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Abstract Breast cancer is recognized for its different

clinical behaviors and patient outcomes, regardless of

common histopathological features at diagnosis. The

heterogeneity and dynamics of breast cancer undergoing

clonal evolution produces cells with distinct degrees of

drug resistance and metastatic potential. Presently, single

cell analysis have made outstanding advancements, over-

shadowing the hurdles of heterogeneity linked with vast

populations. The speedy progression in sequencing analy-

sis now allow unbiased, high-output and high-resolution

elucidation of the heterogeneity from individual cell within

a population. Classical therapeutics strategies for individ-

ual patients are governed by the presence and absence of

expression pattern of the estrogen and progesterone

receptors and human epidermal growth factor receptor 2.

However, such tactics for clinical classification have

fruitfulness in selection of targeted therapies, short-term

patient responses but unable to predict the long-term sur-

vival. In any phenotypic alterations, like breast cancer

disease, molecular signature have proven its implication, as

we aware that individual cell’s state is regulated at diverse

levels, such as DNA, RNA and protein, by multifaceted

interplay of intrinsic biomolecules pathways existing in the

organism and extrinsic stimuli such as ambient environ-

ment. Thus for complete understanding, complete profiling

of single cell requires a synchronous investigations from

different levels (multi-omics) to avoid incomplete infor-

mation produced from single cell. In this article, initially

we briefed on novel updates of various methods available

to explore omics and then we finally pinpointed on various

omics (i.e. genomics, transcriptomics, epigenomics, pro-

teomics and metabolomics) data and few special aspects of

circulating tumor cells, disseminated tumor cells and can-

cer stem cells, so far available from various studies that can

be used for better management of breast cancer patients.
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Transcriptomics � Proteomics � Molecular sub-typing of

breast cancer

Introduction and Significance of Single Cell Omics

Breast cancer is one of the prime health complications in

the United States and worldwide. The American Cancer

Society projected 232,340 new cases of invasive breast

cancer and 64,640 new cases of ductal carcinoma in situ

(DCIS) to be diagnosed amongst women in the United

States in 2013, of which 29% were invasive breast cancer

[1]. Amongst the Indian women, Breast cancer is the sec-

ond most common cancer. As per the current data gathered

for ‘Atlas of Cancer in India project’ which is evaluating

nationwide patterns of cancer incidence across urban and

rural parts of India, suggests that breast cancer is most

prevalent cancer in metropolitan cities and is predicted to

be the most common type of cancer in the coming decade.

The incidence is higher in some cities according to data

from the Atlas project (for example, Chandigarh 39.5 per
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100,000; North Goa 36.8 per 100,000) as compare to those

reported by the population-based registry in New Delhi

(28.9 per 100,000). The age-adjusted incidence rate in

Bangalore, Chennai, Delhi, Mumbai, and Kolkata, 30.9,

33.0, 31.4, 29.3, and 20.6 per 100,000, respectively [2]. A

recent report by the Indian Council of Medical Research

forecasts the number of breast cancer cases in India may

rise from 106,124 in 2015 to 123,634 in 2020 (Cancer

Incidence Rates 1982–2005). According to the National

Cancer Registry Programme projections, there is an

increasing trend in number of breast cancer deaths in India

and have risen to 106,124 in 2015 and predicted to further

increase to 123,634 in 2020 (Cancer Incidence Rates

1982–2005) [2].

Study of single cell genomics can potentially facilitate

development of new schemes for cell characterization,

distinguish cellular transition states, unearth hidden bio-

logical features and map molecular markers. These can be

used for new classifications of here to fore apparently

uniform populations. To achieve this goal, innovative

methods are necessary to address the high level of clatter

characteristic in single cell genomics, related to technical

complications of extremely low amounts of input material

and biological issues such as transitory bursts of RNA

transcription. Combining single cell studies and hypothet-

ical gene expression analyses can reveal both qualitative

and quantitative characteristics of gene regulation, which

otherwise would remain undetermined in population aver-

aging gene expression studies [3, 4]. In order to advance

single cell studies, microfluidic devices are now being

developed to do next generation sequencing (NGS) on

suitable linear mRNA after amplification and bar-coding,

in lesser time than prior generation of genome experiments.

Breast cancer is a diverse disease characterized by dif-

ferent pathological features, incongruent response to ther-

apeutics, and extensive inconsistencies in long-term patient

survival [5]. The heterogeneity observed among breast

cancers indicates now well-accepted notion that there is not

just one disease with a few alternative subtypes, instead

breast cancer exemplifies a group of distinct neoplastic

diseases of the breast and the cells composing the breast

[5]. Further, the distinct nature and character of these dis-

orders can be appreciated through traditional pathological

examination (i.e., in terms of disease morphology) but the

true extent of variety among breast cancers can be realized

only through molecular analyses. Almost 80% of the

invasive breast cancers are represented by invasive ductal

carcinoma and invasive lobular carcinoma is the next most

common, representing approximately 10% of invasive

breast cancers. The less frequent subtypes comprise

mucinous, cribriform, inflammatory, papillary, medullary,

metaplastic, tubular and micropapillary carcinomas. These

subtypes can be further subdivided into classifications

based on their molecular signatures (i.e., expression of

protein biomarkers or gene expression profiles).

Methods for Isolating and Analyzing Multiple
Types of Molecules from a Single Cell

Standardization of an effective method for making cell

suspension that could be used in isolation of high-quality

RNA or flow cytometer analysis from limiting amount of

human origin tissue samples is very challenging. As we are

familiar that tissue obtained during gun-biopsy per core is

not more than 100 mg so to utilize this less amount of

tissue in RNA isolation and for characterizing diverse

antibodies in flow cytometer, is the key challenge for

molecular biologists.

Last 30 years has seen insistent progress in the field of

molecular biology and molecular techniques leading to

new vistas in study of Omics like genomics, transcrip-

tomics and proteomics which could be employed in solving

the conundrum of chronic and untreatable diseases [5–8].

DNA, RNA and proteins are the fundamental molecules

required for such diverse branches and, these molecules

inhabit within the tissue, cells and cell membranes,

enclosing their cytoplasm and genomic contents. These

molecules have shown efficiency for use not only as a

biomarkers but also in tracing various disease associated

pathways [9–13]. The Fig. 1 represents outline of the

process of applying single cell sequencing to patient

derived tumour samples.

For sample preparation to study single cell biology from

any tissue, standard methodology should be used. For

example, harsh sample treatment could affect nucleic acid

quality, quantity along with production of a lot of debris

which may affect further gene expression, flow cytometer

analysis. Therefore, it is important to standardize the tissue

disruption methods to obtain RNA, or single cell suspen-

sion from plentiful as well as from minute tissue repre-

sentatives obtained during surgery or during core biopsy.

Enzyme digestion method (Trypsin/Collagenase based

method) are better than homogenization based method for

single cell preparation. Mostly labs including ours follow,

Trypsin based digestion and is most favorable for flow-

cytometer analysis since it reduces debris in comparison of

mechanical process of shearing [14].

