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Abstract

Bcl-2 inhibits cell death by at least two different mechanisms. On the one hand, its BH3 domain 

binds to pro-apoptotic proteins such as Bim and prevents apoptosis induction. On the other hand, 

the BH4 domain of Bcl-2 binds to the inositol 1,4,5-trisphosphate receptor (IP3R), preventing Ca2+ 

signals that mediate cell death. In normal T-cells, Bcl-2 levels increase during the immune 

response, protecting against cell death, and then decline as apoptosis ensues and the immune 

response dissipates. But in many cancers Bcl-2 is aberrantly expressed and exploited to prevent 

cell death by inhibiting IP3R-mediated Ca2+ elevation. This review summarizes what is known 

about the mechanism of Bcl-2’s control over IP3R-mediated Ca2+ release and cell death induction. 

Early insights into the role of Ca2+ elevation in corticosteroid-mediated cell death serves as a 

model for how targeting IP3R-mediated Ca2+ elevation can be a highly effective therapeutic 

approach for different types of cancer. Moreover, the successful development of ABT-199 

(Venetoclax), a small molecule targeting the BH3 domain of Bcl-2 but without effects on Ca2+, 

serves as proof of principle that targeting Bcl-2 can be an effective therapeutic approach. BIRD-2, 

a synthetic peptide that inhibits Bcl-2-IP3R interaction, induces cell death induction in ABT-199 

(Venetoclax)-resistant cancer models, attesting to the value of developing therapeutic agents that 

selectively target Bcl-2-IP3R interaction, inducing Ca2+-mediated cell death.
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1. Introduction

The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel located on 

the endoplasmic reticulum (ER). Its diverse roles in normal physiology, cell survival and 

death, and diseases including cancer have been the focus of excellent reviews published in 

just the last four years (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12). Here we concentrate on Bcl-2 

regulation of IP3R function in normal development and how cancer cells exploit Bcl-2-IP3R 

interaction to promote their own survival. We start with an historical perspective 

summarizing how discoveries during the first half of the twentieth century led to cancer 

treatments mediated by corticosteroid hormones (prednisone, dexamethasone). We then 

review how Bcl-2 regulates Ca2+ to prevent cell death, and potential ways to target Bcl-2’s 

regulation of Ca2+ as a novel therapeutic approach for Bcl-2-positive malignancies.

Much of this review centers around normal T-cell development in the immune system, where 

Bcl-2 plays a critical role, and on B-cell malignancies which exploit Bcl-2 to remain alive 

despite adverse environmental circumstances and cancer treatments intended to kill them. 

The diagram in Figure 1 is directed at two audiences: (i) the basic scientist unfamiliar with 

Bcl-2-expressing hematologic malignancies and how Bcl-2-IP3R interaction plays a role; 

and (ii) the clinical scientists who are expert in testing and applying novel therapeutic agents 

but are not yet familiar with the potential value of treating cancer by targeting the Bcl-2-

IP3R interaction.

The most common hematologic malignancies include chronic lymphocytic leukemia (CLL), 

acute lymphoblastic leukemia (ALL), non-Hodgkin lymphoma, and multiple myeloma. The 

right half of Figure 1 is modified after several reviews by leading experts, summarizing 

recent advances in the treatment of CLL (13, 14, 15). In this cancer, chronic active B-cell 

receptor signaling promotes prolonged cell survival, aided by high levels of the anti-

apoptotic protein Bcl-2. Exciting new therapeutic approaches have dramatically changed the 

therapeutic approach to CLL by targeting B-cell receptor signaling pathways, for example 

Bruton tyrosine kinase which is targeted by ibrutinib (16, 17) and the anti-apoptotic Bcl-2 

protein which is targeted at one of its mechanisms of action by ABT-199/Venetoclax (18, 

11). The left half of Figure 1 summarizes recent advances in targeting the interaction of 

Bcl-2 with IP3Rs, using peptide inhibitors or small molecules to induce IP3R-mediated 

Ca2+-elevation and cell death as a novel therapeutic approach (19, 20, 21, 22).

2. The path of discovery: From adrenal corticosteroids to IP3R-mediated 

Ca2+ elevation and apoptosis.

The Nobel Prize in Physiology or Medicine in 1950 was awarded jointly to Edward Kendall, 

Tadeus Reichstein and Philip Showalter Hench “for their discoveries relating to the 
hormones of the adrenal cortex, their structure and biological effects”. In the mid-1930s 

Kendall and Reichstein isolated and analyzed the composition of a number of similar 

hormones derived from the adrenal cortex. These became the basis for cortisone preparations 

that, with input from Kendall and Philip Hench, were first used at the end of the 1940s to 

treat rheumatoid arthritis and other inflammatory disorders. Also, in the 1940’s was the 

landmark discovery that cortisone preparations have a “lympholytic effect” (23, 24) and 
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therefore have remarkable therapeutic activity in lymphoid malignancies (25, 26). 

Throughout the ensuing decades corticosteroid hormones were developed through clinical 

trials as extraordinarily effective anti-cancer agents, contributing to the cure of children with 

ALL (27, a type of cancer derived from an early developmental stage of B-lymphocytes. 

