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ABSTRACT: The full configuration interaction (full-CI)
method is capable of providing the numerically best wave
functions and energies of atoms and molecules within basis
sets being used, although it is intractable for classical
computers. Quantum computers can perform full-CI calcu-
lations in polynomial time against the system size by adopting
a quantum phase estimation algorithm (QPEA). In the QPEA,
the preparation of initial guess wave functions having
sufficiently large overlap with the exact wave function is
recommended. The Hartree−Fock (HF) wave function is a
good initial guess only for closed shell singlet molecules and
high-spin molecules carrying no spin-β unpaired electrons,
around their equilibrium geometry, and thus, the construction
of multiconfigurational wave functions without performing post-HF calculations on classical computers is highly desired for
applying the method to a wide variety of chemistries and physics. In this work, we propose a method to construct
multiconfigurational initial guess wave functions suitable for QPEA-based full-CI calculations on quantum computers, by
utilizing diradical characters computed from spin-projected UHF wave functions. The proposed approach drastically improves
the wave function overlap, particularly in molecules with intermediate diradical characters.

1. INTRODUCTION

Quantum computing and quantum information processing
(QC/QIP) is one of the most innovative research fields not
only in computer and information sciences, but also in
interdisciplinary areas among physics, mathematics, chemistry,
materials science, and so on. The appearance of a quantum
computer processor consisting of 72 quantum bits (qubits)
from Google LLC reminds us that it is close to “quantum
supremacy”,1 and intercontinental quantum communications
between China and Austria have been demonstrated very
recently.2 Among the diverse subjects in QC/QIP, quantum
simulation of electronic structure problems of atoms and
molecules is one of the most intensively studied realms.3−53

Studies on quantum simulations of quantum chemical objects
can date back to the first proposal of quantum computers by
Feynman in the early 1980s.54 Feynman suggested that the
computer built of quantum mechanical elements obeying
quantum mechanical laws has an ability to simulate other
quantum systems efficiently. Quantum computers use qubits as
the minimum unit of information.55 Qubits provide any
arbitrary superposition of their two basis states; c0|0⟩ + c1|1⟩,

where |0⟩ and |1⟩ represent the bases of the quantum states in
the Dirac’s bra-ket notation, while classical bits can have only
one of two values: either 0 or 1. From the viewpoint of
practical applications of quantum computing, those to
quantum chemistry are of significant importance, and the
implementation of quantum algorithms to empower quantum
chemistry is the focus of the applications in QC/QIP.
An approach to calculate the full configuration interaction

(full-CI) energy of atoms and molecules, which is the
variationally best possible energy within a given basis set,
was proposed by Aspuru-Guzik and co-workers in 2005,3 and
the first experimental demonstrations of the full-CI/STO-3G
calculations of the H2 molecule were reported by using
photonic and NMR quantum computers in 2010.8,9 Computa-
tional time of the full-CI on classical computers scales
exponentially against the system size, and it is an intractable
problem to deal with even small molecules; however, time
scaling becomes polynomial on quantum computers. The
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approach is based on the quantum phase estimation algorithm
(QPEA) proposed by Abrams and Lloyd,56 and it relies on
projective measurements with an electronic Hamiltonian H:
Measurement projects an initially prepared quantum state onto
the eigenstate of a given Hamiltonian, and the probability to
obtain a particular outcome is proportional to the square of
overlap between the prepared wave function and correspond-
ing eigenfunction. In this context, importance of the
preparation of good initial guess wave functions having
sufficiently large overlap with the particular eigenstate cannot
be overemphasized.
The most important electronic state in chemistry is an

