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Learning from Longitudinal 
Data in Electronic Health Record 
and Genetic Data to Improve 
Cardiovascular Event Prediction
Juan Zhao1, QiPing Feng2, Patrick Wu1,3, Roxana A. Lupu   4, Russell A. Wilke4, 
Quinn S. Wells5, Joshua C. Denny1,5 & Wei-Qi Wei1

Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors 
and cross-sectional data. In this study, we applied machine learning and deep learning models to 
10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. 
Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and 
longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, 
convolutional neural networks (CNN) and recurrent neural networks with long short-term memory 
(LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic 
features. We compared the performance with approaches currently utilized in routine clinical practice 
– American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk 
Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. 
Combining genetic features through a late-fusion approach can further improve CVD prediction, 
underscoring the importance of integrating relevant genetic data whenever available.

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality, accounting for one-third of all 
global deaths1,2. Several prediction models have been proposed, including the Framingham risk score3, American 
College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Risk Equations4, and QRISK25. 
These models are typically built on a combination of cross-sectional risk factors such as hypertension, diabetes, 
cholesterol, and smoking status. Although the importance of conventional models cannot be ignored, well-known 
clinical risk factors for CVD explain only 50–75% of the variance in major adverse cardiovascular events6. About 
15–20% of patients who experienced myocardial infarction (MI) had only one or two of these risk factors and 
were not identified as being at “risk” of CVD according to current prediction models7. Given the fact that CVD is 
preventable, and that its first manifestation may be fatal, a new strategy to enhance risk prediction beyond con-
ventional factors is critical for public health.

Electronic health records (EHRs) contain a wealth of detailed clinical information and provide several dis-
tinct advantages for clinical research, including cost efficiency, big data scalability, and the ability to analyze data 
over time. With the wide implementation in the United States, accumulated EHR data has become an impor-
tant resource for clinical studies8. Meanwhile, the recent convergence of two rapidly developing technologies—
high-throughput genotyping and deep phenotyping within EHRs – presents an unprecedented opportunity to 
utilize routine healthcare data and genetic information to accelerate the healthcare. Many institutions and health 
care systems have been building EHR-linked DNA biobanks to enable such a vision. For example, the BioVU at 
Vanderbilt University Medical Center (VUMC), as of May 2018, has genotype data of over 50,000 individuals 
available for research.
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Machine learning and deep learning approaches are particularly suited to exploiting such big data for indi-
vidual outcome prediction, especially when EHRs can be linked to genetic data9,10. A recent study from the 
United Kingdom (UK) applied machine learning to conventional CVD risk factors on a large UK population and 
improved the prediction accuracy by 4.9%11. In this study, we examined: i) the performance of machine learning 
and deep learning on longitudinal EHR data for the prediction of 10-year CVD event, compared to a gold stand-
ard achieved by (ACC/AHA) Pooled Cohort Risk Equations, and ii) the benefits of incorporating extra genetic 
information.

Results
Machine learning and deep learning models with longitudinal EHR data (Experiment I).  This 
experiment involved EHR data of 109, 490 individuals (9,824 cases and 99, 666 controls, mean age [standard devi-
ation, SD] 47.4 [14.7] years; 64.5% female and 86.3% European). We applied machine learning models using only 
ACC/AHA features, aggregate and longitudinal EHR features for CVD prediction, respectively. We compared the 
approaches with a baseline - ACC/AHA equation. We measured the area under a receiver operating characteristic 
curve (AUROC) and area under a precision recall curve (AUPRC).

The results were reported in Fig. 1 and Supplementary Table 1. Machine learning models all outperformed 
the baseline ACC/AHA equation. The ACC/AHA equation achieved an average AUROC of 0.732, while machine 
learning models using only ACC/AHA features obtained an AUROC of 0.738–0.751. By incorporating EHR 
features, the performance metrics were improved further. Machine learning models using aggregate EHR fea-
tures achieved an AUROC of 0.765–0.782. By using temporal features, logistic regression (LR), gradient boosting 
trees (GBT) and deep learning models improved the AUROC to 0.781–0.790. Particularly, GBT and convolu-
tional neural networks (CNN) achieved the highest AUROC of 0.790 (i.e. 7.9% improvement from baseline). For 
AUPRC, machine learning using temporal features remarkably improved the baseline (i.e., 0.246–0.285 vs. 0.186, 
a 32.8–44.1% improvement).