Corticosteroids (prednisone, dexamethasone) continue today to be essential components of 

treatment regimens for certain B-cell malignancies, including ALL (28, 29, 30) and multiple 

myeloma (31, 32, 33). Corticosteroids are still useful in treatment of refractory CLL (34, 35, 

36).

Thirty years transpired between the initial use of corticosteroids in cancer treatment and 

recognition that Ca2+ plays an important role in cell death induction by these agents (37, 38, 

39, 40), involving Ca2+-mediated endonuclease activation (39) and apoptotic DNA 

fragmentation (41, 42). Numerous refinements to the role of Ca2+ in endonuclease activation 

were to follow (43, 39, 44, 45, 46, 47) along with an expansion of knowledge regarding roles 

of Ca2+ in other pathways including interleukin-1b activation in response to corticosteroid 

treatment (48) and mechanisms of Ca2+ involvement in T-cell receptor (TCR)-mediated 

apoptosis (49, 50, 51, 52).

But the signaling pathways through which corticosteroids mediate effects on lymphocytes 

were poorly understood. One reason was that corticosteroid-induced cell death in rat lymph 

node lymphocytes was found to be independent of extracellular Ca2+ uptake (38). Further 

studies of corticosteroid-induced apoptosis were instrumental in revealing the crucial link 

between IP3R-mediated Ca2+ release from the ER and apoptosis induction (53, 54, 55, 56).

Now IP3R-mediated Ca2+ elevation is widely recognized as being a ‘double-edged sword’ 

that on the one hand promotes cell survival and on the other hand induces cell death (57, 58). 

Whereas physiological Ca2+ elevations are generally oscillatory in nature, Ca2+ elevations 

inducing cell death are the result of sustained transfer of high levels of Ca2+ from the ER to 

mitochondria, inducing Ca2+ mediated loss of mitochondrial membrane potential, 

cytochrome c release and apoptosis (59, 60, 61). Other mechanisms of Ca2+-mediated cell 

death include (i) elevation of the pro-apoptotic family member Bim (58); (ii) activation of 

Ca2+-sensitive proteases and endonucleases; and, activation of calcineurin (CaN), which in 

turn dephosphorylates and thus activates another pro-apoptotic Bcl-2 family member, Bad. 

Ca2+ mediated cell death mechanisms are extensively summarized in a recent review by two 

major contributors to understanding how Ca2+ fluxes mediate cell death (62, 2).

Because of the delicate balance between its functions in both cell survival and cell death, 

IP3R-mediated release of Ca2+ from the ER must be carefully balanced. This regulation is 

produced by a number of factors including kinases and phosphatases that bind to the IP3R, 

regulating channel opening and Ca2+ release (63, 64, 65, 66, 67, 68, 69, 70). In addition to 

their function as Ca2+ channels, IP3Rs serve as scaffolds and signal integrators, bringing 

proteins and protein complexes within close proximity to the ER and mitochondria (71, 72, 

1). This is facilitated by the large tetrameric IP3R structure located on the cytoplasmic side 

of the ER (73, 67, 66, 72). The role of these regulatory mechanisms is particularly important 

in pathways involving phospholipase C activation and IP3 synthesis (74). These signaling 
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hubs are important for control of pro-apoptotic and anti-apoptotic Bcl-2 family members, 

oncogenes and tumor suppressors in regulating cell death and cell survival (75, 76).

3. Prevention of excessive Ca2+ elevation and cell death by Bcl-2 during T-

cell development

It has been over thirty years since the Bcl-2 protein was discovered and initially 

characterized (77, 78, 79, 80), twenty-five years since the first indication that Bcl-2 regulates 

intracellular Ca2+ dynamics (81, 82, 83, 84), and fourteen years since an interaction of Bcl-2 

with the IP3R was reported (85). Bcl-2 is a 26 kDa integral membrane protein that normally 

resides on the outer mitochondrial membrane and endoplasmic reticulum (ER). It is 

anchored on these membranes by a C-terminal hydrophobic region and is mainly 

cytoplasmic in its location. Bcl-2 elicited widespread interest when it was found to promote 

cell survival by inhibiting apoptosis (86). From a functional standpoint, members of the 

Bcl-2 protein family generally fall into two opposing groups: anti-apoptotic proteins and 

pro-apoptotic proteins. Anti-apoptotic members such as Bcl-2 typically have four Bcl-2 

homology (BH) domains (BH1–4). Pro-apoptotic members fall into two groups: those with 

three BH domains (BH1–3) and those with only a BH3 domain, the ‘BH3-only proteins’. 

These distinctions are useful from an operational standpoint but are undergoing revision and 

clarification based on recent findings (87).

One of the most remarkable features of Bcl-2 is its lack of any obvious inherent function. 

Sequence analysis does not reveal any recognizable functional domains. Without any 

inherent activity of its own, enzymatic or otherwise, Bcl-2 and its anti-apoptotic relatives 

nevertheless exert widespread influence over various cell functions, ultimately influencing 

cell survival. Bcl-2 accomplishes this through its well documented interactions with other 

proteins, and through its localization on the outer mitochondrial membrane and the ER.

