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Assessing robustness of radiomic 
features by image perturbation
Alex Zwanenburg   1,2,3, Stefan Leger1,2,3, Linda Agolli1,4, Karoline Pilz1,4, 
Esther G. C. Troost1,2,3,4,5, Christian Richter1,3,5 & Steffen Löck1,3,4

Image features need to be robust against differences in positioning, acquisition and segmentation 
to ensure reproducibility. Radiomic models that only include robust features can be used to analyse 
new images, whereas models with non-robust features may fail to predict the outcome of interest 
accurately. Test-retest imaging is recommended to assess robustness, but may not be available for 
the phenotype of interest. We therefore investigated 18 combinations of image perturbations to 
determine feature robustness, based on noise addition (N), translation (T), rotation (R), volume growth/
shrinkage (V) and supervoxel-based contour randomisation (C). Test-retest and perturbation robustness 
were compared for combined total of 4032 morphological, statistical and texture features that were 
computed from the gross tumour volume in two cohorts with computed tomography imaging: I) 31 
non-small-cell lung cancer (NSCLC) patients; II): 19 head-and-neck squamous cell carcinoma (HNSCC) 
patients. Robustness was determined using the 95% confidence interval (CI) of the intraclass correlation 
coefficient (1, 1). Features with CI ≥ 0:90 were considered robust. The NTCV, TCV, RNCV and RCV 
perturbation chain produced similar results and identified the fewest false positive robust features 
(NSCLC: 0.2–0.9%; HNSCC: 1.7–1.9%). Thus, these perturbation chains may be used as an alternative to 
test-retest imaging to assess feature robustness.

Radiomics is the high-throughput quantitative analysis of medical imaging to facilitate model-based treatment 
decisions1,2. A prevalent approach relies on the computation of image biomarkers (features) within a region of 
interest (ROI). In this approach features quantify different aspects of the ROI, such as mean intensity, volume and 
texture heterogeneity. Variations in patient positioning, image acquisition and segmentation affect each feature to 
varying degrees3,4. If radiomic models use features that are not robust against such influences, they will perform 
poorly when applied to new data5. Assessing feature robustness is thus recommended to improve generalisability 
of radiomic models.

Non-robust image features are commonly identified using test-retest imaging6–10. In test-retest imaging, the 
same region of interest is imaged twice within a time interval of minutes to days, usually with the same acqui-
sition protocol. Consequently, these two images are similar, but not identical, which allows the identification of 
non-robust features. After identification, non-robust features are excluded from further analysis.

Although the identification of robust features is important, implementing test-retest imaging for every radi-
omic study has been difficult to achieve for several reasons. First, feature robustness is dependent on the phe-
notype of interest as well as the imaging modality. This means that information concerning feature robustness 
cannot be transferred between studies on different phenotypes11 and modalities7. Furthermore, feature values 
depend on multiple factors, including the voxel size and discretisation used12–14. Thus, even if a previous study 
determined feature robustness for a particular phenotype and modality, the results may not be transferable due to 
the use of different computational settings. Second, test-retest imaging may be difficult to obtain generally, as it is 
not part of the clinical routine. Acquiring test-retest imaging would thus require additional resources in terms of 
personnel and imaging time, and, potentially, an increased patient radiation dose. An alternative would be to use 
the appropriate publicly available test-retest data set, but such data are likewise sparse.
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It would therefore be convenient if feature robustness against perturbations could be assessed from single 
images. To do so, we can use methods more prevalent in the deep learning computer vision field. Here, networks 
are constructed to be invariant to various perturbations, e.g. noise, rotation and translation15. To achieve invari-
ance, such perturbations are created on purpose, distorted images are generated and subsequently used as input 
data to develop deep learning models. The same principle may apply to the hand-crafted features that are con-
sidered in this work. We hypothesise that perturbations of single images may successfully identify the majority 
of features that are not robust in test-retest imaging. The aim is thus to identify perturbations that minimise the 
number of false positive robust features, using robustness in test-retest imaging as reference.

Results
Two test-retest data sets of computed tomography (CT) images were assessed, namely: (I) a publicly available 
non-small cell lung cancer (NSCLC) cohort of 31 patients; and (II) an in-house head and neck squamous cell 
carcinoma (HNSCC) cohort of 19 patients.

