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Abstract

A major challenge to experimental studies and therapeutic uses of hematopoietic stem cells (HSC) 

is the limited options for analytical tools that can reliably resolve functional differences in 

heterogeneous HSC subpopulations at the single cell level. Currently available methods require the 

use of external labels and/or separate clonogenic and transplantation assays to identify bona fide 

stem cells, necessitating the harvest of bulk cell populations and long incubation times that 

obscure how individual HSCs dynamically respond to exogenous and endogenous stimuli. In this 

study, we employ Raman spectroscopy to noninvasively resolve the dynamics of individual 

differentiating hematopoietic progenitor cells during the course of neutrophilic differentiation. We 

collected Raman peaks of individual cells daily over the course of 14-day neutrophilic 

differentiation. Principal component analysis (PCA) of the Raman peaks revealed spectral 

differences between individual cells during differentiation that were strongly correlated with 

changes in the nucleus shape and surface antigen expression, the primary traditional means of 
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monitoring neutrophilic differentiation. Additionally, our results were consistently reproducible in 

independent rounds of neutrophilic differentiation, as demonstrated by our partial least-squares 

discriminant analysis (PLS-DA) of the Raman spectral information that predicted the degree of 

neutrophilic differentiation with high sensitivity and specificity. Our findings highlight the utility 

and reliability of Raman spectroscopy as a robust molecular imaging tool to monitor the kinetics 

of HSC differentiation patterns.

Graphical Abstract

INTRODUCTION

Hematopoietic stem cells (HSC) are adult stem cells that reside primarily in the bone 

marrow. They are responsible for hematopoiesis, a process that replenishes trillions of blood 

and immune cells daily.1–5 HSCs have high therapeutic potential, and have been utilized 

clinically in bone marrow transplantations to reconstitute the compromised marrow of 

patients with fatal bone marrow-derived diseases (e.g., leukemia, lymphoma, and myeloma).
3,4 Increasingly, bioengineering applications of HSCs and their progeny are being 

investigated to take advantage of the therapeutic benefits of HSCs.3,4,6–12 While traditional 

biomedical research has identified a number of endo- and exogenous biochemical and 

extracellular matrix (ECM) factors as key players of HSC maintenance and regulation in 

several proposed HSC niches,1–5,13–16 HSC fate decision-making events that lead to HSC 

quiescence, self-renewal, proliferation, differentiation, mobilization, or homing are complex 

processes that are tightly regulated, and current bioanalytical tools such as fluorescent 

labeling, clonogenic, and transplantations assays fail to clearly resolve functional changes 

that occur to individual hematopoietic stem and progenitor cells (HSPC) at each decision-

making event.3,4,17–21 Significant levels of heterogeneity reported to be present in HSPC 

populations further complicate data analysis and accurate data interpretations.22,23 The 

ability to dynamically monitor individual cells within a population in real time and in situ 

would be transformative toward resolving this cellular heterogeneity and could be used to 

improve the design of ex vivo HSC expansion strategies.

Molecular information-based screening tools provide an alternative to the conventional 

methods of HSC analysis by offering marker-free, in situ analysis of single cells.3,4,10,24–27 

Molecular tools provide biomolecular fingerprints of individual cells with high sensitivity 

and specificity, and allow monitoring of the individual cells over long periods of time.27 We 

previously showed that time-of-flight secondary ion mass spectrometry (TOF-SIMS) and 

Raman spectroscopy could successfully identify primary hematopoietic cells along the 

lymphoid lineage (HSCs, common lymphoid progenitors (CLPs), B cells; TOF-SIMS28) and 

between closely related primitive HSCs (long-term HSC vs short-term HSC vs mature 
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hematopoietic cells; Raman spectroscopy).29 Multivariate statistical analyses of the 

molecular information gathered from individual cells could be employed to reveal significant 

biomolecular differences between cell types that allowed successful discrimination between 

cells.29 Raman spectroscopy is particularly attractive with regards to the potential for time-

lapse analysis of HSPC activity as it allows noninvasive analysis of live cells in situ, in real 

time.24,27,30 Raman spectroscopy takes advantage of the inelastic Raman scattering of intra-

cellular elements (e.g., nucleic acids, proteins, lipids, and other biomolecules).24 Therefore, 

chemical compositional information on individual, live cells can be sampled repeatedly in a 

label-free manner, while analyzed cells can be preserved for subsequent analyses or 

extended culture.30 Raman spectroscopy has been increasingly used to analyze stem cells 

