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Chronic Stress in Children and Adolescents:
A Review of Biomarkers for Use in
Pediatric Research
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Abstract
Problem: Incorporating biomarkers of chronic stress into pediatric research studies may help to explicate the links between
exposure to adversity and lifelong health, but there are currently very few parameters to guide nurse researchers in choosing
appropriate biomarkers of chronic stress for use in research with children and adolescents. Methods: Biomarkers of chronic
stress are described, including primary mediators (glucocorticoids, catecholamines, and cytokines) and secondary outcomes
(neurologic, immune, metabolic, cardiovascular, respiratory, and anthropometric) of the chronic stress response. Results:
Evidence of the use of each biomarker in pediatric research studies is reviewed. Recommendations for pediatric researchers,
including selection of appropriate biomarkers, measurement considerations, potential moderators, and future directions for
research, are presented. Discussion: A wide range of biomarkers is available for use in research studies with children. While
primary mediators of chronic stress have been frequently measured in studies of children, measurement of secondary outcomes,
particularly immune and metabolic biomarkers, has been limited. With thoughtful and theoretically based approaches to selection
and measurement, these biomarkers present an important opportunity to further explore the physiologic pathways linking
exposure to chronic stress with later health and disease. Conclusion: The incorporation of chronic stress biomarkers into
pediatric research studies may provide valuable insight into the mechanisms through which stressful environments “get under the
skin” and ultimately inform efforts to promote health and reduce inequities among children exposed to adversity.
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Exposure to chronic stress can lead to brain alterations and

physiological disruptions that impact health and developmental

outcomes across the life course (S. B. Johnson, Riley, Granger,

& Riis, 2013; McEwen, 2012; Shonkoff et al., 2012). This

exposure can be particularly harmful for children because vul-

nerability to the effects of chronic stress is clearly heightened

during sensitive and critical periods in the prenatal, early child-

hood, and adolescent stages of development (Andersen, 2003;

Fox, Levitt, & Nelson, 2010). Understanding the physiological

pathways through which the physical and social environments

“get under the skin” is a crucial step toward promoting health

and reducing health inequities among children exposed to

stressful environments (Garner, Shonkoff, Committee on Psy-

chosocial Aspects of Child and Family Health, Committee on

Early Childhood, Adoption, and Dependent Care, & Section on

Developmental and Behavioral Pediatrics, 2012; Hertzman &

Boyce, 2010; McEwen, 2012). Integration of biological mar-

kers into pediatric research is one approach that may help to

further explicate the pathways that link exposure to chronic

stress and lifelong health.

Biological markers, or biomarkers, are objective measure-

able indicators of biological processes (Institute of Medicine,

2010). Researchers use biomarkers to evaluate normal biologi-

cal processes, to evaluate biological responses to interventions,

or as surrogates for clinical end points to assist with diagnosis

and monitoring of disease (Colburn et al., 2001; Institute of

Medicine, 2010). In pediatric research, biomarkers may be used

to understand the pathogenic processes associated with expo-

sure to chronic stress in childhood and adolescence. However,

there are currently very few parameters to guide researchers in

choosing appropriate biomarkers of chronic stress (Granger,

Johnson, Szanton, Out, & Schumann, 2012; Juster, McEwen,

& Lupien, 2010; Rodriguez et al., 2016). The purpose of this

article is to describe biomarkers of chronic stress and review

evidence of their use in pediatric research. I also discuss stra-

tegies and methods for biomarker collection, possible
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moderators for consideration, and future directions for biobe-

havioral research on chronic stress in childhood.

The Human Stress Response

When faced with an acute stressor, the brain initiates beha-

vioral and physiological adaptations to protect the body and

prepares for a fight-or-flight response. These physiological

adaptations are referred to as allostasis and include activation

of the sympathetic nervous system (SNS) and hypothalamic–

pituitary–adrenal (HPA) axis. This activation results in a

release of glucocorticoids, catecholamines, and cytokines that

interact as part of a complex, nonlinear network and act as

primary mediators of the stress response, as depicted in Figure

1 (Juster et al., 2010; McEwen, 2003, 2012; Tottenham &

Sheridan, 2009). As one mediator increases or decreases in

response to stress, others compensate in an effort to regain

homeostasis or the stability of physiological systems necessary

to maintain life (Juster et al., 2010; McEwen & Wingfield,

2003). The parasympathetic nervous system also plays a reg-

ulatory role by reducing inflammation and cardiovascular

response, thus contributing to the negative feedback loop

intended to regain physiological stability (Juster et al., 2010).

In the short term, allostasis is adaptive, and physiological

systems return to baseline in the absence of threat. However,

repeated or chronic exposure to stressors can lead to allostatic

load or overload, in which prolonged release of primary med-

iators (glucocorticoids, catecholamines, and cytokines) dis-

rupts development and functioning of the brain and

neuroendocrine, immune, metabolic, cardiovascular, and

respiratory systems (McEwen, 2008; McEwen & Wingfield,

2003). These physiological disruptions, referred to as second-

ary outcomes of the stress response, can lead to diseased and

disordered tertiary end points that affect mental and physical

health across the life span (Garner et al., 2012; Juster et al.,

2010). As displayed in Figure 1, this process does not occur in a

linear fashion but as part of a complex cascade that is also

influenced by environmental factors including individual
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Figure 1. The physiological response to chronic stress. When the brain perceives a stressor, a complex, nonlinear network of primary
mediators (glucocorticoids, catecholamines, and cytokines) is released in an effort to regain homeostasis. In response to chronic stressors,
prolonged release of these mediators can lead to physiological disruptions and poor secondary outcomes across a range of systems, which
ultimately lead to tertiary end points (chronic disease). Adapted from McEwen (2008) and McEwen and Wingfield (2003) with permission from
Elsevier
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differences and behavioral responses (McEwen, 2008). Table 1

describes concepts related to allostasis and allostatic load; for

further review, see McEwen and Wingfield (2003). For an

excellent review on the physiological response to chronic

stress, see McEwen (2008).

For the purposes of this article, I define chronic stress as

the process by which any stressor leads to a prolonged

release of primary mediators and places children at risk of

secondary outcomes and tertiary end points associated with

allostatic load and overload. This concept is distinct from

that of acute stress, which includes a temporary allostatic

response with a return to homeostasis after the resolution of

a single psychologically or physically threatening event

(McEwen & Wingfield, 2003). In childhood and adoles-

cence, chronic stressors may include extreme experiences,

such as abuse, neglect, or institutionalization, as well as

more prevalent stressors such as exposure to poverty, food

insecurity, interpersonal violence, parental mental illness,

racism, discrimination, unstable foster care placement, or

unsafe neighborhoods and community violence (Shonkoff

et al., 2012). In this review, I focus specifically on the

primary mediators (Table 2) and secondary outcomes (Table

3) that investigators commonly measure in studies of chil-

dren experiencing chronic stress. I provide an overview of

the physiology and research evidence for each biomarker,

with a focus on studies examining chronic stress in children

or adolescents. Although I generally summarize the infor-

mation, I do report statistical information where possible.

I encourage the reader to review each primary source for

further detail on the methods and findings.

Primary Mediators

Glucocorticoids

Glucocorticoids play a complex role in the stress response,

including functions that mediate current responses to stress,

suppress ongoing stress responses, and prepare the body for

exposure to subsequent stressors (Sapolsky, Romero, &

Munck, 2000). Glucocorticoid receptors are present in almost

every bodily tissue, and glucocorticoids exert effects on fluid

volume, cardiovascular effects, inflammation and immune sys-

tem functioning, metabolism, glucose transport, appetite, cog-

nition, and reproduction (McEwen, 2003; Sapolsky et al.,

2000). Cortisol is a naturally occurring glucocorticoid pro-

duced by the adrenal glands in response to HPA-axis activation

(Jessop & Turner-Cobb, 2008). Cortisol can be measured in

blood serum, saliva, urine, or hair. However, authors have

documented the benefits of measuring salivary cortisol over

serum cortisol from as early as the 1980s, as salivary cortisol

is noninvasive and levels are directly proportional to those

Table 1. Concepts Related to the Human Stress Response.

Concept Definition

Homeostasis � Stability of physiological systems that is
essential for life

� Body temperature, pH, glucose levels, and
oxygen tension are maintained within optimal
range

Allostasis � Process of keeping physiological systems in
balance and achieving homeostasis as
environments and/or life history stages change

� Primary mediators include HPA axis,
catecholamines and cytokines

Allostatic
state

� Altered physiology and behavior associated
with changing physical and social environments

� Results in an imbalance of primary mediators
Allostatic load � Cumulative result of an allostatic state

� May be adaptive in the short term but
increases over time or in the presence of
additional stressors

Allostatic
overload

� Allostatic load exceeds capacity of the
individual to cope

� Leads to secondary outcomes and increased
risk for disease

Source. Adapted from McEwen & Wingfield (2003); HPA axis ¼ hypothalamic–
pituitary–adrenal axis.

Table 2. Primary Mediators of the Stress Response.