After delineating the gross tumour volume (GTV), the CT images were perturbed by rotation (R), 
Gaussian noise addition (N), translation (T), volume adaptation (growth/shrinkage of the ROI mask; V) and 
supervoxel-based contour randomisation (C), see Fig. 1 and Table 1. Eighteen combinations of perturbations 
were created by chaining perturbation operations. All chains involved repetition with different settings or ran-
domisation. Morphological, statistical and texture features (4032 in total) were computed from the GTV ROI in 
each distorted image.

Robustness of each feature was measured by the intraclass correlation coefficient (1, 1) (ICC)16. We computed 
the ICC of a feature between either the test and retest images (test-retest ICC), or between the perturbed images 
of each perturbation chain (perturbation ICC), see Fig. 2. The 95% confidence interval (CI) of the ICC was then 
used to determine robustness by comparing with a threshold of 0.9017. Thus, a feature is robust if CI ≥ 0.90, 
non-robust if CI < 0.90, and has an indeterminate robustness if the CI overlaps with the threshold.

A table containing all estimated ICC values and their 95% confidence intervals for all features and both 
cohorts was appended as supplementary data.

Comparison between NSCLC and HNSCC cohorts.  To validate the basic premise that feature robust-
ness is dependent on the phenotype, we compared feature robustness based on the test-retest ICC in both cohorts.

Original

Volume adaptation Contour randomisationNoise addition

Translation Rotation

Figure 1.  Perturbation examples. To perturb an image (blue) and the region of interest mask (orange overlay), 
the original image is translated, rotated, noised, and has its mask adapted and randomised. Translation and 
rotation change both the image and its mask, whereas noise only distorts the image. Volume adaptation and 
contour randomisation change the mask by adding (green overlay) and removing voxels (red overlay). Note that 
translation and rotation require additional interpolation (not shown).
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In the NSCLC cohort 2310 (57.3%) features were found to be robust, 597 (14.8%) were non-robust and 1125 
(27.9%) had an indeterminate robustness. In the HNSCC cohort 582 (14.4%) features were robust, 1369 (34.0%) 
were non-robust and 2081 (51.6%) had an indeterminate robustness.

454 (11.3%) and 280 (6.9%) features were robust and non-robust in both cohorts, respectively. Additionally, 
656 (16.3%) features were robust in the NSCLC cohort, but not in the HNSCC cohort, and 35 (0.9%) features 
were robust in the HNSCC cohort, but not in the NSCLC cohort. The remainder could not be compared due to 
indeterminate robustness in the NSCLC cohort (526; 13.0%), the HNSCC cohort (1482; 36.8%) or both cohorts 
(599; 14.9%).

Robustness under image perturbations.  The fraction of robust features for test-retest imaging and 
image perturbations is shown in Fig. 3. In both cohorts, the N perturbation yielded the highest number of robust 
features (NSCLC: 95.0%; HNSCC: 97.4%), which was higher than the number of robust features as determined by 
test-retest imaging (NSCLC: 57.3%; HNSCC: 14.4%). The lowest number of robust features in the NSCLC cohort 
was identified by the TVC perturbation chain (32.9%), followed by RVC (33.3%), NTVC (33.7%), RNVC (34.2%) 
and RC (38.3%). In the HNSCC cohort, TVC (16.6%), NTVC and RNVC (both 16.7%), RVC (16.8%), VC (17.8%) 
and V (30.8%) identified fewest robust features.

perturbation abbreviation
number of 
perturbed images

rotation R 27

noise addition N 30

translation T 27

volume adaptation V 29

contour randomisation C 30

rotation and translation RT 32

rotation, noise addition and translation RNT 32

rotation and volume adaptation RV 30

rotation and contour randomisation RC 27

translation and volume adaptation TV 40

translation and contour randomisation TC 27

rotation, translation and contour randomisation RTC 32

rotation, noise addition, translation and contour randomisation RNTC 32

volume adaptation and contour randomisation VC 30

rotation, volume adaptation and contour randomisation RVC 30

rotation, noise addition, volume adaptation and contour randomisation RNVC 30

translation, volume adaptation and contour randomisation TVC 40

noise addition, translation, volume adaptation and contour randomisation NTVC 40

Table 1.  List of perturbations, with their abbreviation and the number of different images generated by each 
perturbation. The settings used by each perturbation chain are listed in Supplementary Note 5.