Whole Genome Amplification Methods
from Single Cells

Obtaining enough amount of molecules, including DNA or

RNA, from single cell is a great challenge. For example,

for single cell sequencing, limited amount of DNA or
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cDNA molecules need to be amplified with higher fidelity

and less bias. Several Whole-Genome Amplification

(WGA) methods have been used to obtain sufficient DNA

for sequencing. Here we quickly sum up a few of these

methods and their features.

DOP-PCR

Previously degenerate oligonucleotide-primed Polymerase

Chain Reaction (DOP-PCR), was extensively used to

amplify genome from single cell. It has vital usages in

genome mapping and in identification of the source of

markers, determine copy number variations (CNVs), and

map translocation breakpoints on a significant genomic

scale [15]. However, DOP-PCR has low genome coverage,

high amplification prejudices, and high drop-out rate owing

to the exponential amplification nature of PCR [16].

MDA

Yet another method is Multiple Displacement Amplifica-

tion (MDA). It amplifies DNA in single-cell whole-genome

analyses. This technique causes, within few hours circular

DNA templates amplification by 10,000-fold, using ran-

dom primers and Phi29 DNA polymerase [17]. MDA gives

much higher genome coverage than DOP-PCR, with a

drawback of giving rise to chimeric reads and introduces

huge amplification bias due to its exponential amplification

process [18]. Furthermore, such sequence-dependent bias

of MDA is not reproducible along the genome from cell to

cell.

MALBAC

Multiple Annealing And Looping-Based Amplification

Cycle (MALBAC) method reduces the sequence-depen-

dent bias introduced by exponential amplification, since it

includes quasi-linear amplification through looping-based

amplicon protection into PCR [19]. MALBAC uses pri-

mers in the initial reaction, designed to share common

sequences forming loops and inhibiting the repeated (po-

tentially biased) priming from their ends. This technique

offers high stability across the genome. Such amplified

DNA on sequencing can accomplish 93% genome cover-

age C 19 for a single human cell at a mean sequencing

depth of 259 [20].

LIANTI

Linear Amplification via Transposon Insertion (LIANTI)

combines Tn5 transposition and T7 in vitro transcription

for single-cell genomic analyses facilitating further

reduction in amplification bias and errors [21]. During this

process Tn5 transposition first randomly fragments and

then inserts T7 promoter sequence into genomic DNA.

Further, T7 RNA polymerase facilitates generation of

amplified antisense RNA. After c-DNA synthesis and

second strand synthesis, double-stranded LIANTI ampli-

cons are organized for DNA library preparation and high

throughput sequencing. Thus, LIANTI efficiently reduces

PCR’s errors and biases (induced by nonspecific priming

and exponential amplification) by replacing PCR with

in vitro transcription.

The ‘Omics’ Application Based on Single Cell

Brisk technological development has improved the under-

standing of single cell omics. Single-cell sequencing of

genomes, and transcriptomes, is now well-known and lar-

gely advantageous, and the primary methods for mapping

single-cell epigenomes, proteomes, and metabolomes, are

now becoming accessible. Table 1 is representing the

various single cell methods and their application to omics

of cancer.

Amalgamating many of these technologies into inte-

grated multi-omic assays of the same single cells will yield

exceptional visions in fundamental biology and biomedi-

cine. The Fig. 2 representing the theoretical diagram of

multi-omics in single cell.

Fig. 1 Overview of the process of applying single cell sequencing to patient derived tumor samples
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Single Cell Genomics and Breast Cancer

Single cell genome sequencing (SCGS) has been used to

explain mutations, structural variations, aneuploidies, and

recombination in the genome, and to study the diversity,

evolution and role of genetic mosaicism [23]. SCGS is

critical for unveiling genetic heterogeneity and cell-lineage

communications between normal and diseased tissues [24].

Since a precise appraisal of prognosis is critical in con-

ceiving a efficacious treatment strategy for cancers, single-

cell technology has permitted many novel prognostic fac-

tors to be detected and confirmed. For example, this tech-

nique was applied to detect and map the source of

disseminated tumor cells in breast cancer [25].

Single-cell sequencing is of paramount significance for

appreciating the genomic heterogeneity of cancer cells.

The earliest amplifications for single cell genomics

encompass whole genome amplification, delivering ade-

quate amounts of DNA for successive sequencing. DOP-

PCR has low coverage but even amplification of genome

and is appropriate for CNV detection [26]. SNP recognition

can be done using multiple displacement amplification

(MDA), a linear amplification method proficient of higher

coverage via the use of Phi-29 polymerase [27]. Multiple

annealing and looping based amplification cycles (MAL-

BAC) pools MDA and PCR for a high coverage, and turns

out to be a uniform amplification technique, appropriate for

either CNV or SNP detection [19]. Intra-tumor CNVs and

SNPs in various cancers have been characterized using

these techniques. However, one key shortcoming of the

above-mentioned methods is that three-dimensional infor-

mation is lost as soon as single cells are isolated, which is

essential to insight about relations of the cell with its

micro-environment and may prove important for evaluat-

ing drug responsiveness. Lately, a new tool, exclusive-to-

allele PCR-FISH (STAR-FISH) [28], has been recognized.

This technique can perceive the spatial distribution of both

SNPs and CNVs via combination of in situ PCR and FISH.

PCR primers targeting mutant and wild type mRNAs, one

gene at a time are used. Amplification is followed by

hybridization of fluorophores to a 50 over-hang built into

each probe. A frequently detected mutation of Her2?

Table 1 Summary of relevant single-cell methods and their applications to cancer [22]

Experimental method type Specific methods Application to cancer ‘‘omics’’

Single-cell whole genome

amplification

DOP-PCR, MDA, MALBAC Used in conjunction with next-generation sequencing to detect intra-

tumor CNVs and SNPs

Single-cell spatial genomics STAR-FISH Detects the spatial distribution of intra-tumor CNVs and SNPs. Can be

combined with longitudinal analysis to reveal migratory cells

Single-cell transcriptome

amplification

Smart-seq, Tang et al. method, single-cell qPCR Identifies cancer-specific gene expression signatures,

cancer cell types, alternative-splicing events

Single-cell spatial transcriptomics smFISH, SeqFISH, MERFISH,

FISSEQ, TIVA

Can provide spatially-resolved gene expression signatures in tumors. Has

potential applications in tracing cell migratory paths and locating

tumor-like stem cells

Single-cell DNA methylomics scRRBS, PBAT Enables the discovery of differential methylation in cancer cells.