Biomarker Measurement Overview of Biomarker Function

Glucocorticoids
Cortisol Serum, saliva,

urine, and
hair

Produced by the adrenal glands in
response to HPA-axis
activation; involved in fluid
regulation, inflammation,
immune system functioning,
metabolism, glucose transport,
appetite, cognition, and
reproduction

Catecholamines
Epinephrine Serum and

urine
Released by the adrenal medulla

in SNS response to stress; acts
on skeletal muscle, increases
heart rate and glucose levels

Norepinephrine Serum and
urine

Released by sympathetic neurons
in SNS response to stress;
regulates blood vessel
restriction and blood flow to
organs with sympathetic nerve
innervation

Dopamine Serum and
urine

Released by the adrenal medulla
and peripheral sympathetic
nerves in SNS response;
involved in cognitive,
behavioral, and cardiovascular
responses to stress

Cytokines
IL-6, IL-1b,
TNF-a,
cytokine panels

Serum and
saliva

Intercellular protein messengers
of the immune system
produced locally by immune
cells and organs such as the
brain and liver; regulate pro-
and anti-inflammatory
responses to stress

Note. HPA axis ¼ hypothalamic–pituitary–adrenal axis; IL¼ interleukin; SNS ¼
sympathetic nervous system; TNF-a ¼ tumor necrosis factor-a.
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found in serum (Laudat et al., 1988; Vining, McGinley, Maks-

vytis, & Ho, 1983). In recent published studies, researchers

have used serum cortisol to measure adrenal function in acute

or chronically ill children but have rarely measured it to under-

stand the impacts of chronic stress (Landstra, Postma, Boezen,

& Van Aalderen, 2012; Malakasioti et al., 2013; Nakavachara

& Viprakasit, 2013). Thus, I have reviewed only research

including salivary, urinary, or hair cortisol measurement.

Salivary cortisol. Salivary cortisol is a sensitive and specific mea-

sure of biologically active, unbound cortisol that has been

Table 3. Secondary Outcomes Related to Chronic Stress.

Biomarker Measurement
Overview of Biomarker
Function

Neurologic
Hippocampal

volume/
activity

MRI and fMRI Involved in learning and
memory formation;
also regulates negative
feedback of
glucocorticoids in HPA-
axis response to stress

Amygdala
volume/
activity

MRI and fMRI Involved in fear
conditioning and
emotional processing

Immune
C-reactive

protein
Serum, saliva, and

urine
Protein synthesized in the

liver; stimulated by
inflammatory cytokines
and altered by
glucocorticoid levels

Fibrinogen Serum and urine Glycoprotein produced by
the liver; involved in
platelet and erythrocyte
aggregation, determines
plasma viscosity

Secretory IgA Serum, saliva, and
urine

Antibody primarily
produced in mucous
membranes of the
intestinal tract;
protects epithelium
from harmful toxins
and microorganisms

Metabolic
Insulin Serum, saliva, and

urine
Hormone produced by

the pancreas; involved
in glucose metabolism

Glucose Serum, saliva, and
urine

Monosaccharide
synthesized in the liver
and kidneys; body’s
main energy source

Leptin Serum, saliva, and
urine

Hormone secreted from
adipose tissue;
regulates energy
homeostasis

a-Amylase Serum, saliva, and
urine

Enzyme produced by the
salivary glands; initiates
digestion of
carbohydrates and
starches.

Lipids Serum, saliva Lipoproteins (HDL and
LDL) and triglycerides
responsible for
transport of cholesterol
and dietary fat

Cardiovascular and respiratory
Blood pressure Sphygmomanometer Reflects force exerted by

blood against the blood
vessel walls during
systole and diastole;
elevated in SNS
response to stress

(continued)

Table 3. (continued)

Biomarker Measurement
Overview of Biomarker
Function

Heart rate Arterial pulsations Number of palpations
made by the heart
within a specified
period of time; elevated
in SNS response to
stress

Heart rate
variability

Electrocardiogram Variation in the time
interval between
palpations of the heart;
reflects ANS activity

RSA Electrocardiogram Variation in heart rate
that occurs during a
respiratory cycle;
indicator of cardiac
vagal tone

Anthropometric
BMI Height and weight Measure of weight relative

to height; estimation of
body fat percentage
based on age and
gender-specific
standards

Waist
circumference

Waist
circumference

Measure of distance
around the abdomen;
estimation of
abdominal adiposity

Waist-to-hip
ratio

Waist and hip
circumferences

Measure of waist
circumference divided
by hip circumference;
measure of central
adiposity

Waist-to-height
ratio

Waist
circumference
and height

Measure of waist
circumference relative
to height; estimates
distribution of body fat

Growth and
stature

Height Measure of growth/
stature relative to age
and gender-specific
standards

Note. ANS ¼ autonomic nervous system; BMI ¼ body mass index; fMRA ¼
functional magnetic resonance imaging; HDL ¼ high-density lipoproteins; HPA
¼ hypothalamic-pituitary-adrenal; IgA ¼ immunoglobulin; LDL ¼ low-density
lipoproteins; MRI ¼ magnetic resonance imaging; RSA ¼ respiratory sinus
arrhythmia; SNS ¼ sympathetic nervous system.
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widely measured in pediatric research studies for over 20 years

(Aardal & Holm, 1995; Granger, Kivlighan, Fortunato, Har-

mon, Hibel, Schwartz, & Whembolua, 2007; Hanrahan,

McCarthy, Kleiber, Lutgendorf, & Tsalikian, 2006; Jessop &

Turner-Cobb, 2008; Keil, 2012). As healthy HPA-axis func-

tioning follows a strong diurnal rhythm, salivary cortisol is best

measured by capturing this diurnal rhythm, which requires col-

lecting multiple samples over time. Adam and Kumari (2009)

outline diurnal measures commonly used in field-based

research, including a cortisol awakening response (surge in

cortisol that occurs 30–45 min after waking), diurnal cortisol

slope (degree of change in cortisol levels from morning to

evening), and area under the daytime cortisol curve (area under

all cortisol data points measured across the day). Salivary cor-

tisol levels can also be measured in reactivity to daily or

momentary stressors (Adam & Kumari, 2009). In studies of

children, elevated salivary cortisol levels have been associated

with increased maternal stress in children aged 4.5 years, low-

socioeconomic status in 6- to 10-year-olds, and a history of

institutionalization in 6- to 12-year-olds (Essex, Klein, Cho,

& Kalin, 2002; Gunnar, Morison, Chisholm, & Schuder,

2001; Lupien, King, Meaney, & McEwen, 2000). However,

chronic exposure to stress can also lead to hypocortisolism,

and reduced cortisol levels in children have been associated

with family conflict in adolescents, maternal depression in 6-

year-olds, and social deprivation in 9- to 11-year-olds (Apter-

Levi et al., 2016; Hostinar, Johnson, & Gunnar, 2015; Kushner,

Barrios, Smith, & Dougherty, 2015; Zhang et al., 2016). This

variability is related to a number of factors that require consid-

eration, including the timing of exposure, nature of the stressor,

and individual coping mechanisms (G. E. Miller, Chen, &

Zhou, 2007).

Urinary cortisol. Measurement of urinary free cortisol (UFC)

offers an advantage over serum and salivary cortisol as it pro-

vides an index of adrenocortical activity over a 24-hr period.

While cortisol measured at a single time point may reflect

momentary stressors or fluctuations in circadian rhythm, UFC

collected over 24 hr provides a more stable assessment of adre-

nocortical activity over time (Curcio et al., 2016; Gomez, Mal-

ozowski, Winterer, Vamvakopoulos, & Chrousos, 1991). UFC

is commonly measured to diagnose conditions associated with

abnormal adrenocortical activity, such as Cushing syndrome,

congenital adrenal hyperplasia, or adrenal insufficiency (Tay-

lor, Machacek, & Singh, 2002). However, researchers have

also measured UFC to assess adrenocortical activity in

response to chronic stress in studies of children and adoles-

cents. For example, in a study of noise as a source of chronic

stress, Evans (2013) found that higher noise levels were posi-

tively associated with overnight UFC levels (R2 ¼ 0.03, p ¼
.014) in a 9-year-old children, even when controlling for gen-

der, poverty status, family structure, and maternal education.

Authors have also reported elevated UFC levels in young chil-

dren with a history of severe neglect (Mage ¼ 53.7 + 4.4

months) and in 13- to 18-year-olds with a history of depression

(Fries, Shirtcliff, & Pollak, 2008; Rao, Hammen, & Poland,

2010). UFC levels may also respond to stress-reducing inter-

ventions. In a study of 7- to 11-year-old children hospitalized

with respiratory illnesses, a greater number of the children

demonstrated a decrease in UFC levels following a play inter-

vention compared with those who did not receive the interven-

tion (R2 ¼ 1.73, p ¼ .04; Potasz, Varela, Carvalho, Prado, &

Prado, 2013).