electronic ground state. A Hartree−Fock (HF) wave function
|ΨHF⟩, which is approximated to the single Slater determinant,
is usually a good initial guess for typical closed shell singlet
molecules and high-spin open shell systems carrying no
unpaired electrons of spin-β, around their equilibrium
geometry. However, it is well-known that the restricted
Hartree−Fock (RHF) method cannot describe potential
energy curve associated with covalent bond cleavage correctly.
Single bond dissociation creates a spin-singlet diradical, in
which the wave function is represented by a linear combination
of two Slater determinants.57 The number of Slater
determinants required to represent a low-spin multiradical
wave function increases exponentially against the number of
unpaired electrons and those of spin-β,58 and the overlap
between the Slater determinant and the exact wave function
decays exponentially. This means that we have to carry out
QPEA experiments an exponential number of times to capture
a correct ground state by using a single Slater determinant as
the initial guess, which spoils advantages of quantum speedup.
The overlap between the initial guess and exact wave functions
can be improved systematically by adopting more sophisticated
wave functions like complete active space self-consistent field
(CASSCF)43 and adaptive sampling CI (ASCI),45 or by using
adiabatic state preparation (ASP) techniques3,9,44 starting from
HF wave functions. ASP can generate a full-CI wave function
starting from a HF wave function based on the adiabatic
theorem, by slowly changing the system Hamiltonian from HF
to full-CI. However, these approaches require time-consuming
calculations on classical and quantum computers, respectively,
and therefore, it is preferable to develop theoretical approaches
to improve wave functions without performing post-HF
calculations.
Recently, we investigated the “overlap catastrophe” in open

shell systems based on the spin symmetry.49,50 Origin of the
overlap decay in open shell systems is the symmetry
requirement from S2 operators. In previous papers, we
reported that the wave function consisting of one spin
symmetry-adapted configuration state function (CSF) has
large overlap with the full-CI wave function of the ground state
in open shell molecules, and proposed quantum circuits to
prepare CSF on quantum registers in polynomial time.49,50

CSF is a linear combination of Slater determinants to
become an eigenfunction of the S2 operator (hereafter denoted
as a spin eigenfunction).58 By making use of spin
eigenfunctions one issue on the “overlap catastrophe” inherent
in open shell systems can be solved. However, the previous
study focused on single CSF’s, and it is just a starting point. In
fact, as discussed below in detail, the overlap with the exact
wave function of the ground state and one CSF as well as RHF
becomes small at intermediate bond regions. It is highly
desirable to develop a method to construct multiconfigura-

tional wave functions without performing time-consuming
computations on both classical and quantum computers. In
this work, we propose a method to construct multiconfigura-
tional wave functions having large overlap with the exact
ground state on quantum registers, by making use of diradical
characters59−62 calculated from spin-unrestricted HF (UHF)
wave functions with spin projections. Importantly, a diradical
character is a measure of open shell nature, and it can be
calculated from the occupation number of natural orbitals.
Thus, we utilize diradical characters to estimate weights of
open shell electronic configurations. Applications of the
proposed method to covalent bond dissociations in H2, ethane
(C2H6), ethylene (C2H4), and acetylene (C2H2), and the
electronic ground state of phenylene-1,4-dinitrene as an
important chemical entity, will be given.

2. THEORY
2.1. Diradical Characters. Let us consider a potential

energy curve of the H2 molecule as an example of the covalent
bond dissociation of closed shell singlet molecules. Interactions
between 1s orbitals of two hydrogen atoms generate bonding
(1σg) and antibonding (1σu) orbitals. At the geometry close to
its equilibrium, an electronic configuration for which two
electrons occupy the 1σg orbital dominantly contributes to the
full-CI wave function of the ground state, and therefore the
RHF wave function has a large overlap with the full-CI wave
function. As the H···H distance increases, the orbital energy
difference between 1σg and 1σu decreases, and the weight of
the two-electron excited configuration (1σg)

0(1σu)
2 increases.

At the dissociation limit, the system is regarded as two
hydrogen atoms, and the full-CI wave function is approximated
by the following wave function in the canonical orbital basis:

1
2

20 02|Φ⟩ = {| − | }
(1)

Two numbers in the ket represent the occupation numbers of
1σg and 1σu orbitals, respectively. For example, |20⟩ represents
the determinant that the 1σg orbital is doubly occupied while
the 1σu orbital is unoccupied, namely, RHF configuration. In
the localized orbital basis, the wave function is expressed as in
eq 2, which corresponds to one CSF.

1
2

αβ βα|Φ⟩ = {| − | }
(2)

Here, eq 2 indicates that the molecular orbital is singly
occupied by a spin-α and β electron, respectively. The Slater
determinant appearing in eq 2 is not a spin eigenfunction, but a
linear combination of spin-triplet and singlet wave functions of
MS = 0. Because the determinant |αβ⟩ breaks both spatial and
spin symmetries, the single determinant wave function carrying
spin-β unpaired electrons in the localized orbital basis is
termed a broken-symmetry (BS) wave function.61

At the intermediate H···H distance the wave function is
approximated as in eq 3.