It is appealing to study the function of Bcl-2 in a cell type where this protein normally plays 

an important functional role as opposed to cancer cells where Bcl-2 levels are aberrantly 

expressed and elevated at abnormally high levels. For this reason, many investigators 

focused on the role of Bcl-2 in regulating IP3R-mediated Ca2+ signals in T-cells, because 

IP3R-mediated Ca2+ signals following TCR activation are of critical physiological 

importance in the immune system (88, 89, 90). Numerous studies highlight the importance 

of Bcl-2 in lymphocyte development and survival (Figure 2). The Bcl-2 knockout mouse, 

developed in the laboratory of the late Stanley Korsmeyer, demonstrates fulminant lymphoid 

apoptosis (91). Enforced expression of Bcl-2 in transgenic mice reduces negative selection, 

causing excessive accumulation of thymocytes (92, 93, 94). Transgenic Bcl-2 inhibits 

negative selection by a mechanism independent of its ability to antagonize Bax (95, 96). In 

addition, studies in hematopoietic cells and pre-lymphomatous B-cells suggest that Bcl-2 

may regulate intracellular Ca2+ dynamics (82, 84), and findings in our laboratory suggest 

that positive versus negative selection decisions in the thymus are partly encoded by distinct 

Bcl-2-regulated Ca2+ signaling patterns (97).

The developing T-cell passes through successive maturational stages within the thymus (98) 

and Bcl-2 levels vary considerably throughout these different developmental stages (99, 81, 
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100, 101, 102) (Figure 2). The earliest precursors from the bone marrow or fetal liver do not 

express either the TCR or the CD4 and CD8 antigens (i.e., “double negative stage”), but do 

express Bcl-2: this provides an element of protection upon movement to the thymus gland. 

In the thymus these cells first express the TCR and both CD4 and CD8 antigens (i.e., 
“double positive stage”). Bcl-2 levels are down-regulated at this stage, rendering the cells 

very sensitive to Ca2+ induced apoptosis (81). This facilitates a stringent test of whether or 

not the T-cells respond to self-antigens, with strong responders undergoing apoptosis 

(“negative selection”) and weak responders avoiding apoptosis (“positive selection”) (103, 

104). During negative selection, apoptosis is induced by Ca2+-dependent up-regulation of 

the pro-apoptotic Bcl-2 family member Bim (90). Positively selected cells advance to the 

“single positive stage” (CD4+/CD8-, CD4-/CD8+), where Bcl-2 levels are upregulated, and 

enter the circulation to mount immune responses to foreign antigens.

Antigen binding to the TCR triggers a signaling cascade that activates PLC-γ, which 

generates IP3. IP3 binds to IP3Rs, inducing channel opening and ER Ca2+ release, thus 

stimulating T cell proliferation (88, 105, 89, 106). Depending on the strength of TCR 

activation, a variety of Ca2+ response patterns are generated, including a transient Ca2+ 

elevation, sustained Ca2+ elevation, or Ca2+ oscillations (107). Ca2+ oscillations are the most 

important physiologically as they encode information by their frequency, amplitude and 

shape (108, 109). Consistent with earlier findings by Donnadieu et al (110), we find that 

strong TCR activation by a high concentration of anti-CD3 antibody induces a large 

transient elevation of Ca2+, whereas weak TCR activation by a low concentration of anti-

CD3 antibody induces sustained Ca2+ oscillations (97).

Earlier in vitro studies demonstrated that TCR activation by a high concentration of anti-

CD3 antibody induces thymocyte apoptosis, whereas lower concentrations of anti-CD3 

antibody do not trigger apoptosis (40). TCR activation by physiologically-relevant antigenic 

peptides produce a similar effect (111): negatively-selecting antigenic peptides induce a 

strong Ca2+ flux in immature thymocytes, whereas positively-selecting peptides induce a 

smaller Ca2+ flux. We find that Bcl-2 selectively inhibits the pro-apoptotic high sustained 

Ca2+ elevations induced by strong TCR activation while enhancing the pro-survival Ca2+ 

oscillations induced by weak TCR activation (97). These Ca2+ signaling patterns differ in 

two important ways (97): high anti-CD3 induces a much longer Ca2+ elevation than low 

anti-CD3 (> 4 min versus < 1 min); and high antiCD3 triggers a much higher peak Ca2+ 

amplitude than low anti-CD3. High amplitude Ca2+ elevation, particularly if continuous and 

sustained, triggers cell death (57.

There was a thirty-year lapse between the initial clinical use of corticosteroids in cancer 

treatment and recognition that Ca2+ plays an important role in corticosteroid-induced 

lymphocyte cell death (37, 38, 39, 40), involving Ca2+-mediated endonuclease activation 

(39) and apoptotic DNA fragmentation (43, 42)., 58). The critical determinant of whether or 

not TCR stimulation induces apoptosis appears to lie in both the duration and amplitude of 

the Ca2+ elevation.

The positive effect of Bcl-2 on Ca2+ oscillations and its pro-survival effects are consistent 

with a number of other findings. For example, Ca2+ oscillations regulate thymocyte motility 
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during positive selection, thereby modulating interactions with stromal cells (112). Ca2+ 

oscillations also lead to a sustained activation of CaN (104), which dephosphorylates and 

thereby activates nuclear factor of activated T-cells (NFAT). The continuous NFAT activation 

prevents NFAT nuclear dephosphorylation, allowing NFAT to remain in the nucleus and 

induce interleukin-2 production (107, 105, 113).