Feature analysis.  We listed the top ten features for each optimized machine learning model (i.e. defined as 
the selected best model using grid-search on 10-fold cross-validation) in Table 1. For LR, the rank of features 
was determined by their coefficients (weights). For random forest trees (RF) and GBT, the features were ranked 
according to the impurity (information gain/entropy) decreasing from a feature. Because CNN and recurrent 
neural network with long short-term memory (LSTM) units are black box models, estimation of each feature’s 
contribution to predicting CVD risk remains difficult. We were not able to analyze the feature importance of the 
deep learning models in this study. We also used the recursive-backwards feature elimination on aggregate fea-
tures with 5-fold cross-validation to select the top 10 features, shown in Supplementary Table 4.

The top features in all machine learning models include some conventional risk factors such as age, blood 
pressure (BP), and total cholesterol, as well as several new features not included in ACC/AHA features such as 
body mass index (BMI), creatinine, glucose, and antiplatelet therapy (e.g. Aspirin, and Clopidogrel). Moreover, 
the maximum, minimum, and SD for laboratory values (e.g. fasting lipid values) and physical measurements (e.g. 
BMI and BP) contribute more than median values to the models. GBT preferred historically-entered diagnostic 
codes such as heart valve disorders, lipid disorders, and hypertension) over other features.

For machine learning models with longitudinal features, LR selected laboratory values in the years 2000 and 
2006 (e.g. SD Glucose from the observation window). RF chose BMI in multiple years. GBT prioritized the med-
ical conditions obtained from the most recent year before the prediction window (the year 2006).

Evaluation benefits of additional genetic features (Experiment II).  In this second experiment, we 
developed a two-stage late-fusion approach to combine genetic and longitudinal EHR features for machine learn-
ing models. This is possible at large academic centers where genome-wide data are rapidly moving into EHRs. We 
compared the approach with ACC/AHA equations, as well as with machine learning models using ACC/AHA 
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Figure 1.  AUROC and AUPRC of gold standard and machine learning/deep learning models for predicting 
10-year CVD risk on 10-fold cross validation in Experiment I. The mean values of the AUROC and AUPRC and 
the standard error are provided in Supplementary Table 1.
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features and longitudinal EHR features. The study was conducted using a genotyped cohort of 10,162 individuals 
(2,452 cases and 7,710 controls with both genotyped data and EHRs from 2000–2016, Supplementary Table 5).

The results are shown in Fig. 2 and Supplementary Table 2. GBT using ACC/AHA features generated similar 
results with ACC/AHA equations. Conversely, GBT using longitudinal EHR features outperformed ACC/AHA 
equations (AUROC of 0.71 vs. 0.698, AUPRC of 0.427 vs. 0.396). Our innovative late-fusion approach combining 
additional genetic features then further significantly improved the AUROC and AUPRC by 2.1% and 9.1%.

We listed the top ten features in the pre-trained model with genetic data in Table 2. A single nucleotide pol-
ymorphisms (SNP) (rs17465637) was ranked as the second most important feature after age. Many loci that 
emerged as informative during this approach (MIA3, CXCL12, and LPA) have previously been identified as pre-
dictors of early coronary artery disease12. We have previously shown that LPA is a strong independent predictor of 
CVD events on lipid lowering therapy13. Chemokines (CXCL12) and check point genes (CDKN2A) flagged by this 
approach may alter CVD through their role in angiogenesis. Other loci (GGCX) are known to impact response 
to anticoagulation14.

Discussion
This study leveraged a large EHR dataset and EHR-linked biobank in the U.S. to assess the added value of lon-
gitudinal data without and with extant genotype. The machine learning models outperformed a traditional 
clinically-used predictive model for CVD risk prediction (i.e. ACC/AHA equation). Consistent with previous 
reports11,15, we initially observed a benchmark predictability for the ACC/AHA equation of AUROC 0.732 
(benchmark for AUPRC was 0.186). When we applied machine learning models using the same ACC/AHA fea-
tures, they demonstrated better performance (improved AUROC of 0.738–0.751). Because we were interested in 
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Table 1.  Top 10 features for machine learning prediction in descending order of coefficients or feature 
importance returned by RF and GBT. LDL-C (LDL Cholesterol); HDL-C (HDL Cholesterol); Systolic Blood 
Pressure (SBP); Diastolic Blood Pressure (DBP); Body mass index (BMI).
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Figure 2.  AUROC and AUPRC of gold standard, GBT model on EHR feature and late fusion on EHR and 
genetic feature for predicting 10-year CVD risk on 50 iterations in Experiment II. The mean values of the 
AUROC and AUPRC and the standard error are provided in Supplementary Table 2.
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whether machine learning models incorporating longitudinal EHR features and genetic features could enhance 
the prediction, we designed two experiments: i) modeling EHR features with aggregated and temporal features 
for machine learning and deep learning models, and ii) developing a two-stage late-fusion model to incorporate 
these longitudinal EHR data with genetic features. The results showed that machine learning models incorporat-
ing longitudinal EHR features such as BMI, lab values, and medication history significantly outperformed the 
baseline approach (improved AUROC 0.761–0.790). Even using a strictly metric AUPRC, the improvement is 
still significant. We also observed that the late-fusion approach with incorporating genetic data can improve the 
prediction performance (AUROC of 0.713 vs. 0.698, AUPRC of 0.432 vs. 0.396).