C C20 021 2|Φ⟩ = | − | (3)

Here, C1 > C2 and C1
2 + C2

2 = 1. This wave function is
expressed by the linear combinations of RHF (|20⟩) and open
shell singlet diradical (given in eq 1) configurations. The
coefficients C1 and C2 change continuously along the potential
energy curve, depending on the open shell characters. In
quantum chemistry, the open shell characters can be measured
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by diradical characters denoted by yi (0 ≤ yi ≤ 1, i = 0, 1, 2, ...).
The diradical characters yi can be calculated from the
occupation number of the lowest unoccupied natural orbital
(LUNO) + i, which is equal to twice the weight of the doubly
excited configuration from HOMO − i to LUMO + i in the
perfect pairing double excitation CI scheme. In closed shell
singlet states, a diradical character y0 = 0, and for pure open
shell states like the dissociation limit of H2, y0 becomes unity.
At intermediate bond regions y0 is between 0 and 1. Diradical
characters have attracted attention in the theoretical design for
organic nonlinear optical (NLO) and singlet fission molecular
systems.63−67 The diradical characters can be calculated from
UHF wave functions, but UHF wave functions suffer from
unwilling contributions from higher spin multiplicities, which
are known as spin contaminations. Therefore, the spin
projection procedure is important. The diradical characters at
the spin-projected UHF (PUHF) level (yi

PUHF) can be
calculated using eq 4.60,61

y
n

n
1

2(1 )
1 (1 )i

i

i

PUHF LUNO

LUNO
2= −

−
+ −

+

+ (4)

Here, nLUNO+i represents the occupation number of the LUNO
+ i natural orbital.
2.2. Quantum Chemical Calculations on Quantum

Computers. The approach to perform full-CI calculations on
quantum computers developed by Aspuru-Guzik and co-
workers3 is based on the quantum phase estimation algorithm
(QPEA) proposed by Abrams and Lloyd:56 Time evolution of
a wave function |Ψ⟩ is conditionally simulated with a unitary
operator U = exp(−iHt) (controlled-U; ctrl-U) as given in eq
5, and the energy eigenvalue E is read out as a phase difference
ϕ between |0⟩ and |1⟩ using an inverse quantum Fourier
transformation.

iHt

iEt

i

0
1
2

0 1

1
2

0 1 exp( )

1
2

0 exp( ) 1

1
2

0 exp( 2 ) 1

H

U

1

ctrl

d

πϕ

| ⟩ ⊗ |Ψ⟩ ⎯ →⎯⎯⎯⎯ {| ⟩ + | ⟩} ⊗ |Ψ⟩

⎯ →⎯⎯⎯⎯ {| ⟩ ⊗ |Ψ⟩ + | ⟩ ⊗ − |Ψ⟩}

= {| ⟩ + − | ⟩}|Ψ⟩

= {| ⟩ + − | ⟩}|Ψ⟩

⊗

‐

(5)

where Hd denotes a Hadamard transformation, and it generates
the superposition state {|0⟩ + |1⟩}/√2 from |0⟩. Importantly,
the QPEA utilizes projective measurements with an electronic
Hamiltonian H to readout the eigenenergy, and therefore, the
preparation of good initial guess wave functions having
sufficiently large overlap with the particular eigenstate is
essential.
The QPEA-based full-CI initially scales O(Norb

11) in the
upper bound (O(Norb

9) in the empirical base),26 where Norb
denotes the number of spin orbitals, but currently the gate
scaling is reduced to be Õ(η2Norb

3t) and Õ(Norb
5t) for

Gaussian orbitals with first- and second-quantized representa-
tions, respectively,29,32 by adopting qubitization68 or truncated
Taylor series techniques,69 on-the-fly computations of
molecular integrals, and so on. Here, O indicates an asymptotic
upper bound and Õ represents an asymptotic upper bound

suppressing polylogarithmic factors, and η is a number of
electrons.
To perform quantum simulations of atoms and molecules on

quantum computers, information on electronic wave functions
should be mapped onto quantum registers. Several approaches
for wave function mapping were proposed,3,36,37,40 and the
most fundamental one is a direct mapping (DM).3 In the DM,
each qubit represents the occupation number of a particular
spin orbital (|1⟩ if the spin orbital is occupied, otherwise |0⟩),
and requires Norb of qubits (Norb is the number of spin
orbitals). In this work, we construct a quantum circuit in the
DM representation.
It should be noted that the classical−quantum hybrid system