Hair cortisol. In the past decade, researchers have begun using

hair cortisol as a noninvasive biomarker of long-term HPA-axis

functioning (Sauvé, Koren, Walsh, Tokmakejian, & Van Uum,

2007). In the collection of hair cortisol, 1 cm of hair represents

approximately 1 month of systemic cortisol exposure. This

measure offers a major advantage over serum, salivary, and

urinary cortisol as it allows researchers to evaluate HPA-axis

functioning over time (Russell, Koren, Rieder, & Van Uum,

2012; Sauvé et al., 2007). The exact mechanism through which

cortisol is incorporated into hair remains unknown, but the

primary hypothesis is that cortisol is incorporated through

blood circulation during the formation of the hair shaft (Meyer

& Novak, 2012; Russell et al., 2012; Sauvé et al., 2007). In

studies of children, increased hair cortisol levels have been

associated with exposure to parenting stress and maternal

depression in infants, lower parental education in 6-year-olds,

increased negative life events in 5- to 11-year-olds, cumulative

negative psychosocial exposures in 10-year-olds, and lower

socioeconomic status in 4- to 18-year-olds (Karlen, Frostell,

Theodorsson, Faresjo, & Ludvigsson, 2013; Karlen et al.,

2015; C. H. Liu, Snidman, Leonard, Meyer, & Tronick,

2016; Palmer et al., 2013; Rippe et al., 2016; Simmons et al.,

2016; Vaghri et al., 2013; Vanaelst et al., 2012; Vanaelst et al.,

2013; Vliegenthart et al., 2016). Hair cortisol may also be used

to measure a change in physiological stress over time (Groe-

neveld et al., 2013; Smy et al., 2015). In a study of stress in

children at school entry (Mage ¼ 50.1 + 0.42 months), hair

cortisol levels were significantly higher in the 2 months fol-

lowing school entry than the 2 months prior to school entry (t¼
�4.21, p ¼ .002; Groeneveld et al., 2013). Elevated hair corti-

sol levels have also been associated with elevated body mass

index (BMI; r ¼ .407, p < .01) and increased waist circumfer-

ence (r ¼ .430, p < .01) in children aged 8–12 years, reflecting

a link with secondary outcomes of the chronic stress response

(Veldhorst et al., 2013).

Catecholamines

Catecholamines, including epinephrine, norepinephrine, and

dopamine, are also released in response to a perceived threat.

Like glucocorticoids, catecholamines exert effects on cardio-

vascular function, fluid and electrolyte balance, inflammation

and immunity, metabolism, body temperature, and functioning

of the central nervous system (Charmandari, Tsigos, & Chrou-

sos, 2005; McEwen, 2003). Catecholamine levels offer poten-

tially useful indices of chronic stress in children, especially if

levels are elevated overnight when SNS activity is typically

decreased (McEwen, 2003). Although catecholamine levels are
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most commonly measured to evaluate or diagnose hormone-

secreting tumors, researchers have also occasionally measured

urinary catecholamines to assess chronic stress in studies of

children (Peaston & Weinkove, 2004).

Epinephrine and norepinephrine. As part of the SNS response to

threat, epinephrine is released by the adrenal medulla, and

norepinephrine is released by sympathetic neurons (McEwen,

2003; Sapolsky, 2002). Epinephrine acts on skeletal muscles,

while norepinephrine regulates blood vessel restriction and

blood flow to organs with sympathetic nerve innervation, such

as the heart, spleen, and pancreas (McEwen, 2003). Epinephr-

ine release is closely associated with emotional distress, while

norepinephrine release is typically associated with physical

activity. Although epinephrine and norepinephrine represent

independent indices of SNS activity, they are often measured

together as part of a composite index of chronic stress in studies

of children. For example, Evans (2003) included urinary epi-

nephrine and norepinephrine as part of an allostatic load index

that also included measures of resting blood pressure, urinary

cortisol, and BMI. In that and other studies, the allostatic load

index and independent measures of urinary epinephrine and

norepinephrine were significantly associated with childhood

cumulative risk as measured by physical (crowding, noise, and

housing quality) and psychosocial (child separation, turmoil,

and violence) aspects of the home environment and personal

characteristics (poverty, single parenthood, and maternal high

school dropout status) in childhood and adulthood (Doan, Dich,

& Evans, 2014; Doan & Evans, 2011; Evans, 2003; Evans &

Fuller-Rowell, 2013; Evans & Kim, 2012; Evans, Kim, Ting,

Tesher, & Shannis, 2007). Researchers also measured urinary

catecholamines in a randomized controlled trial of the Strong

African American Families program, a family-centered pre-

ventive intervention designed to reduce substance use, antiso-

cial behavior, and early sexual involvement (Brody, Yu, Chen,

& Miller, 2014). In that study, parental psychological dysfunc-

tion and nonsupportive parenting (lack of nurturance, commu-

nication, and family rules) measured in children at age 11

predicted an increase in overnight catecholamine levels at age

20 for participants in the control group (bs¼ 0.175–0.203, ps <

.05) but not for those in the intervention group. These findings

suggest both a protective effect of the intervention and the

potential for urinary catecholamine levels to accurately capture

the biological effects of a behavioral intervention.

Dopamine. Dopamine is released by the adrenal medulla and

peripheral sympathetic nerves in response to stressful stimuli

and plays an important role in reward-system processing and

behavioral responses to perceived stressors (Belujon & Grace,

2015; Snider & Kuchel, 1983; Trainor, 2011). In studies of

chronic stress in children, dopamine has occasionally been

measured with other urinary catecholamines. In a case–control

study of 8- to 15-year-old girls, urinary dopamine, epinephrine,

and norepinephrine were included in a composite measure of

catecholamine synthesis, and investigators reported signifi-

cantly higher total catecholamine synthesis in sexually abused

girls compared with controls (t ¼ 2.18, p < .05; De Bellis,

Lefter, Trickett, & Putnam, 1994). In a study of 6- to 8-year-

old children, urinary catecholamines were measured as an indi-

cation of emotional stress, and investigators found that elevated

epinephrine and dopamine levels were associated with an

increased risk of developing bruxism (rs ¼ .007 to .21, ps ¼
.01 to .03; Vanderas, Menenakou, Kouimtzis, & Papagiannou-

lis, 1999). In a study of 9- and 10-year-old children, those with

a history of preterm birth had significantly higher urinary epi-

nephrine, norepinephrine, and dopamine levels when compared

with controls (ps ¼ .02 to .11), while children who were small

for gestational age at birth had increased dopamine levels only

(p ¼ .03; Johansson et al., 2007). However, in a study of chil-

dren diagnosed with posttraumatic stress disorder (PTSD; Mage

¼ 10.8 + 2.0 years), children with PTSD had higher urinary

epinephrine levels when compared with controls (F¼ 9.18, p <

.001), but there was no difference between groups for urinary

norepinephrine or dopamine levels (De Bellis, Baum, Birma-

her, & Ryan, 1997).

Inflammatory Cytokines

Cytokines consist of a diverse group of molecules that serve as

the primary intercellular protein messengers of the immune

system (McEwen, 2003; Riis, Granger, DiPietro, Bandeen-

Roche, & Johnson, 2015). Cytokines are produced locally by

immune cells as well as by other organs including the brain and

liver (McEwen, 2003). These molecules have multiple

mechanisms of action and are influenced by stress-related

activity in the SNS and HPA axis. Cytokines also act as part

of a negative feedback loop between the immune and central

nervous systems: Release of norepinephrine in response to

acute stress results in an increase in inflammatory cytokines,

which in turn stimulates the HPA axis to release cortisol and

inhibit inflammatory cytokine production. However, dysregu-

lation of this feedback loop due to chronic stress over time can

result in chronic inflammation, autoimmune and neurologic

diseases, and insufficient immune functioning (Morey, Bog-

gero, Scott, & Segerstrom, 2015; Riis et al., 2015).

Pro-inflammatory cytokines initiate inflammation and are

activated in response to stressors or pathogens. They include

interleukin (IL)-1, IL-2, IL-6, tumor necrosis factors (TNFs),

fibroblast growth factors, and interferons (IFNs). Anti-

inflammatory cytokines, which inhibit pro-inflammatory cyto-

kine production, include IL-4 and IL-10 (McEwen, 2003). Both

pro- and anti-inflammatory cytokines can be detected in serum

or saliva, and recent development of multiplex immunoassays

has allowed for rapid detection of multiple cytokines in a single

sample (Vignali, 2000). To date, however, most research in

children has focused on analysis of single cytokines, primarily

the pro-inflammatory cytokines IL-6, IL-1b, and TNF-a.

IL-6. IL-6 has been widely investigated in studies of chronic

stress due to its known involvement in inflammation, infection

response, and regulation of metabolic and neural processes

(Scheller, Chalaris, Schmidt-Arras, & Rose-John, 2011). In
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children, elevated serum IL-6 concentrations have been asso-

ciated with social and environmental stressors (socioeconomic

status at 13–16 years, cumulative adversity from birth to 8

years, and sexual abuse at 6–12 years), child behavior and

mental health (internalizing behaviors, externalizing behaviors,

and psychopathology at 6–13 years), and child resilience and

protective factors (self-efficacy at 7–13 years, optimism at 13–

16 years, and presence of supportive role models at 13–16

years; Caserta, Wyman, Wang, Moynihan, & O’Connor,

2011; E. Chen, Lee, Cavey, & Ho, 2013; Cunha et al., 2016;

Muller, Errington, Szabo, Pitts, & Jacklin, 2014; Pervanidou,

Margeli, Lazaropoulou, Papassotiriou, & Chrousos, 2008; Slo-

pen, Kubzansky, & Koenen, 2013; Slopen, Kubzansky,

McLaughlin, & Koenen, 2013). Authors have criticized the

measurement of cytokines in saliva, as salivary cytokine levels

have been associated with indicators of oral inflammation such

as loose teeth, bleeding gums, or untreated cavities (Riis et al.,

2015). However, salivary IL-6 levels have also been correlated

with maternal distress in 5-year-olds, sleep disruption in 8- to

9-year-olds, and depression, anxiety, and behavioral problems

in 7- to 11-year-olds, suggesting that salivary cytokine levels

may also be indicative of systemic inflammation (El-Sheikh,

Buckhalt, Granger, Erath, & Acebo, 2007; Keller, El-Sheikh,

Vaughn, & Granger, 2010; Riis et al., 2016).