4. Bcl-2 promotion of normal cell survival through its regulation of IP3R-

mediatd Ca2+ release.

Studies in which Bcl-2 was selectively targeted to the ER demonstrate that ER-localized 

Bcl-2 inhibits apoptosis (114, 115, 116). The anti-apoptotic activity of ER-localized Bcl-2 

derives both from its binding to pro-apoptotic BH3-only proteins (e.g., Bim) (116) and to its 

interaction with IP3Rs to prevent excessive IP3R-mediated Ca2+ elevation. The concept that 

Bcl-2 regulates IP3R-mediated Ca2+ elevation evolved from evidence that Bcl-2 represses 

apoptosis by regulating ER-associated Ca2+ fluxes (83), ultimately leading to the discovery 

of an interaction between Bcl-2 and the IP3R (85), an interaction mediated by binding of the 

BH4 domain of Bcl-2 to a region located within the regulatory and coupling domain of the 

IP3R (117, 118, 119). Interactions between IP3Rs and other anti-apoptotic Bcl-2 family 

members, Bcl-xl and Mcl-2 are also reported (120, 121, 122, 123). The reader is referred to 

an excellent review discussing the full complexity of various Bcl-2 family member 

interactions with IP3Rs and their impact on cell survival and cell death (124). Moreover, 

Vervliet et al (125) discovered that Bcl-2 also binds to ryanodine receptors, dampening Ca2+ 

release from these intracellular channels.

Recent studies indicate that the BH4 domain of Bcl-2 is highly conserved in different classes 

of vertebrates and can act as a binding partner and inhibitor of IP3R channels (126). This 

same region is responsible for Bcl-2’s interaction with ryanodine receptors (125). In 

addition, a region in the BH4 domain of Bcl-2 (Ile14, Val15) has been found critical to 

stability and function as an inhibitor of Ca2+-mediated apoptosis (127). Furthermore, the 

significance of this region is further evidenced by findings indicating that the alpha helical 

nature of Ile14, Val15 region is essential to the function of the BH4 domain in inhibiting 

IP3R-mediated Ca2+ release (128).

Early analysis of Bcl-2-IP3R interaction focused on what appeared to be a single interaction 

site involving BH4 domain interaction with IP3R domain 3, located in the regulatory and 

coupling region (Figure 3). Recent studies have expanded understanding of the Bcl-2 

interaction to include a region in its C-terminal domain (C-term Dom, a.a. 2512–2749), 

which is in close proximity of the channel pore. This region was previously identified as 

critical for the Ca2+ regulatory functions of the Bcl-2 homologue Bcl-xl (129). This is 

particularly enlightening as earlier studies using synthetic peptides targeting the BH4 

domain of Bcl-2 (BH4-Bcl-2), revealed this domain is necessary and sufficient to bind to the 

IP3R and to suppress its activity (117, 118, 119). Nevertheless, the relatively low affinity of 

inhibition by the BH4 domain (measured in vitro IC50=30μM) (118, Monaco, 2012 #5128) 

does not appear to explain the potent inhibitory effect of Bcl-2 full-length protein under 

physiological conditions. Using genetic and pharmacological approaches, Ivanova et al (22) 
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implicate the C-terminal IP3R1 domain in Bcl-2 binding and cell death regulation. 

Furthermore, they demonstrated a direct interaction between a peptide corresponding to the 

transmembrane domain of Bcl-2 (TMD-Bcl-2) and the purified C-terminal fragment of 

IP3R1. This peptide was able to suppress IP3-induced Ca2+ release (IICR) when applied at 

high concentrations. These results suggest that the C-terminal region of Bcl-2 not only 

serves as an anchor for tethering Bcl-2 to membranes, but also an important functional 

regulator of IP3R activity.

A recent report also indicates that Bcl-2 may not interact with IP3Rs across all 

circumstances or cell types (130), raising the important question of what regulates the Bcl-2-

IP3R interaction in different types of cells. Also, it has been suggested that Bcl-2 may also 

regulate ER Ca2+ release through additional mechanisms besides its interaction with the 

IP3R. One proposed mechanism involves Bcl-2 interaction with Sarco/Endoplasmic 

Reticulum-associated Ca2+-ATPases (SERCA). These proteins pump Ca2+ ions from the 

cytoplasm into the ER lumen, maintaining large ER luminal Ca2+ stores. This steep Ca2+ 

concentration gradient from ER lumen to cytoplasm propels Ca2+ movement upon IP3R 

channel opening, leading to pro-apoptotic calcium spikes. Bcl-2’s interaction with SERCA 

attenuates ER Ca2+ filling, indirectly diminishing IP3R-mediated Ca2+ release and Ca2+-

mediated apoptosis (131). Interestingly, Bcl-2 alone completely inhibits SERCA in vitro, 

which can trigger apoptosis by increasing cytosolic Ca2+ and inducing store-operated Ca2+ 

entry (132). Recent findings indicate that HSP70 regulates the Bcl-2-SERCA interaction, 

maintaining SERCA in an active state that may be essential for apoptosis regulation (132). 

Accordingly, an earlier report of the Bcl-2-SERCA interaction finds that Bcl-2 increases the 

ER Ca2+ pool, promoting the high luminal Ca2+ concentration required for normal cell 

function (133).

