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ABSTRACT: The electronic charge density plays a central
role in determining the behavior of matter at the atomic scale,
but its computational evaluation requires demanding elec-
tronic-structure calculations. We introduce an atom-centered,
symmetry-adapted framework to machine-learn the valence
charge density based on a small number of reference
calculations. The model is highly transferable, meaning it
can be trained on electronic-structure data of small molecules
and used to predict the charge density of larger compounds
with low, linear-scaling cost. Applications are shown for
various hydrocarbon molecules of increasing complexity and
flexibility, and demonstrate the accuracy of the model when
predicting the density on octane and octatetraene after training
exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate
electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.

■ INTRODUCTION

The electron density ρ(r) is a fundamental property of atoms,
molecules, and condensed phases of matter. ρ(r) can be
measured directly by high-resolution electron diffraction1,2 and
transmission electron microscopy,3 and can be analyzed to
identify covalent and noncovalent patterns.4−8 On the basis of
density-functional theory (DFT), in the framework of the first
Hohenberg−Kohn theorem,9 knowledge of ρ(r) gives access,
in principle, to any ground-state property. Especially for large
systems, however, the computation of ρ(r) requires consid-
erable effort, involving the solution of an electronic structure
problem with a more or less approximate level of theory.
Sidestepping these calculations and directly accessing the
ground-state electron density for a given configuration of
atoms would have broad implications, including real-time
visualization of chemical fingerprints based on the electron
density,7 acceleration of DFT calculations by providing an
estimate of the self-consistent charge density, and an exact
treatment of the electrostatic interactions within an atomistic
simulation. Another field of application involves the analysis
and interpretation of experimental techniques that probe the
electron density, such as transmission electron microscopy3

and X-ray crystallography.1,2 In the latter, the decomposition of
the density in pseudoatomic contributions that is often
performed to resolve the structure10,11 foreshadows some of
the ideas we will use here.

Following a number of successful applications of machine-
learning methods to predict materials properties,12−16 a recent
landmark paper by Brockherde et al. showed that it is also
possible to predict the ground-state electron density in a way
that mimics the Hohenberg−Kohn mapping between the
nuclear potential and the density.17 A smoothed representation
of the nuclear potential was used as a fingerprint to describe
molecular configurations and to carry out individual
predictions of the expansion coefficients of ρ(r) represented
in a plane-wave basis. Though in principle it is very effective,
the structure of the model imposes significant constraints on its
transferability to large and flexible systems. Indeed, the use of a
global representation of the structure, and of an orthogonal
basis to expand the density, means that the model is limited to
interpolation between conformers of relatively rigid, small
molecules.
In this paper, we show how to overcome these limitations by

constructing a machine-learning model of the valence electron
density that can be used on both large and flexible systems by
predicting the density of large molecules based on training on
smaller compounds. This is possible, in a nutshell, thanks to
the combination of a local basis set to represent ρ(r), which is
reminiscent of local expansions of the wave function18 and of
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the atom density multipole analysis of X-ray diffraction,19−23

and thanks to a recently introduced regression model which
allows us to predict the local components of ρ(r) in a
symmetry-adapted fashion without the need to make
simplifying assumptions on the description of molecular
environments.
The method is tested on the carbon series C2, C4, and C8 of

both fully saturated and unsaturated hydrocarbons, having
increasing complexity because of the exponentially growing
number of conformers. In particular, interpolation of the
electron density is first shown for ethene (C2H4), ethane
(C2H6), butadiene (C4H6), and butane (C4H10). As a major
result, the electron density of the corresponding C8 molecules,
namely, octa-tetraene (C8H10) and octane (C8H18), is instead
predicted by extrapolating the information learned on the local
environments of the corresponding C4 molecules.

■ SYMMETRY-ADAPTED GAUSSIAN PROCESS
REGRESSION FOR THE CHARGE DENSITY

Several widely adopted machine-learning schemes applied to
materials rely on an additive decomposition of the target
property in atom-centered contributions.24−29 These ap-
proaches are very effective in achieving transferability across
systems of different composition and size. An additive ansatz is
justified by the exponential decay of the electronic density
matrix (the so-called nearsightedness principle30) for insulators
and metals at finite temperature, which underlies a plethora of
linear-scaling, embedding, and fragment decomposition
electronic structure methods.18,31−38 Many methods exist to
decompose the density in atom-centered contributions,39,40