The top features selected in our machine learning models include several conventional risk factors such as 
age, blood pressure, and total cholesterol. BMI, creatinine, and glucose values (not used in the ACC/AHA equa-
tions) were found to be important features, which confirmed previous reports that these features may be inde-
pendent risk factors for CVD16–18. Moreover, the maximum, minimum, and SD of laboratory values (e.g. lipids) 
and physical measurements (e.g. BMI and BP) provide more discriminating abilities than median values19. This 
finding, that temporal instability in body weight and hemodynamics may be a stronger predictor of risk than 
cross-sectional estimates of the same parameters, is clinically important.

Longitudinal data more accurately reflect the fluctuation of physiological factors over time. Recently, the 
STABILITY trial suggested the higher visit-to-visit variation in both systolic and diastolic blood pressure is a 
strong predictor of CVD20. When we narrow our observation window to a one-year slice in time, we captured the 
longitudinal EHR features year by year. Although the most recent value of some features was often preferred, our 
machine learning models also have antecedent laboratory tests (e.g. glucose and creatinine in 2000) in their top 
features when applied to LR. Incorporating these features enhanced the overall performance.

Overall, the study evaluated LR, RF, and GBT using temporal features via two novel deep learning models– 
CNN and LSTM. CNN is particularly suited to learning local patterns in raw features from input like images, 
where the intensity of pixels can be combined into higher level features. By comparison, LSTM is designed to 
learn long/short term dependency of data in a sequence. Both CNN and LSTM outperformed LR and RF but had 
no measurable advantage over GBT. The reason is that GBT can balance bias and variance to yield better general-
ization by using a boosting strategy. Although we built the multivariate temporal matrix for each patient, like an 
1D image, reduced sequential dependency in the data may not fulfill the advantage of CNN and LSTM. A future 
study is required to compare GBT, CNN and LSTM on a dataset of more detailed clinical events in a consequent 
manner.

Lastly, our study also underscores the importance of including genetic variants. CVD has a sizeable hereditary 
component3, and many contributing loci are now being validated through functional studies in vitro; the result 
is a deeper understanding of the biology underlying CVD21–24. To date, polygenic risk scoring, a method for 
summarizing genetic effects for diseases, are being incorporated into clinical practice25. However, how to com-
bine genetic variants with other biological and lifestyle factors remain a challenge26. We performed a two-stage 
late-fusion approach and evaluated the predictive power of 204 SNPs with longitudinal EHR data in CVD pre-
diction. Through access to BioVU at the Vanderbilt, the largest single-site biobank in the U.S., we have identified 
10,162 individuals with both EHR data and selected SNPs. To enlarge the power of these data, we took advantage 
of another 34, 926 subjects genotyped cohort in BioVU with selected SNPs available. Our late-fusion approach 
trained multiple classifiers separately on longitudinal EHR and genetic data, fusing the prediction results across 
classifiers. Our results demonstrated that genetic features offer benefits to clinical features, resulting in an 
improved AUROC (i.e. 2.1%) and AUPRC (i.e. 9.1%).

For the model trained with only genetic and demographic features, age remains the strongest predictor for 
CVD (coefficient 0.747), followed two variants from the MIA3 gene, gender length of the EHR. This locus has 
previously been identified as a predictor of early coronary artery disease12. Our approach also underscored the 
importance of the LPA gene, a known predictor of CVD events on lipid lowering therapy13. Interestingly, in that 
prior work we reported that variability in the LPA gene predicted CVD events independent of circulating lipid 
levels. Our current observation highlights the importance of this locus in quantifying residual CVD risk even 
after models have considered lipids.