known as a variational quantum eigensolver (VQE) has
attracted attention as near-future applications of quantum
computers for quantum chemical problems.13−22 In VQE, the
wave function is generated by applying a unitary operator U(θ)
to an initial guess wave function, and the energy expectation
value of the prepared wave function is calculated using
quantum computers; then, the parameters θ in the unitary
operator are variationally optimized on classical computers to
minimize the energy expectation value. VQE-based molecular
energy calculations were experimentally implemented using
photonic systems,13 superconducting circuits,15,20,21 and
trapped ion systems,19,22 exemplifying the error-resilient nature
of the calculations.

2.3. Preparation of Multiconfigurational Wave Func-
tions on Quantum Registers. As discussed above, the wave
function of the molecules having intermediate diradical
characters have multiconfigurational characters, and in such
cases neither RHF nor CSF has sufficiently large overlap with
the full-CI root. The construction of the multiconfigurational
wave function by making an appropriate linear combination of
closed shell and open shell wave functions is a straightforward
solution to improve the overlap. For the construction of
multiconfigurational wave functions, a method to estimate
expansion coefficients of individual Slater determinants (or
CSFs) is required. In this study, we utilized diradical characters
for this purpose. From the definitions of diradical characters
given in Section 2.1, we can calculate yi from approximated
wave functions like UHF and use them to estimate the weights
of closed shell and open shell electronic configurations in the
CI expansion.
Our strategy is as follows: (I) perform a BS-UHF

calculation, (II) diagonalize one-particle density matrix to
generate natural orbitals, (III) determine spin-projected
diradical characters yi using eq 4, and (IV) construct a
multiconfigurational wave function using an assumption given
in eq 6:

y y1 (CSS) (OSS)φ φ|Ψ⟩ = − | ⟩ + | ⟩ (6)

Here, |φ(CSS)⟩ and |φ(OSS)⟩ represent closed shell singlet
and open shell singlet wave functions, respectively. By using
natural orbitals as the basis of the wave function expansion and
applying eq 1, the following equation can be obtained.

y y1 /2 20 /2 02|Ψ⟩ = − | ⟩ − | ⟩ (7)

Equation 7 is equivalent to the definition of diradical
characters in the perfect pairing double excitation CI scheme.
For tetraradical systems, the wave function is approximated as
follows:
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y y

y y

y y

y y

(1 )(1 ) (CSS)

(1 ) (Diradical 0)

(1 ) (Diradical 1)

(Tetraradical)

0 1

0 1

0 1

0 1

φ

φ

φ

φ

|Ψ⟩ = − − | ⟩

+ − | ⟩

+ − | ⟩

+ | ⟩ (8)

Here, |φ (Diradical 0)⟩ stands for the configuration having an
open shell singlet character for HONO−LUNO pair whereas
(HONO − 1)−(LUNO + 1) has a closed shell singlet
character. In a similar way to eq 8, multiconfigurational wave
functions for hexa- and higher-radical characters can be readily
constructed.
A quantum circuit to prepare the multiconfigurational wave

function is illustrated in Figure 1. In Figure 1, each horizontal
line corresponds to a qubit, and quantum gates depicted by
squares, circles, and vertical lines are applied in left-to-right
order. The circuit contains ancilla qubits, which keep
information on diradical characters yi, in addition to Norb of
qubits used for DM. The number of the ancilla qubits equals
that of the diradical characters considered in the wave function
preparation.
The quantum circuit starts RHF configuration preparation

(specified i in Figure 1A). This step consists of NOT
operations (denoted by X) to the qubits representing occupied
orbitals to change the qubit states from |0⟩ to |1⟩. The second
step (ii) is rotations applied to the ancilla qubits with the
rotating angle θi depending on diradical characters yi:

R ( ) 0 cos
2

0 sin
2

1y i
i iθ

θ θ
| ⟩ = | ⟩ − | ⟩

(9)

y
2

arccos( 1 )i
i

θ
= −

(10)