Figure 2.  Workflow to determine the test-retest and perturbation intraclass correlation coefficients (ICC) for 
each feature. The test-retest ICC was calculated directly between the same features in both images. To derive the 
perturbation ICC, an ICC was first calculated between feature values in perturbations of image 1 (ICC 1) and 
then again in perturbations of image 2 (ICC 2). The perturbation ICC is the average of ICC 1 and 2.
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Feature-wise comparison of perturbation and test-retest robustness.  Test-retest and perturbation 
robustness were also compared directly for the same feature. Thus, when comparing test-retest and perturbation 
robustness for each feature, a feature may be robust under both perturbation and test-retest conditions, non-robust 
under both, robust under test-retest or perturbation conditions only, or of indeterminate robustness. Using 
test-retest robustness as a reference, these conditions represent true positive, true negative, false negative, false pos-
itive and indeterminate cases, respectively. The direct feature-wise comparison of robustness is presented in Fig. 4.

No perturbation identified every feature that was non-robust under test-retest conditions in both cohorts. The 
number of false positives differed between perturbations and cohorts. Perturbation chains in the NSCLC cohort 
yielded less false positives than the HNSCC cohort on average (2.0% vs. 9.4%).

In the NSCLC cohort, the RC perturbation chain caused the lowest number of false positives (0.0%), followed 
by RVC (0.2%), RNVC (0.5%) and NTVC (0.7%). The lowest false positive fraction in the HNSCC cohort was 
produced by RNVC perturbation chain (1.7%), followed by RVC (1.8%), TVC and NTVC (both 1.9%). In the 
HNSCC cohort, the RC perturbation chain led to 5.7% false positives.

Discussion
We compared several methods for perturbing images to determine feature robustness. The perturbation chains 
that combine rotation or translation with volume adaptation and contour randomisation (RVC, RNVC, TVC, 
NTVC) led to a low number of false positives in both cohorts, using test-retest robustness as reference, and where 
otherwise comparable. Hence any of these chains may be used as an alternative to test-retest imaging to assess 
feature robustness.

Other perturbation methods performed poorly, particularly if only one kind of perturbation was used. This 
includes methods such as noise addition or simple rotations or translations. The combination of rotation and trans-
lation was not better than rotation or translation alone. Chaining perturbation methods that primarily alter the 
intensity content (noise, translation, rotation) with methods that update the region of interest mask (volume adapta-
tion and contour randomisation) improved results in terms of less false positives with regard to test-retest imaging.

Considerable difference in overall robustness was observed between NSCLC and HNSCC cohorts. Specific 
image processing parameters or contributions of particular feature family are unlikely to cause this difference 
(Supplementary Notes 7 and 8). The differences are more likely caused by either inherent differences between 
tumour phenotypes11 or by limitations inherent to test-retest imaging in patients. As only two test-retest images 
are usually acquired in patients, the number of possible acquisition options that can be assessed is constrained. 
Lack of access to raw imaging data to assess different reconstruction settings compounds this limitation. In this 
study, two different image acquisition and reconstruction protocols were used in the HNSCC cohort, whereas 
only one protocol was used for test-retest imaging in the NSCLC cohort. In the HNSCC cohort exposure and 
reconstruction kernels differed between protocols (Supplementary Note 1). The exposure between both HNSCC 
images differed by a factor 4 on average, whereas exposure in the NSCLC set was similar between images. The 
HNSCC test-retest set may thus have captured differences in exposure. However, the effect of exposure and tube 
current on feature robustness has been contested. Larue et al. and Mackin et al. both found that exposure had 
a marginal effect on feature robustness18,19, whereas Midya et al. found that it had a more pronounced effect20. 
The HNSCC test-retest set may also have been affected by the difference in reconstruction kernels. Though both 
kernels in the HNSCC cohort produce smooth images, differences in reconstruction kernels may strongly affect 
feature values21,22.

Aside from the overall difference in robustness between the NSCLC and HNSCC cohorts, a large difference in 
indeterminate robustness fractions can be observed between both cohorts. This is reflected in the 95% confidence 
interval of the ICC value of each feature. The average width of the 95% confidence interval of test-retest ICCs was 

Figure 3.  Overall robustness of features for test-retest and perturbation conditions. Robustness was determined 
using the 95% confidence interval (CI) of the intraclass correlation coefficient. Features with CI ≥ 0.90 were 
considered to be robust (+), CI < 0.90 non-robust (−), and indeterminate (0) otherwise. Perturbations are 
abbreviated, see Table 1: R: rotation; N: noise addition; T: translation; V: volume adaptation; C: contour 
randomisation.
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0.12 (NSCLC) and 0.35 (HNSCC). This indicates that feature values in the HNSCC cohort were less consistent 
between both images of the test-retest set, which may be related to the aforementioned difference in acquisition 
and reconstruction protocols. Yet, the decreased consistency between test and retest images may also be related to 
delineation uncertainties. The potential role of delineation uncertainties may observed by comparing the single 
perturbations for volume adaptation and contour randomisation between both cohorts with perturbations that 
only affect intensities. In the NSCLC cohort, delineation perturbations affect feature robustness less than in the 
HNSCC cohort, which was also found by Pavic et al.23.