Features Reference gene Coefficient

Age — 0.747

rs17465637 MIA3 −0.334

rs67180937 MIA3 0.301

Gender — −0.270

EHR length — 0.180

rs7568458 GGCX 0.103

rs4977574 CDKN2A 0.095

rs10455872 LPA 0.093

rs1412444 LPA 0.092

rs501120 CXCL12 −0.079

Table 2.  Top 10 features in pre-trained model 2 with genetic data. Features were ranked according to 
descending order of absolute value of coefficient effect size. We chose the result from the iteration which 
generated the closest result from the average AUROC and AUPRC.
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We acknowledge the limitations that, (1) this study was restricted to data obtained during routine clinical 
practice, (2) we only used 204 SNPs in our genetic experiment, and (3) that some of the effects of the SNPs may 
also be modeled directly by phenotypes. Yet, paradoxically, some SNPs for endophenotypes are more predictive of 
CVD events than the endophenotype itself13. We believe that, with even denser phenotypic and genetic informa-
tion available in growing EHR cohorts, prediction would continue to improve. This study confirmed that com-
bining phenotypic and genetic information with robust computational models can improve disease prediction.

Methods
Study setting.  We conducted the study using data derived from Synthetic Derivative, a de-identified copy 
of whole EHRs at VUMC. Synthetic Derivative maintains rich and longitudinal EHR data from over 3 million 
unique individuals, including demographic details, physical measurements, history of diagnosis, prescription 
drugs, and laboratory test results. As of May 2018, over 50,000 of these individuals have genotype data available.

We focused our analysis on individuals with European or African ancestry. To ensure each individual to have 
some EHR data, we required an individual to meet the definitions of medical home27. We set the baseline date as 
01/01/2007 to allow all individuals within the cohort to be followed-up for 10 years. For each individual, we split 
the EHR into: (i) the observation window (01/01/2000 to 12/31/2006; 7 years) and, (ii) the prediction window 
(01/01/2007 to 12/31/2016; 10 years). We extracted EHR data in the 7-year observation window (2000–2006) 
to train a classifier to classify whether the individual would have CVD event in the 10-year prediction window 
2007–2016.

We define cases as individuals with ≥1 CVD diagnosis codes (the International Classification of Diseases, 
Ninth Revision, Clinical Modification [ICD-9-CM]: 411. * and 433. *) within the 10-year prediction window. 
Controls were individuals without any ICD-9-CM code 411. * or 433. * during the 10-year prediction window.

Study cohort.  The study cohort included patients between the ages of 18 to 78 on 01/01/2000 (beginning of 
the observation window). Individuals with any CVD diagnosis (ICD-9-CM 411. * or 433. *) prior to the baseline 
date (i.e. 01/01/2007) were excluded. To reduce chart fragmentation and optimize the density of the longitudinal 
EHR data, we required each individual to have >=1 visit and >=1 blood pressure measurement during the 
observation window28,29. We excluded inpatient physical or laboratory measures for all individuals.

In total, we identified 109, 490 individuals, including 9,824 cases and 99, 666 controls (mean [SD] age 47.4 
[14.7] years; 64.5% female and 86.3% European). The case/control ratio was consistent with a previous report 
from a large EHR cohort11. Among these 109, 490 individuals, 10,162 individuals (2,452 cases and 7,710 controls) 
had genotype data.

Data preprocessing and feature extraction.  Phenotypic data: we extracted features including demo-
graphics, variables in the ACC/AHA equations (e.g. blood pressure measurements), physical measurements 
(e.g. BMI), and laboratory tests including glucose, triglyceride levels, and creatinine level (as a marker of renal 
function); such laboratory features have previously been reported relevant to CVD11. In addition, we applied 
chi-square (chi2)30, a common feature selection methods to select independent features on EHR data, and identi-
fied 40 relevant diagnostic codes and medication codes (Table 3).

We represented a physical measurement or laboratory feature with summarized data, e.g. minimum, maxi-
mum, median, and SD. We removed the outliers (>5 SD from the mean) to avoid unintended incorrect measure-
ments (e.g. using lb. instead of kg. for body weight)31. If an individual had no such measure within the EHR, we 
imputed the missing value with the median value of the group with the same age and gender32. We also added a 
dummy variable for each measure to indicate whether the test value was imputed.