The third and following steps, iii−v, and so on, are
sequential generations of di-, tetra-, hexa-, and higher-radical
configurations conditional to ancilla qubits. These steps
generate open shell electronic configurations if the correspond-
ing ancilla qubits are in state |1⟩ and adopt no operations if the
ancillas are the |0⟩ state. These conditional operations produce
linear combinations of open shell and closed shell electronic
configurations as given in eq 6. The diradical wave function
given in eq 1 can be generated using a circuit given in Figure
1B, by analogy with Bell state preparations. The diradical wave
function preparation in Figure 1B consists of two single-qubit
rotations and following three CNOT operations. The first
three quantum gates generate the linear combination of states
in which LUNO + i is doubly occupied and unoccupied. The
subsequent two CNOT gates conditionally change the
occupation number of the HONO − i orbital from doubly
occupied to unoccupied, if the LUNO + i is doubly occupied.
The wave function after diradical configuration generations
specified iii in Figure 1A is given in eq 11.

Figure 1. A quantum circuit for the construction of multiconfigurational wave functions on quantum registers. (A) The quantum circuit consists of
the following steps as indicated by roman numbers and background colors. (i) Generation of the RHF configuration, (ii) ancilla qubit rotation with
an angle θi, (iii) diradical configuration generations, (iv) tetraradical configuration generations, (v) hexaradical configuration generations, and so
on. Detailed quantum circuits for the di-, and tetraradical configuration generations are given in parts B and C, respectively. We draw the full circles
if the controlled operation is applied when the control qubit is |1⟩. Wave functions of more extended spin systems can be constructed systematically
expanding the circuit. (B) Quantum circuit for the preparation of diradical configurations specified 2 in part A. (C) Quantum circuit for the
preparation of tetraradical configurations specified 4 in part A.
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y y

y

y

1 (CSS) (OSS)

1 /2 2 0

/2 0 2

i
i i i i

i
i i i

i i i

HONO LUNO

HONO LUNO

∏

∏

φ φ|Ψ⟩ = { − | ⟩ + | ⟩}

= { − | ⟩

− | ⟩}

− +

− + (11)

Upon comparison of eqs 8 and 11, the wave function
component corresponding to tetraradical configuration at this
stage is given in eq 12.

1
2

2200 2020 0202 0022φ| ⟩ = {| ⟩ − | ⟩ − | ⟩ + | ⟩}
(12)

The genuine tetraradical wave function we want to construct is
given in eq 13.

(Tetraradical)
3

4
2200 2020 0202

0022
1
4

φ

ααββ αβαβ βαβα ββαα

| ⟩ = {| ⟩ − | ⟩ − | ⟩

+ | ⟩} + {| ⟩ − | ⟩ − | ⟩ + | ⟩}

(13)

To generate the configuration in eq 13 from that in eq 12,
we introduce another ancilla qubit and perform two Fredkin
(controlled-SWAP) gates with conditionally interchange
occupation of the spin-β electron between HONO − i and
LUNO + i as illustrated in Figure 1C. In Figure 1C black
circles and crosses represent control and target qubits,
respectively, and the SWAP operations between two target
qubits are performed if the control qubit is in the |1⟩ state.
These operations generate, for example, |ααββ⟩ from |2200⟩.
The constructions of the hexaradical configuration specified v
in Figure 1A and higher-radical configurations can be also
achieved by introducing ancillas and applying Fredkin gates.

3. RESULTS AND DISCUSSION
To exemplify the performance of the proposed approach, we
carried out quantum chemical calculations of small molecules
on classical computers and to evaluate the overlap between the
full-CI or CAS-CI wave function of the ground state and the
multiconfigurational wave function constructed by utilizing
diradical characters. The calculations were carried out using
the GAMESS-US program package.70

3.1. Potential Energy Curve of a H2 Molecule. First, we
focused on the simplest system; potential energy curve of a H2
molecule. The overlaps between the full-CI/cc-pVDZ wave
function and RHF wave function, a wave function consisting of
one CSF, and the two-configurational wave function prepared
using diradical characters calculated from the UHF wave
function were computed by changing the H···H distance from
0.74 (equilibrium geometry) to 3.0 Å. The results are
summarized in Figure 2. As expected, the RHF wave function
has large overlap with the full-CI root around the equilibrium
geometry, but the overlap decreases with increasing H···H
distance. CSF has an opposite trend: Large overlap is obtained
for the long H···H distance, but overlap becomes small as it
approaches the equilibrium geometry. By contrast, the two-
configurational wave function gives sufficiently large overlap
with the full-CI wave function at any H···H distances. Note
that BS-UHF converges to RHF root for the atom−atom
distance 1.2 Å and shorter. The calculated diradical character
y0 is plotted as an inset of Figure 2. When SCF converged to

unrestricted root, a nonzero y0 value is obtained, and the y0
value increases as the H···H distance becomes longer, and
approaches to unity for the bond dissociation limit. We also
checked overlaps of the two-configurational wave functions
prepared using diradical characters obtained from the DFT
framework with different HF exchange contributions using
BLYP, B3LYP, BHandHLYP, and LC-BLYP functionals71−73