Image perturbations allows performing repeated measurements without actual acquisition of multiple images, 
which could be considered an advantage over test-retest imaging. We consider three methods for incorporating 
repeated measurements into radiomics modelling. The first, straightforward, method is to include only robust 
features in the modelling process, and omit indeterminate and non-robust features. This method is commonly 
used when robustness is determined using test-retest imaging and its implementation into a modelling workflow 
should therefore be easy5. Moreover, this method is useful when only a subset of the development cohort is per-
turbed, or a separate data set is used for robustness analysis.

It should be noted that the number of indeterminate features correlates with the number of perturbations, as the 
95% confidence interval of the ICC shrinks with increasing repeated measurements. It is thus possible to increase 
the number of robust and non-robust features by increasing the number of perturbations, albeit with diminishing 
returns. Many studies sidestep this issue entirely by applying a threshold against the estimated ICC24 instead of its 
confidence interval. This criterion is less stringent than comparison against the confidence interval and may lead 
to the inclusion of features that have reasonable probability (between 2.5 and 50%) of actually not meeting the 
criterion. This is particularly risky if the confidence intervals are wide and overlap with ICC values < 0.50 (poor 
robustness) and 0.50 ≥ ICC < 0.75 (moderate robustness)17. Thus, if a confidence interval is provided with an ICC 
value, it would be preferable to use this interval instead of the estimated ICC for selecting robust features.

The second way to use repeated measurements for radiomics modelling is by averaging the measurements 
for each feature. Averaging suppresses noise and as a consequence the corresponding panel ICC is always higher 
than that of a single measurement16, and its 95% confidence interval smaller. The mean values of the features that 
are robust according to the panel ICC are then included in the modelling process. This method requires that all 
images in the development cohort are perturbed, and may thus computationally be more expensive than the first.

The final method builds upon the second, and is conceptually close to the use of image perturbations for deep 
learning. Instead of averaging values and selecting robust features prior to modelling, all values are included in 
the model development process. One advantage of this method is that information concerning the distribution of 
feature values within and across samples is not lost, and may be exploited during the model development process. 
Another advantage is that an explicit robustness threshold is not required. However, this method does require 
that all images in the development cohort are perturbed and may add complexity to radiomics modelling frame-
works. A future study should compare the three methods and their effect on the performance of radiomic models.

One limitation of the current study is that we only assessed test-retest imaging based on computed tomography, 
as test-retest data sets for other modalities were not available to us. The proposed methodology should be assessed 
for other modalities, e.g. positron emission tomography (PET) and magnetic resonance imaging (MRI). Some 
image perturbation parameters, such as the volume of supervoxels, may require revision for other modalities.

Figure 4.  Feature-wise comparison of robustness under test-retest and perturbation conditions. Robustness 
was determined using the 95% confidence interval (CI) of the intraclass correlation coefficient. Features with 
CI ≥ 0.90 were considered to be robust (+), CI < 0.90 non-robust (−), and indeterminate (0) otherwise. By 
comparing robustness states between test-retest (T) and perturbation (P) conditions, a feature was either robust 
under both conditions (T+P+; true positive), non-robust under both conditions (T−P−; true negative), 
only robust under perturbations (T−P+; false positive), or only robust under test-retest conditions (T+P−; 
false negative). The state of the remaining features is either indeterminate due to overlap of the test-retest CI 
with the threshold (T0P−, T0P+), overlap of the perturbation CI with the threshold (T + P0, T − P0) or both 
(T0P0). Test-retest robustness was used as reference, and the corresponding column therefore only contains 
true positives and negatives, as well as indeterminate robustness. Perturbations are abbreviated, see Table 1: R: 
rotation; N: noise addition; T: translation; V: volume adaptation; C: contour randomisation.
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Another limitation of the current study is that we did not assess the effect of expert delineation uncertainties 
directly. As mentioned before, delineation uncertainties also cause variability in feature values23. Volume adapta-
tion and contour randomisation perturbations try to induce this uncertainty, but a comparison against a multiple 
delineation data set should be performed in the future.