which however cannot be defined uniquely.41 Rather than
imposing that the machine-learning model should be
consistent with a specific choice of density decomposition,
we introduce locality only by expanding the density as a sum of
atom-centered basis functions (for further details see section
Basis set optimization in Supporting Information),
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where k runs over the basis functions centered on each atom,
and atoms of different species can have different kinds of
functions. We then write a regression model for the
combination coefficients ck

i based exclusively on the knowledge
of the positions of the nuclei, but we only use as the target
property the total electron density ρ(r). In this way, the model
determines simultaneously the regression coefficients and the
most convenient (and otherwise arbitrary) decomposition of
ρ(r) into atom-centered contributions.
From an atom-centered description, it is natural to factorize

each basis function ϕk(r − ri) into a product of radial functions
Rn(ri) and spherical harmonics Ym

l (rî) (with ri = |r − ri| and rî =
(r − ri)/ri). The subscript k refers to the combination nlm, and
we will use the compact or the extended notation based on
convenience. For every atom-centered environment i, which
defines the structure of a neighborhood of atom i, and for each
radial function Rn, the coefficients can be grouped according to
their value of angular momentum l in a set of spherical
multipoles cnl

i of dimension 2l + 1, which transform as vector
spherical harmonics Yl under a rigid rotation of the
environment. This choice has the advantage of highlighting
the tensorial nature of the density components, meaning that a
significant portion of the variability of cnl

i can be attributed to

the orientation of the local environments i, rather than to an
actual structural distortion of the molecule.
Dealing with the regression of tensorial properties raises

nontrivial issues in terms of setting up an effective machine-
learning model that takes into account the proper covariances
in three dimensions. For rigid molecules, one could eliminate
this geometric variability by expressing the coefficients in a
fixed molecular reference frame, analogously to what has
already been done in the context of electric multipoles and
response functions.42,43

This problem has long been known in the context of the
determination of electron densities from experimental X-ray
diffraction data.19−23 One of the most widely used methods is
the multipole model proposed by Stewart10,44 and by Hansen
and Coppens,11 which models the valence charge density with
both a spherical and multipolar component;45 this is essentially
equivalent to the expansion (1). In practice, existing
pseudoatom methods are constructed from tabulated multi-
polar parameters (e.g., the libraries ELMAM,46−49

ELMAM2,50,51 UBDB,52,53 Invarioms,54 and SBFA55), that
are based on the determination of molecular fragments, that
also provide a local reference frame to describe the anisotropy
of the density. In most cases, these fragment decompositions
are used as an initial guess for the density. The nuclear
coordinates and the local multipoles are both optimized to
match the experimental diffraction pattern during structural
refinement.56

Our goal here is more ambitious, as we aim to predict the
charge density based exclusively on nuclear coordinates.
Furthermore, we aim at a scheme that does not rely on the
definition of discrete molecular fragments and captures the
density modulation by structural distortions and nonbonded
interactions in arbitrarily complex and flexible molecules. As
shown recently, Gaussian process regression can be modified
to naturally endow the machine-learning model of vectors57

and tensors of arbitrary order58 with the symmetries of the
three-dimensional (3D) rotation group SO(3). Within this
method, called symmetry adapted Gaussian process regression
(SA-GPR), the machine-learning prediction of the tensorial
density components is
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In this expression, k ( , )l
i j is a rank-2 kernel matrix of

dimension (2l + 1) × (2l + 1) that expresses, at the same time,
both the structural similarity and the geometric relationship
between the atom-centered environment i of the target
molecule and a set M of reference environments j. The
(tensorial) regression weights xnlm′

j are determined from a set
of N training configurations and their associated electron
densities.
According to eq 2, the prediction of the density expansion

coefficients cnlm
i (x) is performed independently for each radial

channel n, angular momentum value l and atomic species α.
However, working with a nonorthogonal basis implies that the
density components belonging to different atoms of the
molecule are not independent of each other. One can indeed
evaluate the projections of the density on the basis functions