Recent work provides insight into how Bcl-2-IP3R interaction controls IP3R-mediated Ca2+ 

elevation, preventing Ca2+-induced cell death. Oakes et al (121) show that Bcl-2 regulates 

IP3R phosphorylation at serine 1755 within the regulatory and coupling domain of the IP3R. 

Protein kinase A (PKA) phosphorylates serine 1755 and serine 1589, increasing IP3-

mediated channel opening and Ca2+ release (134, 135, 136). We previously reported that 

Bcl-2 decreases IP3R phosphorylation, although a specific phosphorylation site was not 

identified (85). In further work, we find that Bcl-2 inhibits IP3R phosphorylation at serine 

1755, correlating with its inhibition of anti-CD3-induced Ca2+ elevation.

PKA-mediated protein phosphorylation is typically regulated by PP1α (137), and an IP3R-

PP1α complex has been implicated in Bcl-2-mediated suppression of ER Ca2+ release in 

breast cancer cells (138). Bcl-2 also binds CaN (139) and increases the association of CaN 

with IP3Rs (140, 141, 120); this has a neuroprotective effect in primary neuronal cells (141). 

However, Bultynck et al predicted that CaN’s IP3R effects are indirect and may be 

secondary to PP1α acting with DARPP-32 (dopamine- and c-AMP-regulated 

phosphoprotein of 32 kDa) (142). DARPP-32 is a PKA-activated and CaN-deactivated PP1α 
inhibitor studied extensively in the brain (143). Tang et al (137) discovered a direct 

association between PP1α and IP3R-1 and established that the association with PP1α 
reverses PKA-mediated IP3R-1 phosphorylation. AKAP9, a multifunctional PKA anchoring 

protein, docks both PKA and PP1α to IP3R-1 (144). In experiments with medium spiny 
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neurons from DARPP-32 knock-out mice, DARPP-32 was shown to regulate dopamine-

induced Ca2+ oscillations (145). However, very little is known about the role of DARPP-32 

in peripheral tissues, including lymphocytes, although DARPP-32 has been shown to 

increase the phosphorylation and activity of various ion channels (146). We report that Bcl-2 

docks DARPP-32 and CaN in a complex on the IP3R, preventing exaggerated IP3R-

mediated Ca2+ elevation in T-cells by decreasing PKA-mediated IP3R phosphorylation 

(147).

A very interesting report for the first time has implicated Bcl-2 in regulating store-operated 

Ca2+ channels, involving the BH1 domain of Bcl-2 (148). This work indicates that a 

triplicate amino acid substitution in the BH1 domain creates a mutant form of Bcl-2 that 

enhances thapsigargin-induced Ca2+ elevation, whereas these investigators find wild type 

Bcl-2 dampens thapsigargin-induced Ca2+ elevation. Their evidence implicates an effect of 

the mutant Bcl-2 on store-operated Ca2+, producing massive Ca2+ influx contributing to 

caspase activation and apoptosis.

5. Cancer cell exploitation of Bcl-2-IP3R interaction and the strategy of 

targeting this interaction to treat cancer.

Bcl-2-expression levels are elevated in many different malignancies (http://

broadinstitute.org/ccle/home). Bcl-2 levels are invariably elevated in chronic lymphocytic 

leukemia (CLL) and follicular lymphoma (FL) (15, 13). Comparable levels of Bcl-2 are 

present in multiple myeloma (MM) (149). Bcl-2 levels are also elevated in acute 

myelogenous leukemia (AML) (150) and small cell lung cancer (SCLC) (151), in which 

novel therapeutic approaches are desperately needed. Cancer cells exploit Bcl-2 to stay alive 

in the stressful microenvironment and resist immunotherapy, chemotherapy and radiation 

therapy. Therefore, agents that inhibit Bcl-2 have the potential of dramatically improving 

outcomes in multiple types of cancer.

In support of targeting Bcl-2 for cancer treatment there is a distinct difference between 

normal cells and cancer cells in terms of Bcl-2 function. As summarized earlier in this 

review, Bcl-2 expression levels are carefully regulated in normal cells, such as in T-cells, 

where Bcl-2 levels increase during the immune response to prevent inadvertent cell death in 

response to proliferative Ca2+ signals, and then decline once the immune response wanes. 

The difference in Bcl-2 over-expressing cancer cells is that the Bcl-2 level does not decline 

and remains elevated over time, preventing normal, physiological cell death responses. Thus, 

Bcl-2 preserves Ca2+ homeostasis in normal cells by preventing excessive Ca2+ elevation, 

but cancer cells exploit Bcl-2 to stay alive under adverse growth conditions that would 

generally lead to cell death.

The Bcl-2 protein is expressed at abnormally high levels in a wide variety of cancers. The 

classic example of this is follicular lymphoma, where Bcl-2 levels are abnormally elevated 

by a t(14;18) chromosomal translocation (77, 78, 79). Bcl-2 elevation involves other 

mechanisms in a variety of cancers, and in many types of cancer the mechanism of Bcl-2 

elevation may not be recognized (152). For example, Bcl-2 is elevated in CLL due to loss of 
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microRNAs that normally repress Bcl-2 gene expression (153). Because of its role in 

preventing cell death, Bcl-2 has become a major therapeutic target in cancer.