(e.g., ESCs, MSCs, NSCs),27,31,32 cell lines and primary cells,24 tissues, and tissue 

engineering constructs27,33 for biomedical applications. Raman spectroscopy has also 

proved to be useful for the discrimination of cells of hematopoietic lineage. In addition to 

our own work with fixed HSPCs,29 recent efforts have begun to compare mature and 

pathological cells of lymphoid and myeloid lineages (e.g., T cells, B cells, NK cells, 

dendritic cells; leukemia and multiple myeloma samples).10,34–38 While the majority of 

studies were performed on fixed samples, others have also observed no detrimental effects of 

Raman spectral acquisition on morphology, proliferation, or pluripotency of living cells,39 

suggesting that Raman spectroscopy is a noninvasive analytical tool that could discern 

heterogeneous cell mixtures at single cell resolution.

In this study, we employ Raman spectroscopy to resolve the kinetics of neutrophilic 

differentiation of the 32D hematopoietic progenitor cell line. We used this cell line as its 

kinetics of differentiation in response to exogenous biomolecules are well-defined. Further, 

there exist robust strategies to quantify differentiation via nuclear morphology and surface 

antigen expression.40 We collected in situ Raman peaks of individual cells daily during the 

course of neutrophilic differentiation induced by the removal of interleukin-3 (IL-3) and the 

addition of granulocyte colony-stimulating factor (G-CSF). Principal component analysis 

(PCA) of the Raman peaks was used to determine spectral differences between cells at 

different stages of differentiation, and to examine correlations with changes in the nuclear 

shape and surface antigen expression. We performed repeated rounds of differentiation to 

evaluate the reproducibility of Raman-based classification. We aim to demonstrate a Raman 

approach to monitor the kinetics of neutrophilic differentiation with high sensitivity and 

specificity.

RESULTS AND DISCUSSION

Traditional Methods Confirm Neutrophilic Differentiation of 32D Hematopoietic Progenitor 
Cells.

Spontaneous differentiation of the 32D Clone 3 hematopoietic progenitor cell line (ATCC 

CRL-11346) into granulocytic neutrophils, or simply neutrophils, was induced by removing 

IL-3 and introducing G-CSF (25 ng/mL) to the culture media.41,42 Lineage specification was 

confirmed via analysis at days 0, 1, 4, 7, and 14 post-induction via the presence of 

segmented nuclei and Gr1+ expression. 32D cells exhibited characteristic changes in their 

nucleus shape (Figure 1A,B). As expected, subpopulations of myeloblasts with rounded 
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nuclei decreased while subpopulations of neutrophils with segmented nuclei increased 

during differentiation (Figure 1C), also reflected in decreasing nucleus-to-cytoplasmic ratios 

over culture time (Figure 1D). A significant portion of intermediate cells (promyelocytes, 

metamyelocytes, band cells) were observed on all days post-induction (Figure 1B,C). During 

differentiation, expression of Gr-1 granulocytic cell surface antigen significantly increased 

(Figure 1E), as measured by flow cytometry following staining of the cells against the Gr-1 

antibody. Further, cell cycle analysis showed while a significant portion of the cells were 

replicating (S phase) pre-induction, growth arrest was observed upon induction, with most 

cells found in the resting phase (G0/G1 phase) (Figure 1F). These findings were consistent 

with previous reports,42,43 and highlight that neutrophilic differentiation is a stochastic 

process where cells are initially undifferentiated and end as differentiated, but that in 

between cell subsets exhibit significantly different differentiation kinetics and motivate our 

efforts to develop Raman tools to assess this populational heterogeneity.

Raman Spectroscopy Reveals Changes in 32D Cell Biomolecular Composition during 
Neutrophilic Differentiation.

For Raman spectroscopic analysis, 32D cells seeded on glass-coated gold mirror substrates 

were analyzed on days 0, 1, 4, 7, and 14 post-induction using a 785 nm laser (Figure 2). 

Briefly, Raman spectra were acquired at room temperature using a Horiba LabRAM HR 

confocal Raman microscope (Horiba Scientific) and a 785 nm laser (15 mW power at the 

sample, theoretical spot diameter of 958 nm) that was focused on the center of each cell for 

40 s through an Olympus 60× water-dipping objective (2 mm working distance). For each 

time point, N = 54–63 cells were analyzed. Immediately following the Raman analysis, 32D 

cells were stained in situ with Hoechst 33342 and Live/Dead stain and imaged with an 

upright fluorescence microscope to generate corresponding nucleus images and to check cell 

viability. Based on the fluorescent nucleus images, individual cells were classified as a 

myeloblast (M), a promyelocyte or a metamyelocyte (P), a band cell (B), or a neutrophil (N). 