TNF-a, IL-1b, and cytokine panels. Other mediators of the inflam-

matory response, including TNF-a and IL-1b, have also been

independently measured in studies of children (E. Chen, Fisher,

Bacharier, & Strunk, 2003; E. Chen et al., 2011; Lopez-

Castejon & Brough, 2011; Mills, Scott, Wray, Cohen-Woods,

& Baune, 2013). TNF-a and IL-1b are pro-inflammatory cyto-

kines that play a key role in the innate immune response, and

TNF-a also has important metabolic effects (Calcagni & Elen-

kov, 2006; Hotamisligil, Shargill, & Spiegelman, 1993). In a

study of Latino children aged 5–10 years, elevated plasma

TNF-a levels were associated with stressful life events (r ¼
.26, p ¼ .01), and this relationship was not modified by child

sex or family history of type 2 diabetes mellitus (Dixon, Meng,

Goldberg, Schneiderman, & Delamater, 2009). In a study of

children aged 3–5 years, salivary IL-1b was associated with the

number of past-month contextual stressors (F ¼ 6.07, p ¼
.018), lifetime contextual stressors (F ¼ 4.67, p ¼ .037), and

traumatic life events (F ¼ 4.73, p ¼ .036; Tyrka, Parade,

Valentine, Eslinger, & Seifer, 2015).

Researchers have also used multiplex immunoassays in a

few studies to measure panels of multiple pro- and anti-

inflammatory cytokines (Bücker et al., 2015; Carlsson, Fros-

tell, Ludvigsson, & Faresjo, 2014; Gariup et al., 2015; Sesso

et al., 2014). In an analysis of salivary cytokine levels in a

5-year-old children, Riis and colleagues reported a significant

interaction between salivary cytokines (IL-1b, IL-6, IL-8, and

TNF-a) and a composite score for maternal psychological dis-

tress (depressive symptoms, anxiety, and parenting stress)

among girls in the sample (bs ¼ 0.18–0.27, p ¼ <.001 to

.009; Riis et al., 2016). In a study of salivary cytokines (IL-6,

IL-10, IL-12, and IFN-g) collected in neonates, mean salivary

cytokine levels at birth were significantly higher in infants born

preterm compared to those born full term (ps ¼ < .05; Sesso

et al., 2014). In a study of 3- to 12-year-old children with and

without childhood trauma, investigators reported increased

plasma TNF-a levels in the trauma group (F ¼ 9.23, p ¼
.004), while IL-12p70, IL-6, IL-8, IL-10, and IL-1 b levels

were not significantly different between groups (Bücker

et al., 2015).

Secondary Outcomes

Neurologic

While the brain plays a critical role in assessing and responding

to stressful environmental stimuli, it is also structurally and

chemically affected by the HPA-axis response to stress (Fox

et al., 2010; McEwen, 2008). As glucocorticoids can cross the

blood–brain barrier, HPA-axis activation has the greatest

impact on cortisol receptor-rich areas of the brain, particularly

the amygdala and hippocampus (Tottenham & Sheridan, 2009).

Hippocampus. The hippocampus plays an important role in

learning and memory formation and also regulates negative

feedback of glucocorticoids as part of the HPA-axis response

to stress (Kim & Yoon, 1998; Tottenham & Sheridan, 2009).

However, prolonged exposure to glucocorticoids results in

apoptosis of hippocampal neurons, which in turn alters hip-

pocampal volume and function in response to chronic stress

(Kim & Yoon, 1998; Sapolsky, 1996; Tottenham & Sheridan,

2009). In a recent review, S. B. Johnson, Riis, and Noble

(2016) outlined a number of studies that have examined the

relationship between exposure to poverty and hippocampal

volume in childhood. For example, in longitudinal studies,

smaller hippocampal volumes measured by magnetic reso-

nance imaging (MRI) have been associated with lower family

income at age 12 and lower income-to-needs ratios at age 10

(Hair, Hanson, Wolfe, & Pollak, 2015; J. Luby et al., 2013). In

cross-sectional studies of children ranging in age from 3 to 17

years, smaller hippocampal volumes have been associated

with poverty as measured by parent education and income

level (Hanson, Chandra, Wolfe, & Pollak, 2011; Hanson

et al., 2015; Jednoróg et al., 2012; Noble et al., 2015; Noble,

Houston, Kan, & Sowell, 2012).

Smaller hippocampal volumes have also been reported in

studies of children with a history of institutionalization (age

range ¼ 12–14 years), traumatic life events in early childhood

(age range ¼ 7–12 years), and adolescents exposed to parental

depression (age range ¼ 12–20 years; Hodel et al., 2015;

Pagliaccio et al., 2014; Rao, Chen, Bidesi, Shad, Thomas &

Hammen, 2010). The hippocampus is also amenable to protec-

tive factors, as maternal support at age 3–5 years has been

associated with larger hippocampal volume at age 7–13 years

(F¼ 18.58, p < .001; J. L. Luby et al., 2012). In addition to

impacts on hippocampal volume, chronic stress can affect hip-

pocampal activity. In a study of 10- to 17-year-olds with post-

traumatic stress symptoms, adolescents with a history of
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interpersonal trauma had decreased hippocampal activity on

functional MRI (fMRI) in response to a memory task when

compared with healthy controls (t ¼ 2.92, p ¼ .008; Carrión,

Haas, Garrett, Song, & Reiss, 2010).

Amygdala. The amygdala plays an important role in fear con-

ditioning and emotional processing (Phelps & LeDoux, 2005).

In response to chronic stress, increased circulation of glucocor-

ticoids and corticotropin-releasing hormone (CRH) leads to

changes in amygdala structure and functioning. The result is

an initial growth and hyperactivity of the amygdala, which over

time leads to cellular atrophy and apoptosis (Tottenham &

Sheridan, 2009). S. B. Johnson et al. (2016) also reviewed

studies on the relationship between poverty and amygdala vol-

ume in childhood. Unlike the consistent findings noted in MRI

studies of hippocampal volume, the relationship between

chronic stress and amygdala volume in children is less clear.

Smaller amygdala volume in children has been associated with

a history of traumatic life events in 7- to 12-year-olds and with

low-socioeconomic status, history of abuse, and history of

neglect in 9- to 14-year-olds (Hanson et al., 2015; Pagliaccio

et al., 2014). However, low family income and traumatic life

events have also been associated with increased amygdala

activity on fMRI in 6- to 12-year-olds, and larger amygdala

volumes have been noted in 10-year-old children of depressed

mothers (J. Luby et al., 2013; Lupien et al., 2011; Suzuki et al.,

2014). Further, in a study with participants ranging from 3 to 20

years old, researchers found no association between amygdala

volume and child socioeconomic status or parental education

(Noble et al., 2015).

Immune

The systemic inflammation caused by prolonged release of

glucocorticoids and pro-inflammatory cytokines can result in

the dysregulation of the immune system and increased risk for

chronic diseases (Morey et al., 2015). Glucocorticoids also play

an important role in regulating innate immune responses to

bacterial and viral infections and in inhibiting the production

of pro-inflammatory cytokines (Kemeny & Schedlowski,

2007). Thus, the interaction of these primary mediators over

time can lead to a number of inflammatory- and immune-

related secondary outcomes.

C-reactive protein (CRP). CRP is widely considered to be an

important nonspecific marker of inflammation (Danesh et al.,

2004). CRP synthesis, which primarily occurs in the liver, is

stimulated by inflammatory cytokines and can be altered by

glucocorticoid levels (Du Clos & Mold, 2004). In studies of

adolescents, elevated CRP levels have been associated with

daily interpersonal stress in 12th graders and unpleasant stress-

ful life events and interpersonal conflict in 14- to 19-year-olds

(Fuligni et al., 2009; Low, Matthews, & Hall, 2013). In a study

of children aged 5–18 years, Broyles and colleagues (2012)

found that children living in neighborhoods with high levels

of crime or poverty had 2.7 times higher odds of having

elevated CRP levels compared to children from other neighbor-

hoods (95% CI [1.2,6.2]) even after controlling for adiposity,

demographics, and behavioral factors. Associations between

chronic stress and CRP levels in children have also been

demonstrated prospectively; Slopen and colleagues (2013)

found that cumulative adversity from birth to 8 years of age

was associated with higher levels of CRP at both 10 (b ¼ 0.06,

p ¼ .01) and 15 (b ¼ 0.05, p ¼ .04) years of age.

Fibrinogen. Fibrinogen is a glycoprotein produced by the liver

and is upregulated by IL-6 in response to stress. Fibrinogen

plays an important role in platelet aggregation and erythrocyte

aggregation and is a key determinant of plasma viscosity (Rein-

hart, 2003). Child maltreatment has been linked with adult

fibrinogen levels in prospective studies, but research on chronic

stress and child fibrinogen levels is limited (Coelho, Viola,

Walss-Bass, Brietzke, & Grassi-Oliveira, 2014). In one study

of young adults aged 16–34 years, psychological distress was

positively associated with fibrinogen levels (b ¼ 0.024, p <

.01), including when controlling for demographic and health

factors (Goldman-Mellor, Brydon, & Steptoe, 2010). However,

while fibrinogen has been frequently measured in studies of

acutely ill children, the relationship between exposure to

chronic stress and fibrinogen levels in community samples of

children and adolescents has not otherwise been examined.

Secretory immunoglobulin A (sIgA). sIgA is an antibody primarily

produced in the mucous membranes of the intestinal tract. As

the body is exposed to most pathogens through mucosal expo-

sure, sIgA serves as the first line of defense in protecting the

epithelium from harmful toxins and microorganisms (Brandt-

zaeg, 2009; Mantis, Rol, & Corthésy, 2011; Pabst, 2012).