Potential for broadening understanding of phenotypic plasticity of

cancer cells

Single-cell chromatin accessibility ATAC-seq, Pico-Seq Can give insight into the differential binding of transcription factors in

cancer cells

Chromosome conformation

capture

Hi-C, ChIP-seq Potential for understanding the mechanisms of cancer heterogeneity

through mapping transcription factor-regulatory element interactions

Simultaneous multiple single-cell

omics

G&T-seq, scTrio-seq, Provides an integrated view of intra-tumoral heterogeneity through

measuring direct interactions between genomic, transcriptomic,

epigenetic, and proteomic variation

Computational methods Single-

cell spatial transcriptomic

inference

Seurat, Achim et al. method Infers cell location through scRNA-seq data and an in situ RNA

reference map of several landmark genes, enabling mapping of intra-

tumor spatial heterogeneity

Pseudo-time ordering Monocle, TSCAN, Waterfall,

SCUBA, Wanderlust,

Wishbone

Projects gene expression values from a single time-point to a continuous

trajectory over cell differentation. Potential use in understanding

differentiation from stem-like cancer cell to matured cancer cell

Rare cell-type detection RaceID, StemID, GiniClust Potential use in the detection of circulating tumors cells and stem-like

cancer cells

Clonal evolution inference SCITE, OncoNEM Builds lineage trees for understanding evolutionary events such as the

development of therapy resistance
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breast cancer before and after chemotherapy is His1047Arg

mutation in PIK3CA and ERBB2 (commonly known as

HER2). Janiszewska et al. used their method to study this

commonly reported amplification. They acknowledged

changes in mutational frequency of mutated cells, which

enabled a perception of the development of drug resistance

in HER2? breast cancer. In combination with longitudinal

analysis, this method was made use of to locate migratory

cells [28]. Currently, the technology can only be employed

to locate known mutations. The introduction of such spatial

methods to single-cell cancer genomics allows genomic

heterogeneity to be plotted in space. This presents inno-

vative prospects in studying cell-to-cell interactions, and in

recognizing migratory cancer cells and their roles in

metastasis.

SNPs and Mutations and Breast Cancer

While the degree of analysis of tumor cells is indeed of the

quintessence, it is also vital to amplify the information that

is retrieved from each cell. For genome-wide DNA analysis

of mutation and copy number profiling, two whole-genome

amplification (WGA) approaches have been commonly

accepted for single-cell DNA-seq: multiple displacement

amplification (MDA) [29], and the multiple-annealing,

looping-based amplification-based cycle method (MAL-

BAC). Choice of method depends primarily on the question

of interest. Each method is related with artefacts introduced

owing to allelic drop out (ADO), false discovery of

mutations due to amplification or sequencing errors and

preferential amplification of specified genomic sites.

Overall, MDA displays greater steadiness in comparison

with MALBAC. On the contrary, MDA false-negative rates

are also higher due to lower genome coverage and low

consistency of coverage. Rates of ADO differ greatly, with

Fig. 2 Representing the theoretical diagram of multi-omics in single cell
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percentages as low as 1% reported for MALBAC and as

high as 65% for MDA [30], even though * 10% ADO can

perhaps be expected on average for most samples. Con-

sidering this, MALBAC has been the method worthwhile

for copy number aberration, however it is significant to

note that reproducibility of results for smaller copy number

aberrations remains low [31].

Furthermore, precise molecular variants of breast cancer

were found to be linked to specific genetic modifications.

For example, HER2? and basal like breast cancers exhibit

a high rate of somatic mutation in the TP53 tumor sup-

pressor gene (72–80%), whereas other molecular variants

display TP53 gene mutations relatively less frequently

(12–29%). Luminal A, luminal B, and HER2? subtypes

presented significant percentages of mutation in the

PIK3CA gene (45%, 29%, and 39%, respectively), but

basal-like breast cancers are only rarely related with

mutation of this gene (9%). It is vital that very limited

genes were perceived to be mutated at more than 10%

frequency within or across the molecular subtypes of breast

cancer, but several genes (including at least 177 cancer-

associated genes) were mutated in lesser numbers of cancer

([ 20,000 non silent somatic mutations among 510 breast

cancers). CNVs showing gene deletions and amplifications

were found to influence several genes and gene regions,

comprising amplifications in PIK3CA and ERBB2 chro-

mosomal regions and deletions in TP53 and MAP2K4

chromosomal regions, among many [32].

Single Cell Epi-genomics and Breast Cancer

Epigenetics plays a crucial role in regulating gene

expression in cancer, and exploring the heterogeneity of

epigenetic patterns may contribute in understanding causal

transcriptomic heterogeneity. As a dynamic process, it may

add to the phenotypic plasticity of cancer cells, for example

aiding in the differentiation of cancer stem cells.

Studies have exhibited remarkably low levels of global

DNA methylation along with hyper-methylation of definite

regions, such as tumor suppressor gene promoter regions,

providing robust indication for the role of epigenetic

abnormalities in cancer dissemination. The characterization

of intra-tumor epigenetic heterogeneity has been explored

less extensively due to its technological challenges. How-

ever, multiple epigenetic tactics have recently been cus-

tomized for single-cell purposes. Establishing DNA

methylation patterns has conventionally been performed by

bisulfite sequencing methods, nevertheless bulk techniques

have not performed well in the single-cell setting owing to

DNA degradation occurring during bisulfite conversion.

Some methods have modified bisulfite sequencing for

single-cell, including scRRBS (reduced representation

bisulfite sequencing) [33], and PBAT (post-bisulfite

adapter-tagging) wherein a modified version of bisulfite

sequencing is employed to each cell individually. ScRRBS

relieves the problem of high DNA loss by substituting the

several purification steps preceding bisulfite sequencing

with a single-tube reaction. A restriction enzyme recog-

nizing CpG islands is exploited to cut the genome,

selecting CpG island regions for subsequent conversion

and sequencing. By sequencing particularly these regions,

this method offers low-cost but low-coverage sequencing

[33]. This technique has been utilized in human hepato-

cellular carcinoma tissue along with transcriptome

sequencing. Methylation levels at all CpG sites were

established and consequently used to cluster the tissue into

two subpopulations through unsupervised graded cluster-

ing. An immense heterogeneity was obtained between and

within these sub-populations. Remarkably, when the same

clustering method was harnessed using CNV patterns, a

matching clustering was found [34]. PBAT is a rather

unprejudiced whole-genome method, which focusses on

the issue of bisulfite-conversion-induced DNA degradation

and achieves suitable library preparation after bisulfite

sequencing. Typically, adapter-tagging is done prior to

bisulfite conversion and sequencing templates are degra-

ded, but changing the order of these events impedes this

problem [35]. While using PBAT, differential methylation

of distal regulatory elements was unravelled in mouse

embryonic stem cells [35]. These elements cannot usually

be captured by scRRBS, making it look good for higher-

coverage cancer methylation studies.