∫ρ ϕ ρ ϕ= ⟨ | ⟩ = −w r r r rd ( ) ( )k
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but these differ from the expansion coefficients ck
i . In fact, w

and c are related by Sc = w, where Skk′
ii′ = ⟨ϕk

i | ϕk′
i ⟩ is the

overlap between basis functions. For a given density, the
coefficients could therefore be determined by inverting S, so
that each individual nlα component could be machine-learned
separately. We observed, however, that doing so led to poor
regression performance and unstable predictions. Applying S−1

on w corresponds to a partitioning of the charge which is, most
of the time, affected by numerical noise. This is connected to
the fact that S is often ill-conditioned, and so small numerical
errors in the determination of w translate into large instabilities
in the coefficients c, making it hard for the machine-learning
algorithm to find a unique relationship between the nuclear
coordinates of the molecule and the density components. To
avoid this issue and improve the accuracy of the physically
relevant total density, the basis set decomposition and the
construction of the machine-learning model need to be
combined into a single step. This essentially consists of
building a regression model that, of the many nearly equivalent
decompositions of ρ, is able to determine the one which best
fits the target density associated with a given structure.
The problem can be cast into a single least-squares

optimization of a loss function that measures the discrepancy
between the reference and the model densities,
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Here the index runs over the training set N , while i runs
over the environments of a given training structure. The
second term in the loss is a regularization, which avoids
overfitting. In this context, η represents an adjustable
parameter that is related to the intrinsic noise of the training
data set. The coefficients c depend parametrically on the
regression weights x via eq 2; by differentiating the loss with
respect to xnlm

j one obtains a set of linear equations that makes
it possible to evaluate the weights in practice. In compact
notation, the solution of this problem reads

η= + −x K SK 1 K w( )T T1
(5)

where x and w are vectors containing the regression weights
and the density projections on the basis functions, while K and
S are sparse matrix representations containing the symmetry-
adapted tensorial kernels and the spatial overlaps between the
basis functions. The details of this derivation and the resulting
expressions are given in the Supporting Information. It should,
however, be stressed that the final regression problem is highly
nontrivial. The kernels that involve environments within the
same training configuration are coupled by the overlap matrix,
so that all the regression weights x for different elements, radial
and angular momentum values must be determined simulta-
neously. An efficient implementation of a ML model based on
eq 5 requires the optimization of a basis set for the expansion,
the evaluation of ρ(r) on dense atom-centered grids, the
sparsification of the descriptors that are used to evaluate the
kernels, and the determination of a diverse, minimal set of
reference environments j. All of these technical aspects are

discussed extensively in the Supporting Information.

■ RESULTS AND DISCUSSION
Charge Decomposition Analysis. It is instructive to

inspect the decomposition of the charge density in terms of the
optimized basis, obtained from density projections on the basis
functions w and the overlap matrix S as c = S−1w, which
corresponds to the best accuracy that can be obtained with a
given basis. With a basis set of four contracted radial functions,
and angular momentum components up to l = 3, the typical
error in the density decomposition can be brought down to
about 1%. In Table 1 we compare, for the case of a butane

molecule, the residual in the expansion with the typical error
that can be expected by taking a superimposition of free-atom
densities, between 16 and 20%.
It is also possible to compute separately the contributions to

the charge carried by each angular momentum channel l, e.g.,
ρl(r) = ∑inmcnlm

i ϕnlm(r − ri). As exemplified in Figure 1, while
the isotropic l = 0 functions determine the general shape of the
density, the l = 1 functions primarily describe the gradient of
electronegativity in the region close to C−H bonds.
Furthermore, the l = 2 functions describe the charge
modulation associated with the C−C bonds along the main
chain as well as the π-cloud along the conjugated backbone,
while the l = 3 functions act as a further modulation that
captures the nontrivial anisotropy. The figure also shows the
collective contribution to the charge variability carried by each
angular momentum channel l and atomic type α, i.e.,

σ α = ∑ ⟨| − ⟨ ⟩| ⟩α α=l c c( , ) n
i i
ln ln

2
i

, with the average ⟨·⟩
involving all the atoms of the same type included in the data
set.
After having subtracted the mean atomic density of pure l =

0 character, the l = 1 components largely dominate the charge
density variability associated with hydrogen atoms. As
previously demonstrated,46 functions with l = 2 symmetry
also carry a substantial contribution, particularly for the carbon
atoms of alkenes, while l = 3 functions appear to be dominant
for carbon atoms of alkanes and almost irrelevant for hydrogen
atoms in all the four molecules. In comparison to an atom-
centered expansion of the wave function ψ, the choice of using
a larger basis set is justified by the greater complexity in

Table 1. Mean Absolute Errors in the Representation of the
Electron Density Using a Superimposition of Free Atoms
(Proatomic Density) and the Optimized Basis Set Used in
This Work (Basis Set Decomposition), Averaged over the
Whole Training Set for the C2 and C4 Moleculesa