Release of sIgA is controlled by the neuroendocrine system,

and evidence suggests that chronic stress can lead to decreased

sIgA levels in adults (Engeland et al., 2016). In children, low

sIgA levels have been associated with low caregiver sensitivity

in toddlers, exposure to stressful experiences in 8- to 12-year-

olds, and elevated salivary cortisol levels in 3- to 5-year-olds

(Drummond & Hewson-Bower, 1997; Vermeer, van IJzen-

doorn, Groeneveld, & Granger, 2012; Watamura, Coe, Lauden-

slager, & Robertson, 2010). However, in a study of children

aged 3–8 years, sIgA levels were not associated with time spent

in childcare, an experience the researcher had hypothesized to

be stressful (Waynforth, 2007). Researchers have also exam-

ined secretory IgA levels in association with interventions. In a

study of 5- to 14-year-olds undergoing forensic interviews for

alleged sexual abuse, sIgA levels tended to be lower when a

therapy dog was present in the room (t ¼ 1.986, p ¼ .055;

Krause-Parello & Friedmann, 2014).

Metabolic

In the presence of prolonged HPA-axis activity, chronic secre-

tion of glucocorticoids and catecholamines leads to hypersecre-

tion of insulin and hyposecretion of growth and sex hormones

(McEwen, 2008; Pervanidou & Chrousos, 2012). Over time,
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this combination leads to the accumulation of fat in visceral

adipose tissue and loss of muscle and ultimately contributes to

the development of central obesity and metabolic alterations

(Pervanidou & Chrousos, 2012). In addition to changes in insu-

lin levels, other secondary outcomes related to these metabolic

processes include changes in glucose, leptin, a-Amylase, and

cholesterol levels.

Insulin and glucose. The pancreas produces the hormone insulin

and regulates glucose metabolism through a balance of insulin

action and secretion (Stumvoll, Tataranni, Stefan, Vozarova, &

Bogardus, 2003). However, prolonged release of cortisol in

response to chronic stress can result in a decrease in hepatic

and extrahepatic sensitivity to insulin and lead to insulin resis-

tance (Rizza, Mandarino, & Gerich, 1982). Insulin resistance

leads to hypersecretion of insulin, which can result in elevated

glucose levels over time (Stumvoll et al., 2003). While

researchers have commonly measured insulin and glucose lev-

els as indicators of altered metabolism due to chronic stress in

adults, use of insulin and glucose as indicators of chronic stress

in children has been limited, and their utility remains unclear

(Juster et al., 2010). In a recent study, Kepper et al. (2016)

found that chronic stress, as measured by concentrated neigh-

borhood disadvantage, was not significantly associated with

insulin resistance in prepubescent children aged 7–9 years.

Similarly, in a large study (N ¼ 1,952) by van Dijk, van Eijs-

den, Stronks, Gemke, and Vrijkotte (2015), prenatal psychoso-

cial stress in mothers was not associated with fasting glucose or

insulin resistance in children at age 5–6 years. However, in

other studies, researchers found that low parental education and

socioeconomic position were associated with altered glucose

and insulin levels in both children (age 5–6 years) and adoles-

cents (age 12–20 years; Goodman, Daniels, & Dolan, 2007;

Goodman, Must, Daniels, & Dolan, 2010; Thomas et al.,

2012; van Den Berg, Van Eijsden, Vrijkotte, & Gemke, 2012).

Leptin. Leptin is a hormone secreted from adipose tissue that

helps to regulate energy homeostasis by suppressing appetite

(Pervanidou & Chrousos, 2012). The hormone also plays

important roles in glucose metabolism, insulin secretion and

sensitivity, neuroendocrine function, immune function, and

bone metabolism (Mantzoros et al., 2011). Leptin interacts

with the HPA axis and follows a circadian rhythm in an inverse

relationship with cortisol levels. While cortisol levels peak in

the morning and reach nadir around midnight, leptin concen-

trations are highest after midnight and lowest in the early to

midafternoon (Houseknecht, Baile, Matteri, & Spurlock, 1998;

Pervanidou & Chrousos, 2012). While elevated leptin levels

have been associated with early life adversity in retrospective

studies of adults (Farr et al., 2015; Joung et al., 2014), only two

studies have investigated the association between leptin and

chronic stress in children. In a study of 10-year-old children,

Kohlboeck et al. (2014) reported that increased emotional

symptoms (b ¼ 1.03, p < .04) and peer problems (b ¼ 1.05,

p ¼ .0001) were significantly associated with higher serum

leptin levels, including when controlling for BMI and

sociodemographic factors. However, in a prospective study,

Danese et al. (2014) found that 12-year-old children with a

history of maltreatment exhibited blunted leptin levels in

response to increasing adiposity (b ¼ �1.37, p ¼ .001) and

inflammation (b ¼ �0.57, p < .001) compared with nonmal-

treated children.

a-Amylase. a-Amylase, an enzyme produced by the salivary

glands, is primarily responsible for initiating digestion of carbo-

hydrates and starch. Salivary a-Amylase (sAA) release is regu-

lated by autonomic nervous system (ANS) activity and thus may

be considered an indirect indicator of the stress response (Gran-

ger, Kivlighan, El-Sheikh, Gordis, & Stroud, 2007; Nater &

Rohleder, 2009). In a number of studies, researchers have

demonstrated that sAA levels increase in response to acute stres-

sors (Granger, Kivlighan, El-Sheikh, et al., 2007). However,

altered sAA levels have also been demonstrated in studies of

children experiencing chronic stress. For example, PTSD sever-

ity has been associated with elevated morning sAA levels in 12-

to 17-year-old girls with a history of sexual abuse (r ¼ .51, p ¼
.02), and altered diurnal sAA patterns have been associated with

child adiposity in low-income preschool-age children (b ¼
�0.12, p < .03; Keeshin, Strawn, Out, Granger, & Putnam,

2015; A. L. Miller et al., 2015). sAA levels have also been

measured in association with cortisol levels in school-age chil-

dren, as researchers have hypothesized that asymmetrical ANS

and HPA-axis responses to stress indicate altered regulation of

the stress-response system (F. R. Chen, Raine, Soyfer, & Gran-

ger, 2015; Koss et al., 2014; Ursache & Blair, 2015).

Lipids. Lipid levels and other cardiovascular risk factors are

linked to chronic stress through both physiological and beha-

vioral pathways (Holman, 2015). Lipids include low-density

lipoproteins, which transport cholesterol to tissues, high-

density lipoproteins, which transport cholesterol from tissues

to the liver, and triglycerides, which transport dietary fat (Juster

et al., 2010). In adults, various forms of chronic stress have

been associated with increased cholesterol levels and metabolic

risk including workplace stress, caregiver stress, and experi-

encing major life events (Chandola, Brunner, & Marmot,

2006; Pedersen et al., 2016; Vitaliano et al., 2002). In pro-

spective studies, researchers have also detected a relationship

between adversity in childhood and cardiometabolic risk in

adulthood (Friedman, Karlamangla, Gruenewald, Koretz, &

Seeman, 2015; Winning, Glymour, McCormick, Gilsanz, &

Kubzansky, 2015). However, to our knowledge, only one

study has examined the relationship between chronic stress

and lipid levels in children. In that study, Kepper et al. (2016)

found no significant association in 7- to 9-year-old children

between neighborhood disadvantage and either intrahepatic or

intramyocellular lipid levels.

Cardiovascular and Respiratory

In response to stress, cardiovascular tone, and respirations

increase, pro-inflammatory cytokines are released, endothelial
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function is temporarily impaired, and platelets are activated

(Steptoe & Kivimäki, 2013). As a consequence, secondary out-

comes related to the cardiovascular and respiratory systems

may represent important indicators of chronic stress in

children.

Systolic and diastolic blood pressure. Activation of the SNS results

in a release of norepinephrine, which subsequently leads to

vasoconstriction and blood pressure elevation. Thus, exposure

to chronic stress can lead to systemic vascular resistance and

risk of hypertension over time (Grassi & Ram, 2016; Sorota,

2014; Spruill, 2010). Blood pressure levels are also affected by

other secondary outcomes of the stress response, including

insulin resistance and adiposity (Addison, Stas, Hayden, &

Sowers, 2008). Studies of blood pressure and chronic stress

have primarily been conducted with adolescents, and elevated

blood pressure levels have been associated with experiencing

chronic, negative life events in 14- to 16-year-olds, greater

relative household income deprivation in 13-year-olds, and

family conflict in 11- to 15-year-olds (Brady & Matthews,

2006; Clark & Armstead, 2000; Kwok, Subramanian, Leung,

& Schooling, 2015). Although studies of chronic stress and

blood pressure among young children are limited, there is

evidence to suggest that blood pressure elevations in relation

to chronic stress can be seen as early as school age (Hollar

et al., 2010; Martinovic et al., 2014; Rogosch, Dackis, &

Cicchetti, 2011).

Chronic stress may also impact blood pressure reactivity, an

important indicator of early cardiovascular dysfunction (Evans,

Exner-Cortens, Kim, & Bartholomew, 2013). For example, in a

study of middle-school-aged children, those with a history of

higher psychosocial and physical risk factors had slower, less

efficient recovery in blood pressure in response to an acute

stressor (b ¼ .13, p < .01) compared to those with no such

history (Evans, Kim, Ting, Tesher, & Shannis, 2007). In ado-

lescents, low blood pressure reactivity has also been associated

with childhood exposure to family conflict in 17- and 18-year-

olds and residence in a low-income neighborhood in 13- to 16-

year-olds (Evans, Exner-Cortens, et al., 2013; Wilson, Kliewer,

Plybon, & Sica, 2000).