Another important regulator of gene expression is

chromatin structure. Largely transcription factors can only

bind to open chromatin regions, however a small number of

pioneer factors perhaps bind to closed chromatin, initiating

it to open up so that other factors can bind. The genome-

wide landscape of chromatin openness can be evaluated by

using either ATAC-seq (assay for transposase-accessible

chromatin) or DNase-seq [36]. These methods differ in the

DNA-cutting enzymes, analogous to Tn5 and DNase I,

respectively. Both methods have been fitted to single-cell

analysis. Two single-cell methods have modified ATAC-

seq. A combinatorial indexing tactic labels nuclei with

unique barcodes to ease their grouping and processing

together. Groups of nuclei are positioned in wells, bar-

coded, and then sent on through a second set of wells and

barcoded again. Assuming that each nuclei is highly

probable to pass through an exclusive combination of

wells, the barcoding is enormously cell-specific. In a

microfluidic tactics, cells are captured and analyzed sepa-

rately. This technique has been used to dig up inconsis-

tency of transcription factor motif accessibility in cancer

cell lines. For DNase-seq, a single-cell method called Pico-

Seq [36], separates cells using FACS prior to DNase I

treatment. To evade a large damage of digested DNA
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during subsequent library preparation, a circular carrier

DNA is added after digestion. The carrier DNA will not be

amplified in the ensuing PCR due to its mismatch with the

adaptor ligation process. Notably, the authors used their

method to formalin-fixed paraffin-embedded follicular

thyroid cancer patient tissue and, observed a SNV in one of

the patient samples that inhibits the binding of tumor

suppressor protein p53 [36]. The above-mentioned meth-

ods have started to deliver new systematic revelations into

cancer heterogeneity. Besides, two more single-cell meth-

ods, Hi-C and ChIP-seq, have been lately developed and

show potential for use in forthcoming cancer epigenetic

studies. A type of chromosome conformation capture that

quantifies interactions between genomic loci, Hi-C can be

utilized to locate trans-regulatory elements and their targets

[37], ChIP seq, which differentiates interactions between

DNA and DNA-binding proteins, can determine tran-

scription factor regulatory element interactions. Results

associated to examinations of gene expression patterns,

gene mutations, DNA copy number, DNA methylation, and

miRNA expression patterns in a huge cohort of approxi-

mately 800 breast cancers were published in 2012 by the

Cancer Genome Atlas Network [32]. This study distinctly

revealed that breast cancer is a heterogeneous disease with

multiple discrete molecular variants and also there is great

variety among the well-known major molecular subtypes.

This suggests that the molecular progressions influencing

the pathogenesis of breast cancers of a particular molecular

subtype can vary, involving varied procedures for gene

activation or inactivation and different genes signifying

positive and negative mediators of neoplastic development

and progression, and that, therefore, no singular molecular

mechanism of breast cancer pathogenesis exists [32].

Global hypo methylation and gene-specific hyper-

methylations are Cancer-associated modifications in DNA

methylation. Present-day evidence advocates that these

epigenetic processes play a key role in breast carcinogen-

esis. Genes that have been recognized to be directly qui-

etened by DNA methylation in breast cancer encompass

cell-cycle control genes (CDKN2A), steroid receptor genes

[ESR1 (alias Era, NR3A1), PGR (alias PR, NR3C3), and

RARB (alias HAP, NR1B2, RRB2)], tumor suppressor

genes (BRCA1), genes associated with cancer metastasis

(CDH1, TIMP3), and many others [38]. Loss of expression

of ER is often related with hyper methylation of the ESR1

gene. Moreover hyper methylation of specific genes, hypo-

methylation influencing large chromosomal regions can be

merged with aberrant or inappropriate expression of genes

that contribute to cancer development and progression.

Additionally, genome-wide demethylation promotes chro-

mosomal instability by destabilizing peri-centromeric

regions of certain chromosomes. Thus, epigenetic pro-

cesses effective in breast cancer may contribute to

transformed expression of specific genes, altered expres-

sion of genes positioned in common chromosomal regions,

and/or genetic instability bring about copy number

alterations.

Single Cell Transcriptomics and Breast Cancer

Similar to single-cell genome evaluation, the first efforts in

single-cell transcriptomics were of the amplification of the

transcriptome to enable for quantification and sequencing

of the transcriptome. Whole transcriptome amplification

techniques comprise poly-A tailing methods and template-

switching approaches for example Smart-seq [39]. Tar-

geted gene expression profiles can also be determined with

high sensitivity by multiplexing qPCR [40]. In amalga-

mation with single-cell RNA sequencing and qPCR, these

techniques have been used in several cancer studies. Can-

cer-specific gene expression signatures and alternative-

splicing events have been recognized for melanoma [40].

Such signatures have led to the perception of cancer cell

types, such as cancer stem cells. The relative impacts of

clonal evolution and multi-lineage disparity in transcrip-

tomic heterogeneity have been studied in the perspective of

colon cancer [41]. Current technologies have been devel-

oped to compute gene expression levels in situ, thereby

maintaining spatial information. Here we review recent

single-cell spatial transcriptomic methods and their

potential for future use in cancer studies. These methods

share the same basic principle as single-molecule fluores-

cence in situ hybridization (smFISH), whereby fluores-

cently-labeled DNA oligonucleotide probes are hybridized

to their complementary target mRNA, and are then spotted

via fluorescence microscopy. The latest practices described

below have greatly enhanced detection proficiency and

output. SeqFISH (sequential FISH) is a deviation of

smFISH that utilizes sequential hybridization to permit for

multiplexing. Each mRNA is attributed a unique sequence

of fluorophores which create a barcode, that facilitates

decoding of each mRNA. In the first round of this process,

probes aiming the same mRNA are labeled with the same

fluorophore. Furthermore, these probes are hybridized,

imaged, and then purged. Subsequently, the same probes

are labeled with a different fluorophore, and the same

sequence of steps is followed. Multiple such rounds creates

a unique barcode of colors unique for a specific mRNA.

Thus each probe set targeting a particular mRNA gets

labeled with a unique barcode. For F fluorophores and N

hybridization rounds, this means FN mRNAs can be

visualized. As this number surges quickly with an

increasing number of fluorophores and hybridization

rounds, this technique can potentially be used to sequence

all known genes with restrained numbers of fluorophores

and hybridization cycles. Initially this method was
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employed to immobilized yeast cells and mouse embryonic

stem cells, but has been since encompassed to deep tissues

such as the brain. MERFISH (multiplexed error-robust

FISH) is a similar approach that also allows for error rec-

tification by using a smart choice of barcodes. Precisely,

barcode sequences are chosen to include only those which

are separated by a certain Hamming distance (Hamming

distance = number of changes in a barcode sequence

required to transform one sequence into another). Because

not all possible barcodes encode a specific mRNA, this

encoding scheme suggests a measures to error detection

and correction. The authors have engaged this approach to

synchronously measure 1001 genes in human fibroblast

cells. Two fluorophores and 14 hybridization rounds

authorize all encoding sequences to be split by a Hamming

distance of 2 [42]. Of note, these authors illustrate that their

barcode design helps reduce the error rate significantly.

FISSEQ is another in situ technique based on sequencing.

