, and Se constant at median exposures
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FIGURE 6. 
Mean field variational approximation method for Bayesian inference procedure for lagged 

kernel machine regression estimated Co–Cs interaction at three critical windows for 

Programming Research in Obesity, Growth, Environment and Social Stressors data. Plot of 

the estimated interaction effect between Co and Cs, holding As, Cd, Cr, Cu, Mn, Sb, and Se 

constant at median exposures. First, we estimated the exposure–response effect for high 

(75th percentile) versus low (25th percentile) cobalt exposures, at high cesium levels and 

median levels of the seven other metals. Next, we estimated the exposure–response effect for 

high versus low cobalt exposures, at low cesium levels and median levels of the seven other 

metals. The difference between these two estimated exposure–response effects quantifies the 

cobalt–cesium interaction
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TABLE 2

Time in minutes for MFVB and MCMC applied to varying sample sizes in the simulation case

Method N = 100 N = 200 N = 300

MFVB 0.17 1.8 10.8

MCMC 175 1409 4990
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