⟨ερ⟩ (%)

C2H4 C2H6 C4H6 C4H10

proatomic 18.06 19.23 16.79 18.13
basis set 1.04 1.14 0.98 1.19

aThe graphic shows isosurfaces for the error in the electron density
for proatomic (left) and basis set (right) representation, for a typical
configuration of butane (red and blue isosurfaces correspond to an
error of ±0.005 electrons Bohr−3, respectively).
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describing an electron density field rather than the Ne/2
occupied orbitals being the solution of an effective single
particle Hamiltonian. The need for high angular momentum
components can be also justified by the fact thateven
neglecting the overlap between adjacent atomsthe squaring
of ψ that yields ρ(r) would introduce nonzero components
with up to twice the maximum l used to expand the wave
function.
Density Learning with SA-GPR. Having optimized the

basis set and analyzed the variability of the electron density
when expanded in this optimized basis, we now proceed to test
the SA-GPR regression scheme. The difficulty of the learning
exercise largely depends on the structural flexibility of the

molecules. Small, rigid systems such as ethene and ethane
require little training, and could be equivalently learned
through a machine-learning framework based on a pairwise
comparison of aligned molecules. Butadiene data, containing
both cis and trans conformers, as well as distorted
configurations approaching the isomerization transition state,
poses a more significant challenge, due to an extended
conjugated system that makes the electronic structure very
sensitive to small molecular deformations. The case of butane
is also particularly challenging because of the broad spectrum
of intramolecular noncovalent interactions spanned by the
many different conformers contained in the data set. Being
fully flexible, this kind of system is expected to benefit most
from a ML scheme that can adapt its kernel similarity measure
to different orientations of molecular subunits. Figure 2 shows
the performance of the method in terms of prediction accuracy
of the electron density as a function of the number of training
molecules. The number M of reference environments has been
fixed to the 1500 most diverse, FPS-selected, environments
contained in each data set. The convergence with respect to M
is discussed in the Supporting Information. The symmetry
adapted similarity measure which enters in the regression
formula of eq 5 is given by the tensorial λ-SOAP kernels of ref
58. This generalizes the scalar (λ = 0) smooth overlap of
atomic positions framework59 that has been used successfully
for constructing interatomic potentials25,60 and predicting
molecular properties.61,62 In constructing these kernel
functions, we chose a radial cutoff of 4.5 Å for the definition
of atomic environments (further details are in the Supporting
Information). Learning curves are then obtained by varying the
number of training molecules up to 800 randomly selected
configurations out of the total of 1000. The remaining 200
molecules for each of these random selections are used to
estimate the error in the density prediction.
We express the error in terms of the mean absolute

difference between the predicted and quantum mechanical
densities, i.e., ερ(%) = 100 × ⟨ ∫ dr|ρQM(r) − ρML(r)|⟩/Ne.
The prediction errors of ethene and ethane saturate to the limit
imposed by the basis set representation, which is around 1%
for all molecules, with as few as 10 training points. As expected,
given the greater flexibility, learning the charge density of
butadiene and butane is more challenging, requiring the
inclusion of more than 100 training structures in order to
approach the basis set limit. This level of accuracy (an error
which is almost 20 times smaller than that obtained with a

Figure 1. (Top) representation of the angular momentum
decomposition of the electron density. Red and blue isosurfaces
refer to ±0.01 electrons Bohr−3 respectively. (Bottom) angular
momentum spectrum of the valence electron density of C2 and C4
data sets. The isotropic contributions l = 0 express the collective
variations with respect to the data set’s mean value, while the mean is
statistically zero for l > 0.

Figure 2. Learning curves for C2 and C4 molecules. (Left) % mean absolute error of the predicted SA-GPR densities as a function of the number of
training molecules. The error normalization is provided by the total number of valence electrons. (Right) root-mean-square errors of the exchange-
correlation energies indirectly predicted from the SA-GPR densities and directly predicted via a scalar SOAP kernel, as a function of the number of
training molecules. Dashed lines refer to the error carried by the basis set representation.
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superposition of rigid atomic densities, as discussed above) was
demonstrated to be sufficient46 for most applications that rely
on the accuracy of the density representation, such as the
modeling of X-ray and transmission electron microscopy,1−3 or
the evaluation of density-based fingerprints of chemical
interactions.4−8