(see Figure S1 in the Supporting Information). The pure
exchange−correlation functional (BLYP) tends to converge
the spin-restricted root for the longer H···H distance, and the
inclusion of HF exchange stabilizes the broken-symmetry state.
The overlaps between the full-CI and two-configurational wave
functions are similar among BS-UHF and DFT-based
calculations. In the following calculations, we utilized diradical
characters calculated from the BS-UHF wave functions.

3.2. C−C Bond Cleavage in Ethane, Ethylene, And
Acetylene. Next, we adopted the present method to multiple
bond cleavages in ethane (C2H6), ethylene (C2H4), and
acetylene (C2H2) with different C···C distances. The full-CI
calculations were performed using the STO-3G basis set. Note
that we could not perform the full-CI/STO-3G calculations of
ethane because of the limitation of our computational
resources, and therefore, we excluded 1s orbital of carbon
atoms from the CI expansion and adopted full-valence CAS-CI
for ethane. The square overlap between the initial guess and
reference wave functions is plotted in Figure 3, and the
calculated diradical characters are summarized in Figure S2 in
the Supporting Information. Note that in acetylene the two π
bonds are degenerate, and therefore y0 = y1. In this case, an
arbitrary mixing of LUNO and LUNO + 1 (and also HONO
and HONO − 1) does not change their eigenvalues
(occupation numbers). We discriminated the two π bonds
by utilizing spatial symmetry in the generation of natural
orbitals.
The square overlap between the reference and RHF wave

functions strongly depends on the bond order. This is because
O(2k) of Slater determinants are required to describe the
multiradical configuration of k-ple bond dissociations. In
acetylene, the square overlap is less than 0.1 at the dissociation
limit. The square overlap between the reference wave function
and one CSF is less dependent on the bond order, because
CSF consists of O(2k) of Slater determinants. However, the
overlap between CSF and the reference wave function

Figure 2. Square of overlap between the full-CI/cc-pVDZ wave
function of the ground state and initial guess wave functions in H2.
Inset: diradical character y0 obtained from the PUHF calculations.
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approaches zero around the equilibrium geometry. By contrast,
the multiconfigurational wave function has larger overlap with
reference compared with RHF and CSF, and the square
overlap is always larger than 0.882. The numerical calculations
of triple bond cleavage in acetylene illustrated that the
proposed approach can generate good initial guess wave
functions for the molecules containing as many as six unpaired
electrons. It should be emphasized that the proposed approach
does not need prior knowledge of electronic structures, and
open shell characters are automatically determined from the
occupation number of natural orbitals. This feature is very
important when the number of diradical pairs that should be
considered to obtain sufficiently large overlap with the full-CI
root is unknown.
3.3. Singlet Ground State of Phenylene-1,4-dinitrene.

Usefulness of multiconfigurational wave functions is not
limited on intermediate bond regions of potential energy
surfaces. Here, we focus on the electronic ground state of
phenylene-1,4-dinitrene as an important chemical entity.
Phenylene-1,4-dinitrene is a heteroatomic analog of non-
Kekule ́ molecules, and it has two major resonance structures:
quinonoidal diradical and phenyl dinitrene as illustrated in
Scheme 1. The electronic ground state of phenylene-1,4-

dinitrene is a spin-singlet diradical, in which two unpaired
electrons occupy in-plane 2p orbitals of nitrogen atoms.74−78