Bcl-2 promotes cell survival by two major mechanisms, illustrated in Figure 4. In 

mitochondria, Bcl-2 preserves cell survival by binding and inhibiting the function of pro-

apoptotic proteins, illustrated by Bim in the figure. This function of Bcl-2 is mediated by its 

hydrophobic cleft, involving the BH3 domain which is responsible for binding pro-apoptotic 

proteins. On the ER, Bcl-2 promotes survival through its interaction with IP3Rs, mediated by 

its BH4 domain, preventing excessive Ca2+ elevation.

Small molecules that bind to the hydrophobic cleft formed by the BH1–3 domains of Bcl-2 

displace pro-apoptotic proteins from Bcl-2 and thus trigger apoptosis (154, 155, 156, 157, 

158, 18). These molecules, including the Bcl-2 selective and platelet-sparing ABT-199 

(Venetoclax), are already in clinical use to treat CLL, and undergoing clinical trials to test 

efficacy in other types of cancer (154, 155, 156, 157, 158, 18, 159, 3). For an in-depth 

understanding of how Bcl-2 interacts with its pro-apoptotic relatives and preserves outer 

mitochondrial membrane integrity, the reader is referred to a recent review by Llambi et al 

(160).

However, these agents are only effective in types of cancer that have elevated levels of pro-

apoptotic proteins such as Bim, rendering these cancer cells addicted to Bcl-2 interaction 

with pro-apoptotic proteins for their survival. Another limitation is that ABT-199/Venetoclax 

responsiveness varies among cancers (161). For example, CLL is highly responsive to 

ABT-199, although resistance is reported (162). On the other hand, ABT-199/Venetoclax 

response rates are 28% in Diffuse Large B-cell Lymphoma (DLBCL) and 31% in Follicular 

Lymphoma (FL) (163). Although Bcl-2 is commonly expressed in multiple myeloma at 

levels comparable to CLL and FL (149), responses to ABT-199/Venetoclax are limited to a 

small subset of myeloma lines (164) and patients with the CCND1/IGH translocation(164, 

163). Also, AML is a Bcl-2-positive malignancy, but ABT-199 is effective in only a fraction 

of AML patients (165, 150). Main reasons for ABT-199/Venetoclax resistance include: (i) 

low expression levels pro-apoptotic proteins so the cancer cells are not primed to respond to 

ABT-199/Venetoclax (161); (ii) expression of Mcl-1 or Bcl-xl, which bind and inhibit pro-

apoptotic proteins released from Bcl-2 by ABT-199 (166).

In collaboration with Jan Parys and Geert Bultynck in Belgium, we developed a synthetic 

peptide corresponding to the IP3R binding site for Bcl-2 (117, 118). This IP3RDerived 

Peptide (IDP), more recently termed BIRD2 (Bcl-2 IP3R Disruptor-2), inhibits the Bcl-2-

IP3R interaction by binding to the BH4 domain of Bcl-2, destabilizing Bcl-2’s alpha-helical 

structure (117, 118, 119). By inhibiting Bcl-2-IP3R interaction, BIRD2 attenuates Bcl-2’s 

control over IP3R-mediated Ca2+ elevation, induces marked Ca2+ elevation and Ca2+-

mediated apoptosis in primary human CLL cells, with minimal if any effect on the viability 

of normal human lymphocytes (19). BIRD-2 also induces apoptosis in diffuse large B-cell 

lymphoma lines (DLBCL) (119, 167) and in multiple myeloma cells, both in vitro and in an 

in vivo xenograft mouse model (20). BIRD-2 also induces apoptosis in small cell lung 

cancer, a Bcl-2 positive solid tumor (168), and in ovarian cancer (169).
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In each of the known ABT-199/Venetoclax resistance mechanisms, agents that induce 

apoptosis by disrupting Bcl-2-IP3R interaction are expected to have value. First, these agents 

may increase the sensitivity of unprimed cancer cells to ABT-199/Venetoclax by increasing 

Bim expression levels. As proof of principle, we have reported that BIRD-2-induced Ca2+ 

elevation increases Bim levels in CLL and multiple myeloma cells (170, 20). Second, in 

cells resistant to ABT-199/Venetoclax due to increased expression of Mcl-1 and Bcl-xl, or 

decreased levels of Bax and Bak, agents that disrupt Bcl-2-IP3R interaction are still expected 

to induce Ca2+-mediated apoptosis. This is mainly because Ca2+ elevation induces apoptosis 

by multiple mechanisms not employed by ABT-199, including by activating Ca2+-sensitive 

proteases (calpains) that trigger caspase-independent apoptosis. As proof of principle, we 

have demonstrated that BIRD-2 induces this apoptotic mechanism in ABT compound-

resistant multiple myeloma and SCLC cells (20, 168). Also, ABT-199 and BIRD-2 

demonstrate synergy inducing cell death in cancer cells (20, 168). BIRD-2 synergizes with 

ABT-199 by inducing Ca2+-mediated elevation of the pro-apoptotic protein Bim (20). Thus, 

agents that target Bcl-2-IP3R interaction may not only be useful as single agents, but also be 

useful in combination with ABT- 199, perhaps facilitating ABT-199/Venetoclax use at lower, 

less toxic doses. Also, ABT199-/Venetoclax does not inhibit Bcl-2-IP3R interaction and 

does not trigger Ca2+ elevation, confirming that ABT-199 and BIRD-2 work by separate 

mechanisms (171, 22). Moreover, ABT199-/Venetoclax and BIRD-2 demonstrate a 

reciprocal relationship in terms of their ability to induce cell death (20, 172), confirming 

they work by independent mechanisms.