Using the predicted ρ(r) as the basis for a density-functional
calculation is more challenging. As a benchmark for this
application, we use the SA-GPR predictions for ρ(r) to
evaluate the PBE exchange-correlation functional EXC[ρ] used
for the reference quantum-mechanical calculations. Depending
on the gradient of the density, this quantity is very sensitive to
small density variations, especially localized around the atomic
nuclei. Figure 2 shows the root-mean-square error for the
exchange-correlation energies εXC. Using the full set of 800
training molecules, we reach a, RMSE of 0.9 and 1.7 kcal/mol
for ethene and ethane, 1.9 kcal/mol for butadiene, and 3.5
kcal/mol for butane, basically matching the basis set limit. It is
clear that the ML scheme has the potential to reach higher
accuracy with a small number of reference configurations, but a
significant reduction of the basis set error is necessary to reach
chemical accuracy (roughly 1 kcal/mol RMSE) in the
prediction of EXC. At the same time, it is not obvious that
computing EXC indirectly, by first predicting the electron
charge density, is the most effective strategy to obtain an ML
model of DFT energetics. As shown in the figure, applying a
direct, scalar regression based on conventional SOAP kernels
to learn the relationship between the molecular structure and
EXC leads to vastly superior performance while requiring a
much simpler machine-learning model.
Size-Extensive Extrapolation. While incremental im-

provements of the underlying density representation frame-
work are desirable to use the predicted density as the basis of
DFT calculations, we can already demonstrate the potential of
our SA-GPR scheme in terms of transferability of the model.
From the prediction formula of eq 2, it is clear that no
assumption is made about the identity of the molecule for
which the electron density is predicted. Practically speaking,
the regression weights xnlm

j are associated with representative
environments that could be taken from any kind of compound,
not necessarily the same as that for which the density is being
predicted. As long as the training set is capable of describing
different chemical environments, and contains local config-
urations similar to the ones of our prediction target, accurate
densities can be obtained simply by computing the kernels

Xk ( , )l
i j between the environments i of an arbitrarily large

molecule and the reference environments j. The cost of this
prediction is proportional to the number of environments,
making this method of evaluating the electron charge density
strictly linear scaling in the size of the target molecule.
As a proof of concept of this extrapolation procedure, we use

environments and training information from the butadiene and
butane configurations already discussed to construct the
electron density of octatetraene (C8H10) and octane
(C8H18), respectively. It is important to stress that the
transferability is because on a local scale the larger molecules
are similar to those used for training, and so the prediction is
effectively an interpolation in the space of local environments.
This is emphasized by the observation that the optimal
extrapolation accuracy is obtained using a machine learning
cutoff of rcut = 3 Å, versus a value of rcut = 4.5 Å that was
optimal for same-molecule predictions. On a scale larger than 3

Å, the environments present in C8 molecules differ
substantially from those in the corresponding C4 compound,
which negatively affects the transferability of the model.
Ideally, as the training data set is extended to include larger
and larger molecules, this locality constraint can be relaxed
until no substantial difference can be appreciated between the
prediction accuracy of the interpolated and extrapolated
density.
For both octane and octatetraene, the extrapolation is

carried out on a challenging data set made of the 100 most
diverse structures extracted by farthest point sampling from the
300 K replica of a long replica exchange molecular dynamics
(REMD) run. When learning on the full data set of butadiene
and butane, we obtain a low density mean absolute error of
1.8% for octatetraene and of 1.4% for octane. As shown in
Figure 3 for two representative configurations, the size-

extensive SA-GPR prediction accurately reproduces the
structure of the electron density for both octane and
octatetraene. Because of the high sensitivity of the electronic
π-cloud to the molecular identity and configuration, major
difficulties arise in predicting the electron density of
octatetraene, particularly in the middle regions, for which no
analogous examples are contained in the butadiene training
data set.
The SOAP representation can be easily extended to more

complex molecules and condensed phases,63 and has been
shown to be remarkably effective in making predictions on
larger molecules based on training on very simple com-
pounds.64 Achieving similar results for the charge density
involves some technical challenges, connected with the
presence of correlations between coefficients due to the
nonorthogonal basis expansion, that makes the cost of training