However, because of the existence of the dinitrene resonance
structure, the π system is expected to have non-negligible
diradical characters.
Natural orbitals and the corresponding occupation numbers

calculated from BS-UHF/cc-pVDZ level at the UB3LYP/6-
31G* optimized geometry are given in Figure 4. The BS-UHF
calculation revealed that the in-plane 2p orbitals of the
nitrogen atoms (HONO and LUNO) are in almost pure
diradical states with y0 = 0.9892. The HONO − 1 and LUNO
+ 1 pair has an intermediate diradical character with y1 =
0.1584. The other valence π orbitals also have small diradical

characters (y2 = 0.0109, y3 = 0.0071, and y4 = 0.0009). Note
that y5 is less than 0.0001, and therefore diradical characters of
valence σ/σ* bonded orbitals are negligibly small.
Needless to say, the full-CI calculation of phenylene-1,4-

dinitrene is impossible, and hence, we used the CAS-
CI(10e,10o)/cc-pVDZ wave function as a reference. As
illustrated in Figure 4, 10 natural orbitals illustrated in are
used as active orbitals. The number of Slater determinants of Sz
= 0 within the active space is 63 504, and the number of spin-
singlet CSFs is 19 404. Upon consideration of five diradical
characters (y0−y4) the approximated wave function consisting
of 264 determinants can be constructed. However, the
contributions from octaradical and decaradical configurations
are less than 1%, and therefore, we omitted these
configurations and generated the wave function containing
72 important Slater determinants. The square overlap between
the multiconfigurational wave function and CAS-CI wave
function is calculated to be 0.9286, and we conclude that
multiconfigurational wave functions can be safely used as initial
guess wave functions for QPEA. Dependence of the square
overlap against the number of diradical characters used for the
multiconfigurational wave function preparation is summarized
in Table S1 in the Supporting Information. If the RHF
configuration is used as the initial guess wave function, the
square overlap with the CAS-CI wave function is calculated to
be 0.3894. The square overlap increases to be 0.8754 if one
diradical character y0 is used, and the inclusion of higher-
radical characters systematically improves the overlap. Note
that spin projection is important if more than one diradical
character is used for the wave function preparation. The
enhancement of the overlap by using higher-diradical
characters such as y3 and y4 is not significant, and therefore,
they can be neglected in the case when a sufficient number of
qubit resources are not available.

Figure 3. Square of overlap between the reference and initial guess
wave functions in ethane, ethylene, and acetylene molecules.

Scheme 1. Two Major Resonance Structures of Phenylene-
1,4-dinitrene

Figure 4. BS-UHF/cc-pVDZ natural orbitals and the occupation
numbers of phenylene-1,4-dinitrene.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00788
ACS Cent. Sci. 2019, 5, 167−175

172

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00788/suppl_file/oc8b00788_si_001.pdf
http://dx.doi.org/10.1021/acscentsci.8b00788


4. CONCLUSIONS
In the quantum simulations for molecular energies it has been
assumed that the HF wave function is a “good” approximation
of the ground state wave function. However, validity of this
assumption is rather limited, and construction of multi-
configurational wave functions is crucial to describe a wide
variety of chemistries. The proposed approach generates
multiconfigurational wave functions utilizing diradical charac-
ters computed from the occupation number of BS-UHF
natural orbitals. Numerical calculations on the covalent bond
dissociation of H2, ethane, ethylene, and acetylene and
electronic ground state of phenylene-1,4-dinitrene revealed
that the multiconfigurational wave functions prepared using
diradical characters have large overlap with the reference (full-
CI or CAS-CI) wave functions. The worst case in the systems
under study is found in the triple bond dissociation of
acetylene, but the square overlap value is still 0.882. In the
proposed approach, the number of orbital pairs having non-
negligible diradical characters as well as diradical characters is
automatically determined from the BS-UHF calculations.
Preparation of the multiconfigurational wave functions on
quantum registers can be accomplished by introducing ancilla
qubits retaining information on diradical characters, and
perform Bell state preparations and Fredkin gates, conditional
on the ancilla qubits. The proposed approach enables us to
efficiently take into account static electron correlation effects
via diradical characters. In the case of prominent dynamical
electron correlations, the square overlap becomes smaller, and
additional computations such as ASP and ASCI may be
preferable to ensure sufficiently large overlap with the full-CI
root. We can reasonably assume that the multiconfigurational
wave functions prepared using diradical characters are good
initial guesses for further computations like ASP and ASCI.
Note that the prepared wave function is a spin eigenfunction,
and it contains 2k-ple excited configurations from the RHF
configuration, where k is the number of diradical characters
used for the preparation of wave function. The multiconfigura-
tional wave function is inherently suitable as the initial guess
wave function for not only the QPEA-based full-CI calculations
but also other computational models like VQE.
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