In conclusion, we investigated the use of image perturbations to determine the robustness of radiomic fea-
tures, using test-retest imaging as reference. Our findings indicate that perturbation methods that distort image 
intensities and deform the ROI mask (NTVC, TVC, RNVC and RVC) may be used as an alternative to test-retest 
imaging to determine feature robustness.

Methods
Test-retest cohorts.  Two patient cohorts with test-retest computed tomography imaging were used: a pub-
licly available non-small cell lung cancer cohort of 31 patients25,26 and an in-house cohort (DRKS 00006007) of 19 
patients with locally advanced head and neck squamous cell carcinoma27. The NSCLC cohort is available from the 
Cancer Imaging Archive28. For the NSCLC cohort, two separate images were acquired within 15 minutes of each 
other, using the same scanner and acquisition protocol. Images in the HNSCC cohort were acquired within 4 days 
of each other using a different protocol, i.e. one CT image was acquired for 18F-Fludeoxyglucose positron emission 
tomography (PET) attenuation correction, and the other for attenuation correction of 18F-Fluoromisonidazole 
PET. Image acquisition parameters for both cohorts are shown in Supplementary Note 1.

Informed consent was obtained from all patients. Approval for analysis of the in-house data set was provided 
by the local ethics committee (Ethikkomission an der TU Dresden: EK 177042017). This study was conducted 
according to relevant guidelines and regulations.

The GTV was delineated by experienced radio-oncologists (L.A., K.P., E.G.C.T) using the Raystation 4.6 treat-
ment planning system software (RaySearch Laboratories AB, Stockholm, Sweden), and subsequently used as the 
region of interest.

Image processing.  Image processing was conducted using the scheme and recommendations provided 
by the Image Biomarker Standardisation Initiative (IBSI)29. An overview of the processing steps is provided in 
Fig. 5, and further details may be found in the IBSI documentation. A complete overview of the image processing 
parameters, excluding perturbation-related parameters, may be found in Table 2, and are reported in compliance 
with the preliminary IBSI reporting guidelines29,30.

In short, after loading a CT image, DICOM RTSTRUCT polygons were used to generate a voxel-based seg-
mentation mask for the GTV ROI. The image and mask were then both rotated over a set angle θ (optional). 
Gaussian noise, based on the noise levels present in the original image, was added to the image (optional). 
Subsequently, both image and mask were translated with a sub-voxel shift η (optional) and interpolated with 
prior Gaussian anti-aliasing (Supplementary Note 2). After interpolating to isotropic voxel dimensions, the image 
intensity values were rounded to the nearest integer Hounsfield unit, and the mask was re-labelled based on the 
partial voxel volume threshold. The mask was then grown or shrunk to alter the volume by a fraction τ (optional), 
before being perturbed by supervoxel-based contour randomisation31 (optional). The mask was subsequently 
copied to generate an intensity mask and a morphological mask. The intensity mask was re-segmented to an 
intensity range which includes only soft-tissue voxels. Voxels with intensities deviating more than three standard 
deviations from the mean of the ROI were excluded from the intensity mask as well32,33. The image and both 
masks were subsequently used to compute radiomic features, with several feature families requiring additional 
discretisation (Supplementary Note 3).

Image perturbations.  Five basic image perturbation methods were implemented in the image processing 
scheme described above. These were rotation (R), noise addition (N), translation (T), volume adaptation (V) and 
contour randomisation (C). Examples are shown in Fig. 1. Rotation perturbs the image and mask by performing 
an affine transformation that rotates the image and mask in the axial (x, y) plane, i.e. around the z-axis, for a spec-
ified angle θ ∈ −  [ 13 , 13 ]. Noise addition perturbs image intensities by adding random noise that was drawn 
from a normal distribution with mean 0 and a standard deviation equal to the estimated standard deviation of the 
noise present in the image. Translation perturbs the image and mask by performing an affine transformation that 
shifts the image and mask for specified fractions η ∈ . .( [0 00, 0 75]) of the isotropic voxel spacing along the x, y 
and z axis. Volume adaptation grows and/or shrinks the mask by a specified fraction τ ∈ − . .[ 0 28, 0 28]. Contour 
randomisation is based on simple linear iterative clustering31, and perturbs the mask by randomly selecting 
supervoxels based on the overlap with the original mask. The algorithmic implementation of these perturbations 
is described in Supplementary Note 4.