Figure 3. Extrapolation results for the valence electron density of one
octane (left) and one octatetraene (right) conformer. (Top) DFT/
PBE density isosurface at 0.25, 0.1, 0.01 electrons Bohr−3, (middle)
machine-learning prediction isosurface at 0.25, 0.1, 0.01 electrons
Bohr−3, (bottom) machine-learning error, red and blue isosurfaces
refer to ±0.005 electrons Bohr−3 respectively. Relative mean absolute
errors averaged over 100 conformers are also reported for both cases.
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(but not of predicting) the density scale unfavorably with the
system size. In the presence of large electric fields, or long-
range charge transfer, it will be necessary to extend the scheme
to be compatible with a description of the underlying physical
process. One can look for inspiration to existing self-consistent
equilibration schemes for atomic charges,65 or to the use of
local electric fields as part of the input representation.43

■ CONCLUSIONS

Machine-learning the electronic charge density of molecular
systems as a function of nuclear coordinates poses great
technical and conceptual challenges. Transferability across
molecules of different size and stoichiometry calls for a scheme
based on a local decomposition, which should be performed
without relying on arbitrary charge partitioning or discarding
the fundamental physical symmetries of the problem. The
framework we present here overcomes these hurdles by
decomposing the density in optimized atom-centered basis
functions, exploiting a symmetry-adapted regression scheme to
incorporate geometric covariances, and by designing a loss
function that relies only on the total charge density as a
physically meaningful constraint. The atom-centered decom-
position means the ML model can predict the density of large
molecules or condensed phases with a cost that scales linearly
with the number of atoms. For instance, learning the chemical
environment of all the functional units of the 20 natural amino
acids in all their protonation states and forms (N-terminal,
nonterminal, C-terminal), one possible perspective for our
method will be the prediction of the charge density of proteins.
We have demonstrated the viability and accuracy of this

scheme by learning the ground-state valence electron density
of saturated and unsaturated hydrocarbons with two and four
carbon atoms, achieving in all cases an error of the order of 1%
on the reconstructed density. Given that this estimate is based
exclusively on the nuclear position, it could be used for
structural determination, e.g., in the analysis of X-ray46 and
transmission electron microscopy experiments. What is more,
models trained on C4 compounds can be used to predict the
electronic charge of their larger, C8 counterparts, providing a
first example of the transferability that is afforded by a
symmetry-adapted local decomposition scheme.
Further improvements of the accuracy are likely to be

possible, by better optimization of the basis set, by
simultaneously fine-tuning the representation of environments
by λ-SOAP kernels and the representation of the density in
terms of projections on a local basis set, and also by using
inexpensive semiempirical methods to provide a baseline for
the electron density prediction. In fact, this work can be seen
as a first, successful attempt to apply machine learning in a
transferable way to molecular properties that cannot be simply
decomposed as the sum of atom-centered values, but exhibit a
richer, more complex geometric structure. The Hamiltonian,
the density matrix, vector fields, and density response functions
are other examples that will require careful consideration of
both the representation of the input structure, and of the
property one wants to predict, and that can benefit from the
framework we have introduced in the present work.

■ METHODS

As a demonstration of our framework, we consider hydro-
carbons, using a data set of 1000 independent structures of
ethene, ethane, butadiene, and butane. Atomic configurations

are generated by running REMD simulations at the density
functional tight binding level,66 using a combination of the
DFTB+67 and i-PI68 simulation software.69 In order to
construct a realistic and challenging test of the ML scheme,
we chose the replica at T = 300 K and selected a diverse set of
1000 configurations, by a farthest point sampling (FPS)
algorithm based on the SOAP metric.61,70 For each selected
configuration we computed the valence electron pseudo
density at the DFT/PBE level with SBKJC effective core
potentials. Further details of the data set construction are given
in the Supporting Information.
The problem of representing a charge density in terms of a

nonorthogonal localized basis set shares many similarities with
that of expanding the wave function. For this reason, we resort
to many of the tricks used in quantum chemistry codes,
including the use of Gaussian type orbitals (GTOs) to
compute the basis set overlap analytically, and the contraction
of 12 regularly spaced radial GTOs down to four optimized
functions. We find that angular momentum channels up to l =
3 functions are needed to obtain a decomposition error around
1% for the density. The coefficients of the contraction are
optimized to minimize the mean charge decomposition error
and the condition number of the overlap matrix for the four
molecules,71 as discussed in the Supporting Information. A
systematic analysis of the interplay between the details of the
basis set and the performance of the ML model goes beyond
the scope of this work. It is likely however that substantial
improvements of this approach could be achieved by further
optimization of the basis.
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