For disease phenotypes, we followed a standard approach and grouped relevant ICD-9-CM codes into distinct 
phecodes33. For medications, we collapsed brand names and generic names into groups by their composition 
(ingredients) and represented the groups using the RxNorm34 concepts (RxCUIs) for this variable. For example, 
‘Tylenol Caplet, 325 mg oral tablet’ and ‘Tylenol Caplet, 500 mg oral tablet’ were both mapped to ‘Acetaminophen’ 
(RxCUI 161). We used a binary value to indicate whether or not an individual had each diagnosis or prescription.

For genetic data, we selected 248 SNPs reported to be associated with CVD in two large meta-analyses23,24. 
Among these SNPs, genotype data were available for 204 SNPs in our cohort and were included as features. Each 
SNP had a value 0, 1, or 2 to represent the count of minor alleles for an individual. Table 3 shows the features used 
in the machine learning models.

Experiment.  Baseline.  We chose the ACC/AHA equation for 10-year CVD risk as our baseline. For physical 
measurements or laboratory features (i.e. SBP/DBP and HDL-c level), we used the most recent values prior to the 
split date, 01/01/2007.

Machine learning and deep learning with longitudinal EHR data (Experiment I).  In this exper-
iment, we used two different ways to model EHR data– extracting aggregate and longitudinal EHR features–for 
machine learning models (Fig. 3). We compared their performance of 10-year CVD prediction with baseline.

Aggregate features.  We aggregated features across the 7-year observation window (e.g. median, max, min and 
SD of HDL from 01/01/2000 to 12/31/2006).

Longitudinal features (Multivariate temporal features).  We exploited the temporal information in the longitu-
dinal EHR data by dividing the whole observation window into one-year slice window. Specifically, for physical 
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Feature type Features Values

Demographic
Age* Continuous
Gender* Binary
Race Categorical

Life styles
Body mass index (BMI) Summarized data†

Smoking* Binary

Physical or lab 
measurements

Systolic blood pressure (SBP)* Summarized data†

Diastolic blood pressure (DBP)* Summarized data†

Total Cholesterol (Cholesterol)* Summarized data†

HDL Cholesterol (HDL-C)* Summarized data†

LDL Cholesterol (LDL-C) Summarized data†

Creatinine Summarized data†

Glucose Summarized data†

Triglyceride Summarized data†

Diagnosis

Other tests (phecode33 1010)

Binary

Benign neoplasm of skin (216)
Diabetes mellitus* (250)
Disorders of lipoid metabolism (272)
Other mental disorder, random mental disorder (306)
Heart valve disorders (395)
Hypertension (401)
Cardiomyopathy (425)
Congestive heart failure; nonhypertensive (428)
Atherosclerosis (440)
Acute upper respiratory infections of multiple or 
unspecified sites (465)
Chronic airway obstruction (496)
Disorders of menstruation and other abnormal 
bleeding from female genital tract (626)

Medication

Warfarin (RXCUI 11289)

Binary

Aspirin (1191)
Atenolol (1202)
Amlodipine (17767)
Carvedilol (20352)
Lisinopril(29046)
Adenosine(296)
Clopidogrel (32968)
Digoxin (3407)
Diltiazem (3443)
Ramipril (35296)
Diuretics (3567)
Dobutamine (3616)
Simvastatin(36567)
Enalapril (3827)
Sestamibi (408081)
Ethinyl Estradiol (4124)
Furosemide (4603)
Nitroglycerin (4917)
Hydrochlorothiazide(5487)
Ibuprofen (5640)
Metoprolol (6918)
Acellular pertussis vaccine (798302)
Atorvastatin(83367)
ACE inhibitors (836)
Thallium(1311633)
Clonidine (2599)

Genetic 204 SNPs# Categorical
Others EHR length Continuous

Table 3.  Features included in the machine-learning models. *Features in ACC/AHA Equations. †Summarized 
data includes minimum, maximum, median and SD within a time window. #204 SNPs are listed in the 
Supplementary Data.



www.nature.com/scientificreports/

7SCIeNTIFIC REPOrTS |           (2019) 9:717  | DOI:10.1038/s41598-018-36745-x

or laboratory features, we extracted the median, max, min and SD values within one-year slice window. We 
replaced the missing physical or laboratory measures with the individual’s measurement on the closest date, e.g. 
using the HDL cholesterol result on 12/20/2005 instead if the individual had no HDL test in 2006. For diagnosis 

Figure 3.  Study design of experiment I. The figure illustrates how we defined the observation and prediction 
window. It also shows how we modeled longitudinal EHR features: i) We aggregated each feature across the 
7-year observation window (e.g. median, max, min and SD of HDL); ii) we extracted each year value of each 
feature and concatenated the temporal values from all patients into a two-dimensional matrix for a classifier 
(e.g. LR, RF, GBT); we then constructed a tensor representation on temporal values from all patients for CNN 
and LSTM.