Heart rate and heart rate variability (HRV). The SNS response to

stress includes an increase in heart rate, and thus, measures of

resting heart rate or HRV may provide important insight into

the functioning of the ANS (Rozanski, Blumenthal, & Kaplan,

1999). High variability in heart rate indicates a healthy and

adaptive autonomic response system, while low variability may

be an early indicator of abnormal ANS functioning (Pumprla,

Howorka, Groves, Chester, & Nolan, 2002). In pediatric stud-

ies, higher resting heart rates have been associated with expo-

sure to marital violence in 5- to 13-year-olds, harsh parenting in

7- to 12-year-olds, and low parental education levels in 7- to

12-year-olds as well as low-socioeconomic status (range¼ 14–

16 years) and parental military deployment (Mage¼ 15.8 + 1.1

years) in adolescents (Davis & Treiber, 2007; Krenichyn, Sae-

gert, & Evans, 2001; McGrath, Matthews, & Brady, 2006;

Saltzman, Holden, & Holahan, 2005). Low HRV in children

has been associated with peer problems in 5- to 10-year-olds

and experienced violence in 16- to 19-year-olds (Michels

et al., 2013; Murali & Chen, 2005). Measures of HRV may

also be responsive to stress-reducing interventions. In a study

of a stress-management intervention for third-grade children,

researchers saw significant improvements in HRV for chil-

dren in the intervention group immediately following the

intervention and at 1-year follow-up (effect size ¼ .906, p

¼ .003), but HRV did not improve significantly for children

in the control group (effect size ¼ .15, p ¼ .07; Bothe,

Grignon, & Olness, 2014).

Respiratory sinus arrhythmia (RSA). RSA is a measure of synchro-

nization between HRV and respirations. In healthy individuals,

heart rate increases during inspiration and decreases during

expiration, thus improving coordination between the cardiovas-

cular and respiratory systems and efficacy of gas exchange in

the lung (Yasuma & Hayano, 2004). RSA is considered an

indicator of cardiac vagal tone, and an altered or abnormal

RSA may reflect dysfunction of the respiratory, cardiovascu-

lar, or ANSs (Grossman & Taylor, 2007). RSA is often mea-

sured in response to a stressful laboratory task, and suppressed

RSA responses in children have been associated with lower

socioeconomic status in 7- to 12-year-olds, harsh parenting

history in 8- to 16-year-olds, poor parent–child relationship

quality in 2-year-olds and 10- to 17-year-olds, disorganized

attachment in 2- to 7-year-olds, exposure to prenatal maternal

stress in infants, and exposure to parent conflict in infants and

in 8- to 12-year-olds (Calkins, Graziano, Berdan, Keane, &

Degnan, 2008; El-Sheikh & Hinnant, 2011; Evans et al., 2013;

Hinnant, El-Sheikh, Keiley, & Buckhalt, 2013; Hinnant,

Erath, & El-Sheikh, 2015; Moore, 2010; Oosterman, De

Schipper, Fisher, Dozier, & Schuengel, 2010; Rash, Camp-

bell, Letourneau, & Giesbrecht, 2015; Willemen, Schuengel,

& Koot, 2009). However, prospective studies of infants and

young children have indicated that childhood RSA is not

associated with prenatal exposure to maternal stress or adver-

sity (Alkon et al., 2014; van Dijk, van Eijsden, Stronks,

Gemke, & Vrijkotte, 2012).

Anthropometric Measures

Anthropometric measures, including body size and stature, are

also affected by exposure to chronic stress. Prolonged release

of primary mediators leads to metabolic outcomes such as

insulin and leptin resistance that promote storage of fat in

adipose tissue (Pervanidou & Chrousos, 2012). Chronic activa-

tion of the HPA axis also results in hyposecretion of growth

hormone, and circulating glucocorticoids inhibit the effects of

growth factors on target tissues (Charmandari et al., 2005).

BMI. BMI is a measure of weight relative to height and does not

distinguish between body fatness, muscle mass, and skeletal

mass (Freedman & Sherry, 2009). However, research in chil-

dren suggests that BMI is a good indicator of excess adiposity
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in children with a high BMI (>85%) according to standard

CDC growth charts by gender and age. Elevated BMI in chil-

dren and adolescents has been associated with a number of

chronic stressors including low-socioeconomic status and

exposure to parental stress (Carroll-Scott et al., 2013; Carter,

Dellucci, Turek, & Mir, 2015; Evans, Fuller-Rowell, & Doan,

2012; Powell, Wada, Krauss, & Wang, 2012; Tate, Wood,

Liao, & Dunton, 2015). Measures of BMI have also been cor-

related with physiological measures related to chronic stress,

including salivary cortisol and sAA levels, in preschool,

school-age, and adolescent children (Francis, Granger, & Sus-

man, 2013; A. L. Miller et al., 2013, 2015; Ruttle et al., 2014).

However, in a recent study of families living in socioeconomi-

cally disadvantaged neighborhoods, hair cortisol levels were

not associated with BMI z-scores (standard deviation scores

accounting for age and gender) in the 10- to 17-year-old chil-

dren studied (Olstad et al., 2016).

Central adiposity. Measures of central adiposity, including waist

circumference, waist-to-hip ratio, and waist-to-height ratio,

may represent a more accurate method for assessing body fat-

ness than BMI. However, these methods are prone to measure-

ment error, and recommendations for use in children are

limited (Freedman & Sherry, 2009; Mushtaq et al., 2011; Neo-

vius, Linne, & Rossner, 2005). As such, studies on the relation-

ship between chronic stressors and measures of central

adiposity in children have produced mixed results. In a study

of adverse childhood experiences (ACEs) and child health,

Pretty, O’Leary, Cairney, and Wade (2013) found a dose–

response relationship between accumulation of ACEs and

increased waist circumference in 11- to 14-year-old children

(R2 ¼ 0.06, p < .01). In prospective studies, high levels of

prenatal maternal stress predicted increased waist-to-height

ratio in children at 11, 13, and 15 years of age (r ¼ .25 to

.44, p ¼ .01 to .04), and exposure to postpartum maternal

distress predicted increased waist-to-hip ratio in girls at age

9–11 years (r ¼ .29, p ¼ .0016; Kozyrskyj et al., 2011; G. T.

Liu, Dancause, Elgbeili, Laplante, & King, 2016). In other

studies, increased waist-to-height ratio has been associated

with peer problems in 5- to 10-year-old girls and low parent

education levels in adolescents (Costa de Oliveira Forkert

et al., 2016; Vanaelst et al., 2014). Measures of central adip-

osity in children have also been associated with hair cortisol

levels in caregivers of 11- to 20-year-olds with disabilities,

morning salivary cortisol levels in children aged 6–12 years,

and blood pressure reactivity in adolescents aged 14–16 years

(X. Chen et al., 2015; Goldbacher, Matthews, & Salomon,

2005; Hill, Eisenmann, Gentile, Holmes, & Walsh, 2011).

In other studies, however, researchers have reported no sig-

nificant associations between measures of central adiposity

and childcare attendance in 4-year-olds, serum cortisol levels

in 8- to 13-year-olds, or exposure to racism in 16- to 20-year-

olds (Priest, Paradies, Gunthorpe, Cairney, & Sayers, 2011;

Weigensberg, Toledo-Corral, & Goran, 2008; Zahir, Heyman,

& Wojcicki, 2013).

Growth and stature. Glucocorticoids inhibit the production and

activity of osteoblasts, increase osteoblast apoptosis, and

increase osteoclast catabolic activity, leading to a decrease in

bone formation and loss of bone mineral density (Olney, 2009).

Chronically elevated glucocorticoid levels also suppress

growth hormone secretion and contribute to linear growth fail-

ure through effects on growth-plate function (Giustina & Weh-

renberg, 1992; Olney, 2009). The relationship between chronic

stress and stunted growth in children is most profoundly

demonstrated in studies of children exposed to extremely

stressful environments such as institutionalization, foster care,

or homelessness (Dobrova-Krol, van IJzendoorn, Bakermans-

Kranenburg, Cyr, & Juffer, 2008; Fierman et al., 1991; Gunnar,

Frenn, Wewerka, & Van Ryzin, 2009; A. E. Johnson, Bruce,

Tarullo, & Gunnar, 2011). However, delayed growth has also

been detected in infants and toddlers with exposure to maternal

depression and early placement in childcare, suggesting growth

measures may represent a sensitive indicator of exposure to

chronic stress (Patel, DeSouza, & Rodrigues, 2003; Surkan

et al., 2008; Zmiri, Rubin, Akons, Zion, & Shaoul, 2011).

Discussion

A wide range of biomarkers is available to help pediatric

researchers explore the pathways linking exposure to chronic

stress with lifelong disease. However, the field is still very

much in its infancy, with most studies having been published

only in the last decade. Thoughtful and theoretically based

approaches to the selection and measurement of chronic stress

biomarkers will be crucial for the quality of future biobeha-

vioral research studies and ultimately lead to a better under-

standing of the effects of chronic stress in childhood and

adolescence.