The utility of targeting the Bcl-2-IP3R interaction may be dependent upon a number of 

factors. Perhaps the most obvious of these factors is the level of Bcl-2 in different types of 

cancer cells and their reliance on Bcl-2 for survival (173). Although Bcl-2 is typically 

overexpressed in lymphoid malignancies, other Bcl-2 family members are expressed in non-

lymphoid malignancies, including Mcl-1. Individual pro-apoptotic family members may also 

differ in their interaction with IP3Rs. For example, the BH4 domain of Bcl-2 interacts with 

IP3Rs, but the BH4 domain of Bcl-xL does not (119). As such, BIRD-2 is likely to be more 

effective in Bcl-2 positive malignancies than in Bcl-xl positive malignancies. Additionally, 

the anti-apoptotic Bcl-2 family member Mcl-1 contributes to apoptosis inhibition in 

lymphoid malignancies and is reported to interact with IP3Rs (129); we do not know where 

Mcl-1 interacts on the IP3R and if it would be inhibited by BIRD-2. Another factor is the 

IP3R isoform itself. There are three IP3R isoforms, which vary in both tissue distribution and 

in sensitivity to Ca2+ and IP3 regulation (174). A recent study discovered that the sensitivity 

of lymphoma cells to BIRD-2-induced apoptosis correlated best with IP3R isoform 2 (167), 

whereas numerous studies in other cell types demonstrated a stronger correlation with IP3R 

isoform 3 (54).

In B-cell malignancies like CLL (Figure 1), constitutive B-cell receptor signaling drives cell 

proliferation and survival via Bruton’s tyrosine kinase (BTK) (175, 176, 177). The 

immediate downstream target of BTK is phospholipase Cγ. (PLCγ), which catalyses the 

synthesis of IP3 from PIP2, provoking IP3R channel opening and Ca2+ release (17, 177). 

Recent findings indicate that BIRD-2-triggered Ca2+ rises and cell death are critically 

dependent on the increase in basal IP3 signaling that occurs downstream of the B-cell 

receptor in B-cell malignancies (178). As such, inhibition of PLC activity or buffering IP3 
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reduces BIRD-2-induced cell death in a variety of DLBCL and primary CLL cells, both in 

unsupported short-term cultures and in prolonged co-cultures with CD40L-expressing 

fibroblasts. Therefore, we postulate that the pro-apoptotic Ca2+ elevation we observe in 

BIRD-2-treated CLL cells is driven by constitutive signaling via BTK. Moreover, we find 

that BIRD-2 induces cell death in Ibrutinib-resistant cells, suggesting it may have 

therapeutic value in patients who relapse while taking ibrutinib (20).

Recently, a small molecule antagonist to the BH4 domain of Bcl-2, BDA-366, has been 

developed and demonstrated to have activity in lung cancer and multiple myeloma models 

(21, 179). BDA-366 binds the BH4 region of Bcl-2 with high affinity and selectivity. This 

development is very interesting as it suggests a different mode of action than BIRD-2, even 

though like BIRD-2 it was reported to elevate cytoplasmic Ca2+ levels. The proposed 

mechanism of action is that BDA-366 induces a conformational change in Bcl-2 that 

abrogates its anti-apoptotic function by converting Bcl-2 from a survival molecule to a cell 

death inducer. The authors find that BDA-366 suppresses growth of lung cancer xenografts 

derived from cell lines and patients without significant normal tissue toxicity at the effective 

doses (21, 179). Although the findings of this report are most intriguing, BDA-366 is toxic 

to a wide range of cell types, apparently regardless of Bcl-2 expression level, raising the 

possibility that Bcl-2 may not be the only target.

6. Summary and Future Directions

An inherent weakness in virtually any review is the potential exclusion of topics as 

important or even more important than the one covered. This certainly is the case with 

regard to the role of mitochondria in Ca2+ function, including metabolism and both cell 

survival and cell death. Indeed, one of the most important functions of IP3R-mediated Ca2+ 

signaling is in promoting cell survival by increasing mitochondrial Ca2+ uptake and 

metabolism. The close proximity of ER-localized IP3Rs to mitochondria facilitates Ca2+ 

transfer from the ER lumen into mitochondria (180, 181, 182). This promotes mitochondrial 

ATP production by activating multiple Ca2+-sensitive enzymes in the citric acid cycle and 

catalyzing the conversion of pyruvate to acetyl-CoA (183, 184). Insufficient ER-

mitochondrial Ca2+ transfer results in autophagy, a survival mechanism through which cells 

digest intracellular components in order to produce ATP (185); conversely, excessive 

transfer of Ca2+ to mitochondria induces Ca2+ overload, resulting in loss of membrane 

potential, cytochrome c release and apoptosis (59, 60, 61).