Perturbations were chained using the settings documented in Supplementary Note 5. Each rotation angle and 
volume adaptation fraction led to generation of a new image. Noise addition and contour randomisation could be 
repeated multiple times, with each repetition producing a new perturbed image as well. The translation fraction 
was permuted over the different directions. For example, for translation fractions η = . .{0 25, 0 5}, 23 = 8 permu-
tations were generated. Each permutation generated a new image. When chaining perturbations, all provided 
parameters were permuted.

An overview of the perturbation chains and the number of perturbed images created is shown in Table 1. All 
perturbation chains produced between 27 and 40 perturbed images.

Features.  All features defined in the IBSI documentation were implemented29, leading to a set of 182 base fea-
tures that were used to assess morphological, statistical and texture characteristics of the ROI. These base features 
belong to the morphological, local intensity, intensity-based statistical, intensity-histogram, intensity-volume 



www.nature.com/scientificreports/

7SCIeNTIFIC REPorTs |           (2019) 9:614  | DOI:10.1038/s41598-018-36938-4

Figure 5.  Image processing scheme with perturbations. A computed tomography (CT) image and a segmented 
gross tumour volume (GTV) are used as the input image data and the region of interest (ROI) respectively. The 
CT and ROI are processed to compute image features. Rotation, translation, noise addition, volume adaptation 
and contour randomisation are optional perturbation steps. Other image processing steps are detailed in 
the documentation of the image biomarker standardisation initiative (IBSI)29. IH: intensity histogram; IVH: 
intensity-volume histogram; GLCM: grey level co-occurrence matrix; GLRLM: grey level run length matrix; 
GLSZM: grey level size zone matrix; GLDZM: grey level distance zone matrix; NGDTM: neighbourhood grey 
tone difference matrix; NGLDM: neighbouring grey level dependence matrix. This figure is based on the image 
processing scheme in the IBSI document.
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histogram, grey level co-occurrence matrix-based texture, grey level run length matrix-based texture, grey level 
size zone matrix-based texture, grey level distance zone matrix-based texture, neighbourhood grey tone differ-
ence matrix-based texture, and neighbouring grey level dependence matrix-based texture feature families. All 
base features were computed at multiple scales, namely for isotropic voxel spacings of 1, 2, 3 and 4 mm34. 118 base 
features required discretisation. Both fixed bin size and fixed bin width discretisation algorithms were used, each 
with four settings. Thus, a total of 4032 features were computed in each image. Supplementary Note 3 contains 
further details with regard to feature computation.

Both image processing and feature computation were conducted using our IBSI-compliant in-house frame-
work based on Python 3.635.

Robustness analysis.  Feature robustness was assessed using the intraclass correlation coefficient (1, 
1) (ICC)16, based on the assumption that test-retest images, as well as perturbations, possess no consistent 
bias. The highest possible ICC value is 1.00, which indicates that feature values are fully repeatable between 
test-retest images or perturbations. Lower values denote an increasing measurement variance with respect to the 
intra-patient variance, and thus lower repeatability.

The test-retest ICC was determined between both CT images, see Fig. 2. Perturbation ICCs were first com-
puted separately for the test and retest images. Subsequently, perturbation ICCs were averaged over test and retest 
images to facilitate comparison with the test-retest ICC, as no consistent bias toward higher ICC values for one 
image set could be established (see Supplementary Note 6). The boundary values of the 95% confidence interval 
for perturbations were likewise averaged between test and retest images.

The 95% confidence interval of the ICC was used to determine robustness by comparison with a threshold of 
0.9017. Thus, a feature is robust if CI ≥ 0.90, non-robust if CI < 0.90, and has an indeterminate robustness if the 
CI overlaps with the threshold.

Feature robustness was assessed using R 3.4.236. ICCs and their confidence intervals were computed using 
code adapted from the psych R-package37.

Data Availability
Source images for the NSCLC cohort are available from the Cancer Imaging Archive (https://doi.org/10.7937/K9/
TCIA.2015.U1X8A5NR). Due to complete anonymisation requirements under the General Data Protection Reg-
ulation of the European Union and data protection laws of the Federal Republic of Germany, source images for 
the HNSCC cohort can not be made publicly available. These data are available from the corresponding author on 
reasonable request, and pending approval by the local ethics committee. Only requests for academic use will be 
considered, as the patients did not consent to use of their data for non-academic, e.g. commercial, purposes. An 
anonymous csv table containing the intraclass correlation coefficients for all features and perturbation methods 
is made available with the article.
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parameter NSCLC HNSCC

interpolated isotropic voxel spacing (mm) 1, 2, 3, 4 1, 2, 3, 4
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