Figure 4.  Flowchart of selecting cohort for late-fusion approach.
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and medication features, we used a binary value to indicate whether or not an individual had each diagnosis or 
prescription in one-year slice window.

Machine learning and deep learning models.  Three machine learning models, LR, RF and GBT were used in 
both aggregate and longitudinal features. Two deep learning models, CNN35 and LSTM36 were applied to the 
longitudinal features.

Implementation detail.  We used CNN and LSTM on longitudinal features and concatenated an auxiliary input 
of demographic features to feed into a multilayer perceptron (MLP) with two hidden layers. More details can be 
found in Supplementary Table 3. LR, RF, and GBT were implemented with Python Scikit-Learn 0.19.1 (http://
scikit-learn.org/stable/)37. The CNN and LSTM models were implemented with Keras 2.1.3 (https://keras.io/) 
using Tensorflow1.6.1 as the backend. The backward recursive feature elimination was implemented with mlx-
tend 0.13 (https://rasbt.github.io/mlxtend/).

Evaluation.  We randomly divided the dataset into a training and a test set with a 90/10 split. We first trained 
models (LR, RF, GBT) using a grid search with 10-fold stratified cross-validation on the training set to select 
the best model with the maximum AUROC. Then we tested the selected model on test set. We repeated the 
above process ten times. For deep learning models, we randomly divided the data into training, validation, and 
testing sets with a ratio of 8:1:1 and iterated the process ten times. For each iteration, we calculated AUROC and 
AUPRC38 values after applying the model on the test set. We reported the average and SD of both values. To see 
whether there was a significance difference in the performance, we performed a paired t-test with the level of 
confidence 0.05.

Evaluation benefits of additional genetic features (Experiment II).  In this experiment, we exam-
ined combining genetic features with demographic and longitudinal EHR data for 10- year CVD prediction. 
We developed a two-stage late-fusion approach to incorporate EHR and genotyped features. Late-fusion is an 

Figure 5.  Framework for proposed late fusion approach to combine the genetic features with longitudinal EHR 
features.

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://keras.io/
https://rasbt.github.io/mlxtend/
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effective approach to enhance prediction accuracy by combining the prediction results of multiple models trained 
separately by a group of features39. We trained two sperate models on EHR data and genotyped data, respectively. 
Then the approach fuses the prediction results by taking the prediction scores as input features and training a 
fusion model (e.g. LR) for final prediction.

To enlarge the data power, besides the main study cohort (set I, n = 109, 490) used in experiment I, the study 
utilized another big genotyped cohort (set II) including 34,926 individuals without restricting >1 record of SBP 
in the observation window (Supplementary Table 5). We used the same criteria (i.e. ≥1 CVD diagnosis codes in 
the prediction window) to label each individual in the genotyped cohort as a case or control. The set II had 204 
SNPs features and basic demographic features (e.g. age, gender, and race). There is an overlap of 10,162 individ-
uals between the two sets (denoted as intersect set), i.e. these individuals have both EHR and genotyped features 
(Fig. 4). We randomly split the intersect set into a training set (i.e. 8,129 individuals) used for training the fusion 
model and a holdout test set (i.e. 2, 033 individuals) with an 80/20 split.

The workflow of the framework is presented in Fig. 5. In the first stage of the framework, we firstly trained 
a classifier (model1) with longitudinal EHR features on the set I (with holdout test set removed), and trained a 
another classifier (model 2) using 204 SNPs features on the set II (with holdout test set removed). In the second 
stage, we applied the model 1 and 2 to the training set from intersect cohort to get prediction scores, which then 
used as features in fusion model for final prediction.

We used GBT for the model 1 as GBT has good generalizability as an ensemble approach. We used the LR for 
model 2 and fusion model. To compare the performance, we tested model 1 and fusion model on the holdout test 
set (2,033 individuals). We performed 5-fold cross-validation and repeated the process ten times. We reported the 
mean and SD of AUROC and AUPRC.
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