Particularly exciting, novel concepts have been introduced in the field of Ca2+ signaling, 

deserving careful attention as these concepts are likely to guide future directions of research. 

One of these relates directly to cancer metabolism and is based on the important discovery 

that mitochondrial bioenergetics is positively regulated by constitutive, low level IP3R Ca2+ 

transfer from the ER to mitochondria (185, 186, 7). Another concept has to do with how we 

view anti-apoptotic proteins such as Bcl-2. The discerning reader with surely note that in 

this review we focus in a singular manner on the Bcl-2 protein, in isolation with only brief 

mention of other anti-apoptotic family members. A recent paper by Carrington et al (187) 

has analyzed the requirements of multiple immune cell subsets (e.g., naïve T cells require 

Bcl-2, regulatory T cells require Mcl-1), supporting a novel model in which survival is 
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determined by participation of multiple anti-apoptotic proteins rather than a single anti-

apoptotic protein. It will be important to determine if a similar model fits cancer cells. For 

example, does survival of a cancer cell depend just on Bcl-2, or does it depend on the 

participation of multiple anti-apoptotic family members. This may be important in terms of 

efforts to target Bcl-2 for cancer treatment. Perhaps it does and multiple anti-apoptotic 

proteins may need to be targeted to achieve optimal effect.

While the current review is focused on Bcl-2’s interaction with IP3R’s and its regulation of 

intracellular Ca2+ signaling, there are many other important dimensions of Bcl-2 protein 

family function, including its phosphorylation. Particularly interesting is the widespread 

distribution of Bcl-2 family members, beyond the ER and mitochondria. As recently 

reviewed elsewhere (188), these include the Golgi apparatus, nucleus and peroxisomes. The 

consequences broaden the Bcl-2 protein family impact to include not only Ca2+ homeostasis, 

but also cell cycle control and cell migration, topics of great relevance to the understanding 

and treatment of cancer.

Finally, the work summarized in the present review may provide a modest lesson for those 

interested in development of novel cancer treatments. Many in the current era seem to 

believe that understanding basic mechanism is an absolute pre-requisite for novel therapeutic 

development. It is therefore humbling to realize that the mechanism of corticosteroid-

induced cell death is only partially understood, yet this hormone has produced many cancer 

cures over the past fifty years and still contributes to cures today.
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Highlights

• Bcl-2 is an anti-apoptotic protein elevated in many different types of cancer.

• Bcl-2 interacts with inositol 1,4,5-trisphosphate receptors, regulating calcium 

release from the endoplasmic reticulum and inhibiting apoptosis.

• Bcl-2 interaction with inositol 1,4,5-trisphosphate receptors and control over 

calcium release can be blocked using synthetic peptides.

• Blocking Bcl-2 interaction with inositol 1,4,5-trisphosphate receptors is 

proposed as a novel therapeutic target for Bcl-2-positive malignancies.
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Figure 1. B-cell receptor (BCR) signaling pathways important to the pathophysiology and 
treatment options for chronic lymphocytic leukemia (CLL).
A critical step in BCR signaling is Bruton’s tyrosine kinase (BTK) which feeds forward into 

IP3 receptor-mediated Ca2+ release from the ER (left side of figure) and through the Ras-

Raf-Mek-Erk pathway (right side of figure). The Bcl-2 protein is located on both the ER and 

mitochondria where it regulates Ca2+ signals important in generating a variety of light and 

death decisions.
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Figure 2. Bcl-2 and T-cell responses in the immune response.
T-cell levels of Bcl-2 vary during T-cell development, allowing for negative selection in the 

thymic cortex and facilitating positive selection in the thymic medulla. High levels of Bcl-2 

insure cell survival during the immune response, then decline as apoptosis allows the 

immune response to decline.
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Figure 3. Bcl-2-IP3R interacting sites and derivation of BIRD-2.
The BH4 domain of Bcl-2 binds to IP3R domain 3 (red) and a region near domain 6 (green). 

BIRD-2 is a 20 amino acid synthetic peptide based on a coiled coil region in IP3R domain 3, 

with a DD/AA mutation introduced to block a protease cleavage site. BIRD-2 binds to the 

BH4 domain of Bcl-2 and functions as a decoy peptide, inhibiting Bcl-2-IP3R interaction 

and inducing cell death in Bcl-2-positive malignancies.
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Figure 4. Targeting Bcl-2’s dual anti-apoptotic mechanisms.
(A) The decoy peptide BIRD-2 binds to the BH4 domain of Bcl-2, whereas the small 

molecule ABT-199/Venetoclax binds to the BH3 domain of Bcl-2. (B) Left: Bcl-2 binds via 
its BH4 domain to IP3Rs, preventing excessive IP3R-mediated Ca2+ elevation, thereby 

inhibiting Ca2+ induced apoptosis. BIRD-2 binds to the BH4 domain of Bcl-2, disrupting 

Bcl-2-IP3R interaction and thus inducing high amplitude Ca2+ elevation that triggers 

apoptosis. Right: The BH3 region of Bcl-2 binds and sequesters the pro-apoptotic protein 

Bim, preventing Bim-mediated apoptosis. ABT-199 (Venetoclax) displaces Bim, thus 

triggering Bim-mediated apoptosis.
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