RNA is first reverse-transcribed and amplified [43]. The

amplicons are crosslinked to the cellular matrix and

sequenced by using the SOLiD SBL (sequencing-by-liga-

tion) method. This has been used to a simulation of the

wound healing response in primary fibroblasts and the

authors witnessed differentially expressed genes midst

migrating cells and contact-inhibited cells [43]. Such a

process could similarly be employed to find differentially

expressed genes in migratory versus non-migratory tumor

cells. Besides, in vivo quantification of transcriptomic

profiles can also be by using a technology called TIVA

(transcriptome in vivo analysis) in which a photo-activat-

able biotin-labeled TIVA-tag is inserted into live cells,

attached to mRNA upon selective photo-activation, and

recaptured via streptavidin beads and captured mRNA is

eventually sequenced. TIVA was applied on live mouse

and human brain tissue, as well as mouse brain cells in

culture and a comparison of live and culture mouse brain

cells displays notable differences in gene expression levels,

emphasizing that cells removed from their natural envi-

ronment may not be representative of the same cells in vivo

[44]. The above referred techniques give increasingly

multiplexed ways of spatially mapping gene expression

patterns. While most of the applications to date have been

restrained to cell culture, we believe that soon they will be

valid for tissue samples. If they can be customized to tumor

cross-sections, these methods will have great impression on

investigating the cancer progression path. For example, the

position of tumor-like stem cells could be mapped within

the tumor. If longitudinal measurements are taken, cell

migratory paths may also be discovered. Gene expression

profiling computes the activity of thousands of genes to

create a global picture of cellular function. Some gene

expression profiling tests utilize fresh tissue while others

use tissue preserved in paraffin. Using tumor samples from

a biopsy or other surgical procedure, gene expression

profiling measures the specific messenger RNA that the

genes code. The mRNA in a tumor is measured to appraise

which genes in a cell are active. Identifying which genes

are active can reveal a tumor’s uniqueness that will

determine clinical outcome in breast cancer patients.

Computer analysis of the results facilitated the assess-

ment of relationships between the gene expression patterns

and information from the women’s medical records (i.e.,

cancer recurrence and whether the woman benefited from

treatment such as chemotherapy). Researchers then devel-

oped numbering scales or scores for predicting how likely

cancer will relapse or how likely a woman would benefit

from treatment. MammaPrint� and Oncotype DX� are two

well-known gene expression profiling tests for breast can-

cer, which compute gene expression levels within the

tumor to produce number scores and its probability of the

risk of distant disease recurrence. These tests can be uti-

lized together with data such as a woman’s age, whether

her cancer has spread, and whether the tumor tests positive

for hormone receptors to guide treatment decisions.

MammaPrint� is a 70-gene signature assay obtained

from the investigation of 78 frozen samples from lymph

node-negative breast cancers, smaller than 5 cm, from

patients younger than 55 years, treated at the Netherlands

Cancer Institute. A prognostic signature was recognized

comprising 70 genes, by matching the expression profiles

of tumors from patients who developed distant metastasis

within 5 years with those who did not. Oncotype DX� is a

21-gene RT-PCR test for estrogen receptor (ER)-positive

breast cancer, which was based upon prospective selection

of 250 genes related with cancer pathology and prognosis,

from the published literature and genomic databases.

Comparing the aforesaid assays, MammaPrint� uses fresh-

frozen tumor tissue which is more frequently available

from procedures done in Europe, whereas Oncotype DX�

uses tissues preserved in paraffin, a typical procedure in the

United States. Lack of direct comparison of the two

methods, keeps the issue unanswered as to which test is

better than the other at predicting what the best treatment

will be or whether a breast cancer will return.

In a prospective, randomized phase III clinical trial

called the MINDACT, the 70-gene unique assay is pre-

sently being evaluated. This phase III trial will enroll 6000

patients and will compare MammaPrint� to Adjuvant

Online, a popular clinical-pathological prognostic tool, for

selecting patients for adjuvant chemotherapy in node-neg-

ative breast cancer. Yet another phase III trial is TAILORx

where the Oncotype DX� test is being weighed in another

prospective [45]. This phase III trial will enroll over 10,000

women at 900 sites in the United States and Canada and

investigate if genes frequently associated with recurrence

can be used to ascribe early breast cancer patients to the
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most fitting and effective treatment. Both Oncotype DX�

and MammaPrint� are useful for women who have hor-

mone receptor-positive early breast cancer. These two

assays have only one gene in common and this lack of

overlap in genes might be due to the way tumor tissues are

prepared for the tests and other differences in procedures

that the laboratories use. Also, the heterogeneous nature of

breast cancer means that many genes are implicated in the

cancer molecular pathway. MammaPrint� has been

approved by the US Food and Drug Administration (FDA)

for its prognostic value (i.e., predicting the likelihood that

breast cancer will return). However, it is not endorsed for

predicting the response to treatment. That question is still

under investigation. Oncotype DX has yet to be approved

by the FDA, although the safety and performance standards

of the test conducting labs are regulated under the Clinical

Laboratory Improvements Amendments (CLIA). Although

these two tests are extensively available for use by physi-

cians, more corroboration is needed to apprehend how

clinically useful the tests are.

Single Cell Proteomics and Breast Cancer

Single-cell proteomics tactics, although still limited in

comparison of genomics methods, but now developing

quickly. Currently, the commonly applied single-cell pro-

teomics methods based on targeting specific proteins by

means of tagged antibodies. Fluorescence-based screening

of protein by fluorescence-activated cell sorting (FACS) or

fluorescence microscopy, as well as single-cell Western

blotting, permit protein assessment in single cells with a

low level of multiplexing (approximately 10–15 proteins in

total), though other multiplexed methods, including the

practice of oligonucleotide-labelled antibodies followed by

qPCR metal-tagged antibodies followed by mass cytometry

and single-cell mass spectrometry are developing. Though,

these primary methods are still limited to the revealing of

tens to hundreds of proteins per cell.

A cell’s proteome correlates genotype to phenotype by

sensing various internal and external stimuli. Like, tumor

suppressor protein p53 is central in many cancers. High

magnification and resolution based single-cell analyses

exposed that the results of the previous cell based studies

not able to expose p53’s exact dynamic response [46]. In

place of reduced magnitude, each and every cells display

series of equal p53 pulses with static amplitude and dura-

tion, independent of the intensity of external stimuli. The

misrepresentative mean outcomes from the majority of cell

studies are associated to a decreased cell number and loss

of synchronization between single cells at later times. So,

single-cell proteomics will provide dynamic and compre-

hensive knowledge of genetic heterogeneity in their

responses to drugs and other external stimuli.

Single Cell Metabolomics and Breast Cancer

Metabolomics, when combined with genomics, transcrip-

tomics and proteomics, provides us a comprehensive

opinion to fully understand the functionality of each indi-

vidual cell. Within a single cell, the transcripts derived

from DNA are translated into proteins, which act as

enzymes to catalyze intermediate products of metabolism.

Therefore, metabolites act as a connection between geno-

type and phenotype on single cell level, providing a

coherent view on single cell’s behavior. Numerous in silico

studies have established the correlation of the various

metabolites by clustering approach. Like one study by

Tang et al., 2014 has classified 399 metabolites into distinct

groups by hierarchical clustering (cluster 3.0) and then

showed with TreeView. They found that many groups of

metabolites were highly clustered and correlated. These

groups comprise metabolites that are documented to be in

the same metabolic pathways as well as surprising corre-

lation between metabolites in different metabolic path-

ways. Metabolites from varied pathways clustered in the

same groups might represent two diverse metabolic path-

ways which are controlled by the same genetic change or

influenced similarly by the metabolic reprogramming.

Like, they demonstrated a cluster of metabolites compris-

ing many intermediates of various lipids associated with

glycerophosphocholines. They also reported two separate

clusters of amino acids and di-amino acids (glycine-pro-

line, glutamate-leucine, and alanine–tyrosine) and

N-acetyl-amino acids (N-acetyl-aspartate, N-acetyl-or-

nithine and N-acetyl-aspartyl-glutamate). Both clusters

may represent products of protein degradation and cata-

bolism and can be used to identify breast tumors with

higher protein catabolism [47].

