Skip to main content
. Author manuscript; available in PMC: 2019 Jun 1.
Published in final edited form as: Environmetrics. 2018 May 18;29(4):e2504. doi: 10.1002/env.2504

TABLE 1.

Simulation results, regression of h^ on h for MFVB vs. MCMC

AR-1 Method Time window Intercept Slope R2 RMSE
0.8 MFVB 1 0.02 N/A N/A 0.24
2 0.00 0.89 0.97 0.23
3 0.00 0.97 0.99 0.22
4 −0.01 0.99 0.99 0.22
MCMC 1 0.05 N/A N/A 0.26
2 0.01 0.91 0.96 0.26
3 −0.02 0.98 0.99 0.24
4 −0.04 1.00 0.99 0.22
0.5 MFVB 1 0.01 N/A N/A 0.20
2 0.00 0.92 0.97 0.25
3 0.00 0.97 0.99 0.27
4 0.01 0.99 0.99 0.22
MCMC 1 0.06 N/A N/A 0.23
2 0.02 0.93 0.96 0.25
3 −0.02 0.97 0.98 0.27
4 −0.04 1.00 0.99 0.23
0.2 MFVB 1 0.04 N/A N/A 0.22
2 0.00 0.92 0.97 0.24
3 −0.01 0.96 0.99 0.22
4 −0.01 0.98 0.99 0.24
MCMC 1 0.06 N/A N/A 0.24
2 0.01 0.93 0.97 0.24
3 −0.02 0.96 0.99 0.22
4 −0.04 0.98 0.99 0.23

Performance of estimated ht (zi,t) across 100 simulated datasets, each with N = 300. RMSE denotes the root mean squared error of the h^ as compared to h. Coverage denotes the proportion of times that the true h falls within in the 95% posterior credible interval of each time point. At time window 1, there is no effect; thus, slope and R2 are not applicable to the regression of h^ on h.