Selecting Appropriate Biomarkers

The physiologic response to chronic stress is complex and non-

linear and involves multiple physiological systems. Thus,

selection of measures for a research study must include a the-

oretical basis such as the allostatic load model described in

Figure 1. One robust approach might include a combination

of both primary mediators and secondary outcomes of the stress

response that reflects both HPA-axis and SNS activity, as these

two systems are highly coordinated and interconnected (Roten-

berg & McGrath, 2016). Evaluating and comparing responses

to stress among multiple physiological systems may also pro-

vide important insight into the overall efficiency and function-

ing of the stress response system in the presence of chronic

stress (Gordis, Granger, Susman, & Trickett, 2006; Koss et al.,

2014).

An alternative approach to studying biomarkers across mul-

tiple physiological systems would be to focus on specific path-

ways of the stress response that lead to tertiary end points of

interest. This approach might include examination of cortisol,

cytokines, and sIGA to explore immune pathways; cortisol,

insulin, and BMI to explore metabolic pathways; or
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catecholamines, blood pressure, and HRV to explore cardiac

pathways. With this approach, chronic stress pathways can be

examined with respect to interfering risk and protective factors

or variations by child sex or age. It might also be useful for

identifying sensitive periods where children are most vulnera-

ble to the effects of chronic stress or windows of development

where there are opportunities for repair.

Although incorporating biomarkers into pediatric research

represents an innovative approach to understanding the effects

of chronic stress, investigators must use caution when adding

biomarkers to a research study, avoiding the temptation to

select biomarkers based on convenience or novelty. Given the

complexity of the physiologic response to chronic stress, inter-

pretation of results presents a particular challenge. Failure to

consider compensatory mechanisms or negative feedback

loops could result in misleading findings, and blunted or sup-

pressed responses to chronic stress could be misinterpreted or

overlooked (Juster et al., 2010). Thus, researchers must select

biomarkers a priori and on the basis of a strong theoretical

rationale in order to produce the most meaningful results and

make valuable contributions to the literature.

Measurement Considerations

Collection methods. Methods for measuring biomarkers include

collection of serum, saliva, urine, or hair as well as electrocar-

diography and neuroimaging studies. In order to select the best

method to both obtain accurate results and reduce participant

burden, researchers must consider the invasiveness of the col-

lection method, the setting for sample collection, and sample

storage requirements. As diurnal rhythms are established in

early infancy, researchers should also consider whether

analysis requires collection of multiple samples across one or

more days to capture diurnal rhythms, such as in collection of

salivary cortisol, sAA, sIGA, or inflammatory cytokines

(Adam & Kumari, 2009; Granger, Kivlighan, Fortunato,

et al., 2007; Riis et al., 2015; Rivkees, 2003; Watamura

et al., 2010). Table 4 contains a summary of the advantages

and disadvantages of each biomarker collection method.

Feasibility. When working with pediatric participants, research-

ers should carefully consider the feasibility of biomarker col-

lection. For biomarkers that require collection of multiple

samples, child nap times, school attendance, or parent work

schedules may interfere with feasibility and accurate timing

of sample collection (Condon, 2016). Additionally, although

many available biomarkers are noninvasive, young children

may still find it difficult to cooperate or follow directions for

various collection methods. For example, certain salivary bio-

markers require collection of passive drool, which may prove

challenging in research with young children for whom collec-

tion with a cotton swab may be more appropriate. Urine col-

lection might also be compromised with children who are not

toilet trained, and hair collection might be unfeasible in chil-

dren with absent or very short hair on the scalp. See Rodriguez

et al. (2016) for a more detailed review of the developmental

and physiologic considerations required when collecting bio-

markers for research with children and adolescents.

Laboratory analysis. For many of the biomarkers reviewed,

selecting a laboratory, method, or assay for sample analysis

may present a significant challenge. While commonly used

biomarkers like salivary cortisol are well validated, many oth-

ers lack methodological gold standards or established reference

Table 4. Summary of Biomarker Collection Methods.

Method Advantages Disadvantages Other Considerations

Serum Reliable and valid, direct
assessment of biomarker
circulation in bloodstream

Invasive, may induce acute stress
response

Some biomarkers can be analyzed in dried
blood spots, offering a less-invasive
alternative to whole blood samples

Saliva Noninvasive, simple to collect May require multiple samples to capture
diurnal rhythms; validity for
inflammatory markers unclear

Recent tooth brushing, food ingestion, dental
issues, or illnesses may impact results

Urine Noninvasive, reflects levels
over 12- or 24-hr period

Burden related to 24-hr urine collection
in outpatient setting

Must also correct for child’s body surface area
and ensure adequacy of volume collected

Hair Noninvasive, reflects chronic
stress exposure over time

Reference ranges and confounders
require further investigation

Potential variation related to sampling site,
hair color, cosmetic treatments, and
personal hygiene habits

Neuroimaging Direct assessment of brain-
matter volume and function

Participant burden, expensive May use MRI to assess gray or white matter
volume or fMRI to assess brain activity/
function

Electrocardiography Noninvasive, sensitive
measure of cardiac electrical
activity

Requires child cooperation, may be time
consuming

Also consider ambulatory Holter monitoring

Anthropometric
measures

Noninvasive, simple to collect May not accurately reflect adiposity;
measurement of waist circumference
particularly prone to error

Also consider DEXA scan for more accurate
measure of total adiposity

Note. DEXA ¼ dual-energy X-ray absorptiometry; fMRI ¼ functional magnetic resonance imaging; MRI ¼ magnetic resonance imaging.
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ranges for use in pediatric research (Juster et al., 2010). For

example, hair cortisol can be analyzed using a number of meth-

ods including enzyme-linked immunosorbent assays (ELISA),

radioimmunoassays, and high-performance liquid chromato-

graphy–mass spectrometry (Gow, Thomson, Rieder, Van Uum,

& Koren, 2010; Russell et al., 2012). While the majority of

published studies have used the ELISA method, there is as yet

no consensus on the most precise and accurate method for

analysis (Gow et al., 2010). Similarly, a variety of immunoas-

says are available for analysis of cytokines either in isolation or

as a panel, but the optimal method for cytokine analysis in

children and adolescents is currently unknown (Dossus,

Becker, Achaintre, Kaaks, & Rinaldi, 2009; Leng et al.,

2008). Until further research is completed, investigators must

exercise due diligence in selecting a method that is most likely

to be reliable and reproducible. This selection may be based on

expert opinion, laboratory consultation, or current recommen-

dations in the literature. Choosing a laboratory also requires

careful consideration, and researchers should determine

whether quality control processes and safeguards are in place

to ensure safety of samples as well as reliability and validity of

results (Marton & Weiner, 2013).

Ethical considerations. When incorporating biomarkers into a

study with children or adolescents, researchers must also care-

fully consider the ethical implications of biomarker collection.

This consideration is particularly important for research with

families who identify as members of an ethnic minority and

who may mistrust medical research or attribute specific cultural

meanings to collection of certain biomarkers in children

(Corbie-Smith, Thomas, & George, 2002; Ford, Boch, &

McCarthy, 2016). For example, in American Indian and Alaska

native communities, hair cutting is often reserved for specific

occasions such as periods of mourning (Ford et al., 2016). In

research with young children, collection of a hair sample may

be the child’s first haircut and thus may be an emotionally

laden experience for the parent or caregiver. Participants may

have apprehensions or concerns about invasive or radiological

testing, and parents may experience uncertainty or miscon-

ceptions about the intended use of collected biomarker sam-

ples (Condon, 2016). As with all pediatric research,

researchers must carefully weigh potential risks and benefits

to participants when including biomarkers in a study (Rodri-

guez et al., 2016). Open communication and adequate time

for questions are essential to ensure that families fully

understand the type and extent of testing to be performed

and can provide truly informed consent. Investigating the

perceptions and preferences of families in future qualitative

or community-based participatory research studies will also

provide greater insight into the ethical implications of

pediatric biobehavioral research.

Potential Moderators

Researchers should also consider potential moderators when

collecting and analyzing biomarker data in children, as the

strength and direction of relationships may be altered by a

number of individual characteristics. Important moderators

include, but are not limited to, child sex, age, and pubertal

status.

Child sex. Sex differences have been noted in studies of both

primary mediators and secondary outcomes of chronic stress in

children. For example, researchers have consistently reported

differences in serum and salivary cortisol levels between boys

and girls and have also noted sex differences in studies of

catecholamines and inflammatory cytokines (Doom, Cicchetti,

Rogosch, & Dackis, 2013; Hatzinger et al., 2013; Östberg et al.,

2015; Riis et al., 2015; Trainor, 2011). Differences in these

primary mediators may also impact secondary outcomes, as

sex differences in amygdala volume, CRP, blood pressure, and

waist-to-hip ratio have been noted in studies of children experi-

encing chronic stress (Buss et al., 2012; Kozyrskyj et al., 2011;

Martinovic et al., 2014; Pirkola et al., 2010). However, deter-

mining whether these differences are strictly biological or

reflect differential experiences of stress and coping requires

further exploration (Panagiotakopoulos & Neigh, 2014).

Child age. Susceptibility to chronic stress varies by age. For

example, the brain develops in multiple stages throughout

childhood, and its vulnerability to the effects of chronic stress

varies over the course of development (Andersen, 2003). Thus,

researchers must consider and further explore potentially sen-

sitive periods in development in studies of chronic stress in

children. In addition, expected biomarker values and appropri-

ate reference ranges may differ by child age or developmental

status such as in the cases of serum cortisol, sAA, and CRP

(Barra, Silva, Rodrigues, Santos, & Colosimo, 2015; Strahler,

Mueller, Rosenloecher, Kirschbaum, & Rohleder, 2010;

Wener, Daum, & McQuillan, 2000). Researchers must also

be careful to consider appropriate sources of stress for the

selected age-group, as the type of stressors experienced by

children often vary according to chronological or developmen-

tal age. For example, while younger children may be more

vulnerable to maternal stress or parenting behaviors, older chil-

dren may be more affected by school- or peer-related stressors.