Breast Cancer Sub-typing and Molecular
Characterization

Earlier studies of transcriptomics accomplished on DNA

microarrays documented many molecular subtypes of

breast cancer. Subgrouping of breast cancers were docu-

mented using computational methods that assessed simi-

larities in the gene expression profiles created for

individual breast cancers among large cohorts of breast

cancer samples. Clusters were characterized by typical

gene expression patterns recognized by overexpressed

genes. The initial study of this type recognized four major

molecular subtypes of breast cancer: (1) ER?/luminal, (2)

HER2? (HER2-enriched), (3) basal-like, and (4) normal-

like, [48]. Several transcription profiling studies of invasive

breast cancer validated that these molecular subtypes are

dissimilar and robust between breast cancer cohorts and
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using different gene sets for cluster analysis [49]. The

newly classified molecular subtypes of breast cancer are (1)

luminal A (ER?), (2) luminal B (ER?/HER2-enriched),

(3) HER2? (HER2-enriched), (4) basal-like, (5) claudin-

low, and (6) normal-like [50].

Additionally, the molecular subtypes of breast cancer as

demonstrated by transcriptomic analysis are linked with

diverse clinical outcomes [51], the robustness of molecular

subtype category of breast cancer based on transcriptomics

analysis has been verified by various study. Though breast

cancer grouping methods display decent reproducibility,

suggesting that these are reproducible biological subtypes,

breast cancers that are not classifiable by conventional

approaches are now recognized with regular frequency.

Luminal A and Luminal B Breast Cancers

ER? breast cancers are seen commonly and comprise of

two major molecular classifications: luminal A and luminal

B. Luminal A breast cancers are the most common, with a

frequency of 28–31%. Luminal B breast cancers are known

by ER positivity escorted by amplification and/or overex-

pression of the HER2 gene. Luminal B types are not so

frequent, it represents nearly 20% of patients [51], and the

expression status of proliferation linked genes is one of

most central factor which make difference between luminal

A and luminal B breast cancers. Moreover, the two ER?

breast cancer subtypes, luminal A and luminal B, are

accompanied with a good prognosis and admirable long-

term survival (approximately 80–85% 5-year survival),

whereas the ER negative subtypes (HER2? and basal-like)

are challenging to manage and are linked with poor prog-

nosis (approximately 50–60% 5-year survival). Survival of

patients with ER? breast cancers directs the existence of

effective targeted therapy which is available in the form of

anti-estrogen treatment (like, tamoxifen). Moreover,

among the ER? breast cancers, the luminal B subtypes are

linked with a considerably worse prognosis, when com-

pared with the luminal A subtype. The differences in

patient survival are mainly due to differences in response

of luminal A and luminal B breast cancers to anti-estrogen

treatment [52].

HER21 Breast Cancers

HER2 belongs to human epidermal growth factor receptor

family, which includes EGFR (alias HER1), HER3, and

HER4. HER2 acts as an oncogene in several cancers

including breast cancers, exhibits its effect of carcinogen-

esis mostly by over expression or due to gene amplifica-

tion. Recently, this subtypes of breast cancers was

discovered through transcriptomic analyses that recognized

a cluster of breast cancers with strong expression of the

ERBB2 proto-oncogene. HER2? breast cancers occurs

nearly 17% of all breast cancers, with a frequency of

12–21% across different populations. HER2 overexpres-

sion (HER2?) in breast cancer is linked with poor clinical

outcomes [53], but is also have a positive therapeutic

responses to anti-HER2 drugs (e.g., trastuzumab). HER2?

breast cancers are usually ER?, so therapy for these can-

cers does not comprise of anti-estrogenic hormonal treat-

ment. Instead, treatments for the HER2? breast cancers are

centered on combinations of targeted drugs (e.g., trastu-

zumab) and cytotoxic chemotherapy [54].

Basal-Like and Claudin-Low Breast Cancers

Both, the basal-like and claudin-low molecular subtypes

indicate subsets of triple-negative breast cancers (as clas-

sified by immunohistochemistry),that is without expression

of ER and PR (ER?/PR?) and also missing amplification

of ERBB2 (HER2?) [55]. The basal cell phenotype of

breast cancer was initially observed in immune-histo-

chemical studies, and since then it has been re-explored by

various transcriptomic analyses. The basal-like subtype is

characteristically HER2? and reveals some characteristics

of breast myoepithelial cells [56]. Basal-like breast cancers

indicates about 15% of all breast cancers. The basal-like

breast cancers have unusual high capability of cell prolif-

eration and worst clinical outcomes. It has been shown that

Basal-like breast cancers respond to preoperative

chemotherapy [57].

However, the observation it was perceived that the

patients with basal-like breast cancers have a very poor

prognosis, also shown a higher likelihood of relapse/re-

currence in these patients where the drug response was not

achieved [57]. Claudin-low breast cancers have shown

about 10% of all breast cancers. These breast cancers are

augmented for markers of epithelial-to-mesenchymal

transition and stem cell-like and/or tumor-initiating cell

features [58]. Like, basal-like cancers, claudin-low breast

cancers well respond to some chemotherapeutic agents, but

patients have poor recurrence-free and overall survival

outcomes. This observation may reveal the information that

these cancers display mesenchymal features and may show

resistance to standard chemotherapy treatment [58]

Normal-Like Breast Cancers

The normal-like breast cancers are so named because they

incline to cluster closely with normal breast epithelium in

microarray studies. It is still not clear whether this is a

different molecular subtype of breast cancer or merely a

grouping of breast cancers that are not otherwise classifi-

able because of its spread into normal epithelium.
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Nevertheless, this subset of breast cancer is regularly

conveyed in gene expression studies.

Molecular Biomarkers Expression in Various
Subtype of Breast Cancer

Recent cutting edge technological developments have

allowed the simultaneous evaluation of multiple RNAs

(DNA micro-arrays) or proteins (tissue arrays) in tumour

samples [59]. These studies have revealed that the breast

tumors could be classified into few classes by the over-

expression of exclusive groups of genes/proteins [60]. As

per past’s studies, nearly two-thirds of tumors have char-

acteristics reminiscent of the luminal epithelial component

of the breast. These lesions are commonly obtainable with

well differentiated, low grade and display relatively high

levels of steroid receptors, cytokeratins KRT8, KRT18 and

KRT19, BCL2, CDH1, MUC1, the transcription factors

GATA3, FOXA1, XBP1 [61], TFF1, TFF3, SLC39A6,

CDKN1A, CDKN1B and CCND1. In comparison of the

‘luminal epithelial-like’ lesions, about 15% of tumors have

a low level of the above mentioned markers, whereas they

express relatively high levels of cytokeratins KRT5 and

KRT17, CDH3, EGFR, FOXC1, KIT, SERPINB5,

TRIM29, GABRP, MMP7, SLPI and various proliferation

markers. Most of these ‘basal/myoepithelial-like’ tumors

are not well differentiated and have a high grade [62].