Pubertal status. As children reach adolescence, the type and

frequency of stressors they encounter may change dramatically

as they spend more time with peers and strive toward indepen-

dence (Klein & Romeo, 2013). Physiological responses to

stress also change over the course of development, with chil-

dren demonstrating increases in HPA-axis reactivity in

response to stress following puberty (Blumenthal, Leen-

Feldner, Badour, Trainor, & Babson, 2014; Klein & Romeo,

2013; Romeo, 2013). While the mechanisms that mediate

puberty-related changes in HPA-axis activity remain unclear,

evidence suggests that changes in secretion of sex hormones

(testosterone, estradiol, and progesterone) altered sensitivity to

adrenocorticotropic hormone and CRH, and differential levels

of neural activation may each play a role (Klein & Romeo,

2013). As such, in studies of chronic stress in children,
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researchers have noted the moderating effect of pubertal status

on cortisol and sAA levels (Barra et al., 2015; Granger, Kiv-

lighan, Fortunato, et al., 2007; Negriff, Saxbe, & Trickett,

2015; Zhang et al., 2016). Normal developmental changes that

occur during adolescence also require consideration, such as

increased amygdala activity in response to emotional stimuli,

increased dopamine system activity, and altered gray and white

matter volume (Blakemore & Choudhury, 2006; Romeo, 2013;

Wahlstrom, White, & Luciana, 2010). Exposure to chronic

stress may also accelerate maturation, and thus investigators

must precisely assess pubertal maturation when conducting

research with older children and adolescents (Negriff et al.,

2015).

Future Directions

While some biomarkers, such as salivary cortisol, have been

widely measured in pediatric research studies on chronic stress,

others, such as leptin and fibrinogen, have been examined in

only a handful of studies. Given this gap in the literature, there

is enormous opportunity for pediatric researchers to further

uncover the complex physiological pathways through which

chronic stress “gets under the skin.” Measurement of biomar-

kers across multiple age groups, as well as during the prenatal

period, will provide valuable insight into periods of vulnerabil-

ity or resilience across the course of development. Further

research is also required to understand the impacts of a broader

range of stressors that occur in childhood and adolescence.

While the impacts of severe stressors such as violence, abuse,

and neglect have been widely studied (Hillis, Mercy, & Saul,

2017; McCrory, De Brito, & Viding, 2011), the physiological

impacts of prevalent stressors such as racism and bullying

require further investigation. Further research in these areas

will not only improve understanding of the physiological

mechanisms underlying the chronic stress response, it will also

inform future policies and targeted interventions that seek to

improve health outcomes for children across all stages of

development.

In studies of adults, standardized indexes of allostatic load

have been used to evaluate the multisystemic effects of chronic

stress and compare results across populations (Juster et al.,

2010). While researchers have developed composite indexes

of allostatic load for pediatric research studies, these indexes

have often been limited by the use of only neuroendocrine and

cardiovascular measures (Evans et al., 2007). As research on

pediatric biomarker measurement continues to expand and

validity and reference ranges of biomarkers are established, the

next step will be to determine common data elements and

develop comprehensive, standardized indexes of chronic stress

for use in pediatric research studies. This task will best be

accomplished by collaboration among researchers and labora-

tories as well as the publishing of negative findings to further

advance the science. Ultimately, these efforts will create an

opportunity for big data analysis, so that the causes, mechan-

isms, and consequences associated with chronic stress in child-

hood and adolescence can be fully explored.

Limitations

This review was limited by the lack of pediatric research con-

ducted with many of the biomarkers outlined, particularly the

immune and metabolic secondary outcomes associated with a

chronic stress response. While the biomarkers I have discussed

in this review offer promise for expanding our understanding of

chronic stress and health, further research is required to identify

the specific biomarkers that best reflect a chronic stress

response in children and adolescents. Additionally, it is impor-

tant to note that due to the complex nature of chronic stress in

childhood, the amount of variance explained by biomarker data

is often very small. Thus, although chronic stress biomarkers

may be significantly associated with variables of interest in a

given study, this association may not represent clinical signifi-

cance for pediatric samples. However, such foundational phy-

siological research is likely to provide important insight into

the mechanisms linking stress and disease going forward.

Conclusion

The biomarkers outlined in this review represent important

physiological measures with the potential to significantly con-

tribute to research on chronic stress and lifelong health.

Although the field remains in its infancy and further research

related to measurement is required, thoughtfully incorporating

these biomarkers into pediatric research studies will help to

elucidate the pathways through which the physical and social

environments “get under the skin” in childhood and adoles-

cence. With a more comprehensive and nuanced understanding

of these complex physiological pathways, future researchers

can develop protective interventions and policies to promote

health and reduce inequities among children exposed to chronic

stress (Fisher et al., 2016; Gunnar et al., 2006; Slopen,

McLaughlin, & Shonkoff, 2014).

Acknowledgments

The author would like to thank Lois Sadler, Linda Mayes, Arietta

Slade, Margaret Holland, and Nancy Redeker for their thoughtful

comments and suggestions during the development of this article.

Author Contribution

Condon E. contributed to conception and design; contributed to con-

ception, design, acquisition, analysis, and interpretation; drafted the

manuscript; critically revised the manuscript; gave final approval; and

agreed to be accountable for all aspects of work ensuring integrity and

accuracy.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to

the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for

the research, authorship, and/or publication of this article: This work

was supported by the National Institute of Nursing Research of the

National Institutes of Health (F31NR016385 and T32NR008346), the

486 Biological Research for Nursing 20(5)



NAPNAP Foundation, the Connecticut Nurses Foundation, the Jonas

Nurse Leaders Scholars Program, and the Alpha Nu chapter of Sigma

Theta Tau International.

References

Aardal, E., & Holm, A. (1995). Cortisol in saliva-reference ranges and

relation to cortisol in serum. Clinical Chemistry and Laboratory

Medicine, 33, 927–932.

Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in

large-scale, epidemiological research. Psychoneuroendocrinology,

34, 1423–1436.

Addison, S., Stas, S., Hayden, M. R., & Sowers, J. R. (2008). Insulin

resistance and blood pressure. Current Hypertension Reports, 10,

319–325.

Alkon, A., Boyce, W. T., Tran, L., Harley, K. G., Neuhaus, J., &

Eskenazi, B. (2014). Prenatal adversities and Latino children’s

autonomic nervous system reactivity trajectories from 6 months

to 5 years of age. PLoS One, 9, e86283. doi:10.1371/journal.

pone.0086283

Andersen, S. L. (2003). Trajectories of brain development: Point of

vulnerability or window of opportunity? Neuroscience & Biobe-

havioral Reviews, 27, 3–18.

Apter-Levi, Y., Pratt, M., Vakart, A., Feldman, M., Zagoory-Sharon,

O., & Feldman, R. (2016). Maternal depression across the first

years of life compromises child psychosocial adjustment; relations

to child HPA-axis functioning. Psychoneuroendocrinology, 64,

47–56. doi:10.1016/j.psyneuen.2015.11.006

Barra, C. B., Silva, I. N., Rodrigues, T. M. B., Santos, J. L. S., &

Colosimo, E. A. (2015). Morning serum basal cortisol levels are

affected by age and pubertal maturation in school-aged children

and adolescents. Hormone Research in Paediatrics, 83, 55–61. doi:

10.1159/000369801

Belujon, P., & Grace, A. A. (2015). Regulation of dopamine system

responsivity and its adaptive and pathological response to stress.

Proceedings of the Royal Society B: Biological Sciences, 282. doi:

10.1098/rspb.2014.2516

Blakemore, S., & Choudhury, S. (2006). Development of the adoles-

cent brain: Implications for executive function and social cogni-

tion. Journal of Child Psychology and Psychiatry, 47, 296–312.

Blumenthal, H., Leen-Feldner, E. W., Badour, C. L., Trainor, C. D., &

Babson, K. A. (2014). Pubertal maturation and cortisol level in

response to a novel social environment among female adolescents.

Journal of Adolescence, 37, 893–900. doi:10.1016/j.adolescence.

2014.06.005

Bothe, D. A., Grignon, J. B., & Olness, K. N. (2014). The effects of a

stress management intervention in elementary school children.

Journal of Developmental and Behavioral Pediatrics, 35, 62–67.

doi:10.1097/DBP.0000000000000016

Brady, S. S., & Matthews, K. A. (2006). Chronic stress influences

ambulatory blood pressure in adolescents. Annals of Behavioral

Medicine, 31, 80–88.

Brandtzaeg, P. (2009). Mucosal immunity: Induction, dissemination,

and effector functions. Scandinavian Journal of Immunology, 70,

505–515.

Brody, G. H., Yu, T., Chen, E., & Miller, G. E. (2014). Prevention

moderates associations between family risks and youth

catecholamine levels. Health Psychology, 33, 1435–1439. doi:10.

1037/hea0000072

Broyles, S. T., Staiano, A. E., Drazba, K. T., Gupta, A. K., Sothern, M.,

& Katzmarzyk, P. T. (2012). Elevated C-reactive protein in

children from risky neighborhoods: Evidence for a stress pathway

linking neighborhoods and inflammation in children. PLoS One,

7, e45419.
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