Partly they may be associated with the rare medullary

carcinomas122 and mutations in the familial cancer sus-

ceptibility BRCA1 gene [63]. Tumors overexpressing

ERBB2 due to gene amplification may be organized into a

separate class (ERBB2 subtype), more closely related to

the ‘basal/myoepithelial-like’ than to the ‘luminal epithe-

lial-like’ lesions. Moreover, the ‘luminal epithelial-like’,

‘basal/myoepithelial-like’ and ‘ERBB2’ classes are also

found in breast cancer cell lines [64], most of which are

derived from DTC (obtained in most cases from pleural

effusions).

Additionally, it has been perceived that among the

markers stated above, many are relatively associated to a

specific class. EGFR, SERPINB5 and GABRP are fre-

quently expressed by ‘basal/myoepithelial-like’ tumors,

while high ERBB2 levels are markedly expressed in

lesions of the ‘ERBB2’ class. ESR1, TFF1 and TFF3, the

expression of which is exactly linked, are found at high

levels only in ‘luminal epithelial-like’ tumors. Other

markers associated to this well-differentiated, low-grade

class are the secreted proteins PIP, SCGB2A1, SCGB2A2

and SCGB2D1, as well as the mucins MUC1 and SBEM,

the transcription factor SPDEF and ANKRD30A charac-

terize stable portrait of breast cancer during progression,

despite increasing heterogeneity. The breast tumor classes

differentiated by gene/protein signatures put forward that

any tumor biology conveys to a large extent the biology of

the cell of origin at the time of initiation. Tumors initiating

from more undifferentiated epithelial cells have a hasty

growth pattern and more aggressive behavior and outcome

compared with those beginning in a more differentiated

epithelial cells. Therefore, the description of tumors seems

to be stable during progression.

It is now recognized on the behalf of past studies and a

number of data regarding breast cancer biology, pathology

and genetics that exists during progression to metastasis,

although undergoing increasing genetic alterations, most

breast tumors largely maintain their portrait (luminal

epithelial-like, basal/myoepithelial like, ERBB2). In fact,

the grade (I–III) and the expression of markers, such as

ESR1, PGR, TFF1, EGFR, ERBB2, P53 and various pro-

liferation markers, etc. are generally concordant between

primaries and metastases [65, 66].

Special Aspects of Single Cell Omics

Liquid Biopsy: CTCs (Circulating Tumor Cells)

and DTCs (Disseminating Tumor Cells) in Breast

Cancer

Existence of circulating tumor cells (CTCs) in peripheral

blood and disseminated tumor cells (DTCs) in bone mar-

row of tumor patients has become an vibrant area of

translational cancer research, with numerous groups

developing new diagnostic assays and more than 250

clinical trials incorporating CTC counts as a biomarker in

patients with various types of solid tumors. CTC investi-

gation could play a role as a ‘‘liquid biopsy,’’ which will

permit physicians to follow cancer changes over time and

mold precise treatment, and it signifies a potential new

diagnostic field for advanced-stage patients; the sensitive

CTC detection platforms allow monitoring of disease and

treatment efficacy, thus it is helping in tailoring precision

medicine.

CTCs are tumor cells released into the peripheral blood

from a primary lesion or metastatic lesion by natural

behavior, diagnosis operation or treatment operation. The

existence of CTCs means that tumor cells are not limited to

the primary lesion, but can develop into distant metastases.

Further, CTCs have been shown to appear in the blood-

stream astonishingly early, before metastatic lesions could

be observed by histologic analysis [67]. Numerous studies

have established that CTCs are significant in forecasting

disease progression and survival [68], watching the com-

plex tumor genomes, diagnosing tumor recurrence and

metastasis and guiding therapeutic management [69]. Thus,

CTCs lend themselves well as non-invasive biomarkers
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that can be painlessly accepted by patients. Circulating

tumor DNA (ctDNA) encodes tumor specific sequences

that can be used as another form of liquid biopsy, which

can be noninvasively repeated during treatment and follow-

up. Studies have presented that ctDNA can reveal genotype

information of the tumor, indicating that ctDNA analysis

could effectively substitute tumor biopsy. Moreover,

advances in sequencing technology has meant that ctDNA

can now timely monitor tumor progression and therapeutic

responses of various solid cancers.

The opinion of a non-invasive liquid biopsy that could

expose metastatic mechanisms makes CTCs is an active

area of cancer research. Further, researchers have scanned

the various blood markers and identified transcripts that

were organ-specific by deep comparative transcriptome

analysis across forty or more different organs in humans

and mice.

A list of bio-markers that have been utilized in assays to

discover disseminated tumour cells (DTCs) by antibody or

nucleic acid-based techniques also summarized in Table 2

which are commonly used and further, Table 3 showed

Clinical significance of CTCs detection in breast cancer.

Besides CTCs and blood proteins as tumor biomarkers,

circulating DNAs, mRNAs and microRNAs from tumor

cells are being explored as substitute tumor biomarkers and

for monitoring cancer recurrence. Further, studied evidence

suggest that CTCs may exhibit phenotypes distinct from

their corresponding primary tumors. Lately, laboratory

results in collaboration with the BioMEMS for CTC

research laboratory at the University of Michigan has

jointly described isolated CTCs by using a highly-sensitive

microfluidic capture device and noted HER2 positive CTCs

from the blood of metastatic breast cancer patients had

HER2 negative primary tumors [70]. This provides a

potential description for the surprising finding that HER2

blockade in the adjuvant setting benefits women whose

breast tumors do not display HER2 gene amplification.

Additionally, study on other cancers, like in prostate cancer

patients, researchers examined the functional diversity of

viable, single CTCs for clonal comparison and mapping of

heterogeneity. They informed that only a rare subset of

isolated CTCs were resistant to anoikis within blood cir-

culation, showing metastatic characteristics such as inva-

siveness and producing proteases in patients with late-

stage, metastatic castration-resistant prostate cancer

(mCRPC).

The various findings suggests that CTCs alone may be

insufficient to fully clarify the metastatic potential of tumor

cells in the circulation of cancer patients [71]. Additionally,

disseminated tumor cells (DTCs) in the bone marrow of

breast cancer patients have also been noted in tumor

metastasis. In addition to CTCs, DTCs from breast cancer

patients have also been explored as an independent prog-

nostic factor using whole-genome amplification (WGA)

followed by NGS and described a clear difference in the

copy number between the DTCs and matched primary

tumors, indicating that the DTC underwent further evolu-

tion at the copy number level. Therefore, single cell anal-

yses of CTCs and DTCs are an important tool for

explaining tumor heterogeneity as well as complexity of

the cancer genome.

Breast Cancer Stem Cells (BCSCs)

Teamwork and collaborations between translational labs

and biotechnology companies including Fluidigm Corpo-

ration (San Francisco, CA) and Denovo Sciences (Ply-

mouth, MI) are in progress for developing and/or

optimizing microfluidic devices to explore the hetero-

geneity of breast CSCs and circulating tumor cells (CTCs)

at the single cell level. In an early attempt to explore

heterogeneity of CSCs and CTCs, researchers group has

Table 2 A list of markers used to detect disseminated tumour cells by antibody or nucleic acid-based techniques [66]

Marker (gene)

name

Gene

locus

Standard name Other frequently-used names

ANKRD30A 10p11.21 Ankyrin repeat domain 30A Breast cancer antigen NY-BR-1; B726P

B305D 21q11.1-

q11.2

Antigen B305D B305D, isoform A (B305D-A)

B305D, isoform C (B305D-C)

CD44 11p13-

pter

Antigen CD44 Hermes antigen; PGP1

CDH1 16q22.1 Cadherin-1 (epithelial) E-cadherin; Uvomorulin

KRT19 17q21-q22 Keratin 19 Cytokeratin 19 (CK19)

KRT7 12q12-q14 Keratin 7 Cytokeratin 7 (CK7); Sarcolectin (SCL)

GABRP 5q32-q33 c-Aminobutyric acid type A

receptor pi subunit

GABA receptor A, pi polypeptide (GABARAP); GABAA receptor, pi

polypeptide (GABA A(pi))
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screened the gene expression signature of the CD44?/

CD24-, ALDH? sorted CSC populations and bulk cells

from breast cancer cell lines and patient derived xenografts

at the single cell level using Fluidigm’s C1 and BioMark

HD platforms. These three sorted fractions show distinct

patterns of gene expression from one other, but also

noticeably show heterogeneity within each sorted popula-

tion of CSCs. This observed heterogeneity would otherwise

be masked using conventional gene expression methods

based on average population studies [72]. Our outcomes

and other researchers in the field believe that single cell

analysis will soon become a transformational technology in

cancer biology as well as in clinical cancer practice.

Upcoming studies combining thousands of single cancer

cells using these advanced technologies and others for

assay preparations along with the novel computational

methods will enable researchers to better rebuilt intracel-

lular networks, re-evaluate cell types and states and

transform our knowledge about the process of decision

making in individual cells at the genomic level.

Table 3 Clinical significance of CTCs screening in breast cancer [66]

Method Marker CTC detection rate Clinical significance

Early breast cancer

Nested RT-

PCR

CK-19 44 of 148 (30%) DFI: p = 0.001, OS: p = 0.014

RT-qPCR CK-19 Node negative 36 of 167 (21.6%) DFI: p\ 0.001, OS: p = 0.008

RT-qPCR CK-19, mammaglobin HER-12 CK-19: 72 of 145 (41%) DFI: CK-19 (p\ 0.001), OS: CK-19

(p = 0.044)

Mammaglobin: 14 of 175 (8%) DFI: mammaglobin (p = 0.011), OS:

mammaglobin (p = 0.034)

HER-2: 50 of 175 (29%) DFI: HER-2 (p\ 0.001)

RT-qPCR CK-19, ER 181 of 444 (41%) DFI: CK-19 and ER- (p = 0.001)

OS: CK-19 and ER- (p = 0.001)

RT-qPCR CK-19 After adjuvant therapy: 179 of 437 (41%) DFI: p\ 0.001, OS: p = 0.003

RT-qPCR CK-19 Before adjuvant therapy: 91 of 165 (55.2%) Before adjuvant therapy: DFI: p = 0.081,

OS: p = 0.024

After adjuvant therapy: 79 of 162 (48.8%) After adjuvant therapy: DFI: p = 0.057,

OS: p = 0.128

RT-qPCR

CellSearch

CK-19

Pan-CK

99 of 133 (31.7%)

Before and/or after neoadjuvant

chemotherapy: 32 of 118 (27%)

DFI: p = 0.001 and OS: p = 0.001)

DFI: ps0.013

CellSearch Pan-CK Before chemotherapy therapy: 95 of 115

(82.6%)

Before chemotherapy: DFI: p = 0.007, OS:

p = 0.0006

After chemotherapy: 85 of 115 (73.9%) After chemotherapy: DFI: p = 0.04, OS:

p = 0.02

CellSearch Pan-CK Before chemotherapy: 140 of 1489 (9.4%) Before chemotherapy: DFI: p\ 0.0001,

OS: p = 0.023

After chemotherapy: 129 of 1489 (8.7%) After chemotherapy: DFI: p = 0.054, OS:

p = 0.154

ICC CK 47 of 71 (66%) OS: ps0.071,DFI: p = 0.052

RT-PCR CK-19, HER-2, P1B, PS2, epithelial

glycoprotein 2

43 of 72 (60%) DFI: ps0.031, OS: p = 0.03

ICC CK and HER-2 17 of 35 (49%) DFI: p\ 0.005, OS: p\ 0.05

Nested RT-

PCR

Mammaglobin 14 of 101 (13.9%) DFI: p = 0.020, OS: p = 0.009

Metastatic breast cancer

Cell Search Pan-CK 87 of 177 (49%) DFI: p\ 0.001, OS: p\ 0.001

Cell Search Pan-CK 43 of 83 (52%) DFI: p = 0.0014, OS: p = 0.0048

CellSearch Pan-CK 92 of 195 (47.2%) DFI: p = 0.0122, OS: p = 0.0007

CellSearch Pan-CK 35 of 138 (25%) OS: p\ 0.0001

DFI disease-free interval, OS overall survival
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Breast cancer is perfect model for studying tumor

heterogeneity, because it is hierarchically organized, sim-

ilar to the normal mammary epithelium and the disease

process is identified to be highly heterogeneous. Our

research and along with others have shown that hierarchi-

cally organized breast cancer is driven by a small fraction

of tumor cells that display stem cell properties [13, 73].

This small population of breast CSCs also termed breast

cancer initiating cells was first identified among solid

tumors by characteristics of their expression of the cell

surface markers EpCAM?/CD24-/CD44? and their

capability to recapitulate heterogeneous populations of

tumor cells [74]. Additionally, it has been shown that both

normal and malignant breast CSCs express high levels of

the enzyme aldehyde dehydrogenase (ALDH) that serves

as a predictor of poor clinical outcome in breast cancers

[75]. These two types of breast CSCs are anatomically

distinct, one with EMT (epithelial-to-mesenchymal transi-

tion) and one with MET (mesenchymal-to-epithelial tran-

sition) gene expression profiles. Moreover, they vibrantly

show transition between the mesenchymal and epithelial-

like states reflective of their normal counterparts in the

mammary epithelial hierarchy [76]. Remarkably, this

plasticity of breast CSCs from a quiescent mesenchymal

state to a proliferative epithelial-like state plays a critical

role for these cells to create sizable metastatic nodules in

distant organs. Indeed, there is increasing experimental

evidence to suggest that such transition, termed coloniza-

tion, is vital for development of successful

macrometastasis.

The usefulness of single-cell omics has conveyed great

vision into our understandings of dissimilar biological

processes with extensive inferences for both basic and

clinical research that have formerly impossible to decide

from bulk population cells. Although, certain hurdles like

procedure of single cell isolation, whole genome amplifi-

cation, library construction, sequencing, bioinformatics

analysis, and data integration are hampering the path that

needs to be resolve. In conclusion, even with difficulties,

we are certain that single cell omics will open new vistas in

field of diagnosis and therapeutics, thus it will help in

better management of breast cancer patients.
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