Analysis of Live/Dead stained images showed laser irradiation during Raman spectroscopic 

analysis did not significantly affect cell viability nor significantly increased apoptotic or 

necrotic cells within at least 3-h of irradiation (Figure S1A). Also, laser irradiation did not 

significantly increase the degree of cell detachment from the substrates, although some cells 

detached during the post nucleus staining and imaging step (Figure S1B). During the 14-day 

neutrophilic differentiation, several major changes in Raman peaks were observed, 

particularly those corresponding to nucleic acids (e.g., 788, 1096 cm−1) and lipids (e.g., 716, 

2850 cm−1) (Figure 3).

Principal Component Analysis of Raman Spectra Reveal Spectral Trends Associated with 
Neutrophilic Differentiation.

Principal component analysis (PCA) of the preprocessed Raman spectral data of 32D 

hematopoietic progenitor cells revealed significant trends during neutrophilic differentiation 

(Figure 4). PCA reduces the dimensionality of a data set by determining a small number of 

uncorrelated components (principal components, PCs) that define the most significant 

sources of variance in the data set.44 To visualize the spectral variance within and between 

cell populations identified according to their nucleus shape from the Hoechst 33342- stained 

nucleus images, PCA loading plots were generated for three independent rounds of 
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neutrophilic differentiation of 32D cells. PCA effectively resolved overlapping vibrational 

modes in the Raman spectra into individual PCs that offered biomolecular compositional 

information. All Raman spectra were normalized to the area under the 1449 cm−1 peak, 

which corresponded to C–H vibrations from proteins and lipids, so that all variable loadings 

on the PCA plots were presented in relation to the total cellular (cytoplasmic and membrane) 

content. In PCA of round one of differentiation, significant sources of spectral variation 

were observed in PC 1 (30.66% of cumulative variance) and PC 2 (5.09% of cumulative 

variance) (Figure 4A,B), and most peaks in PC 1 and 2 corresponded to known vibrational 

modes while some corresponded to unidentified vibrations (Table S1).

Overall, nucleic acid-associated peaks (682, 728, 788, 1096, 1143, 1340, 1377, 1422, 1488, 

1514, 1575 cm−1) scored high (positive scores) while lipid-associated peaks (716, 873, 972, 

1269, 1301, 1437, 2850 cm−1) scored low (negative scores) as a means to discern 32D cell 

differentiation (Figure 4A,B). Nucleic acid-related peaks also generally scored higher than 

protein-associated peaks (645, 858, 937, 1180, 1207, 1285, 1312, 1449, 1608, 1640 cm−1). 

Specifically, the peak at 788 cm−1 corresponding to the symmetric stretch mode from the 

DNA/RNA backbone O–P–O scored higher than any other protein peaks (Figure 4A), 

suggesting that nucleus related biomolecular changes accounted for the largest degree of 

variance throughout 32D cell differentiation. As such, we subsequently grouped Raman data 

based on the nuclear shape of the individual 32D cells as identified with the Hoechst 33342 

stain. PCA loading plots of four subpopulations (myeloblasts (M), promyelocytes/

metamyelocytes (P), band cells (B), neutrophils (N)) during the differentiation process 

showed an overall decrease in PC1 score, corresponding to decreasing nuclear content and 

an increasing cytoplasmic content as immature cells differentiated into more mature cells 

(Figure 4C), and this was consistent with higher ratios of nucleus-to-cytoplasm observed in 

immature vs maturing/ mature cells (Figure 1D). Although these subpopulations did not 

cluster tightly on the PC 2 vs PC 1 plot and appeared broadly distributed (Figure 4C), our 

findings were still in agreement with previous Raman spectroscopy reports that found higher 

nucleus-associated content in immature myeloid cells.10,45,46 The large distribution also 

suggests our classification for all 32D cells into four subpopulations based on their nuclear 

shape alone may not sufficiently resolve all cellular states across the neutrophilic 

differentiation continuum. However, these findings show that PCA analyses of Raman data 

provide a rich data set to underlie the quantification of the state of an individual cell within a 

larger cell culture.

Raman analyses also identified significant shifts in lipid-related peaks associated with 32D 

cell differentiation. Of the negative-scoring peaks on PC 1, peaks corresponding to choline 

headgroups (716 cm−1) and general lipid CH2 deformation (1437 cm−1) were the most 

significant (Figure 4A), suggesting that the ratio of choline-containing lipids to nucleic acids 

increased during cell maturation. Peak intensities of choline-to-cholesterol (716 cm−1/701 

cm−1) and choline-to- phenylalanine (716 cm−1/1003 cm−1) ratios also increased as cells 

matured (Figure 4A,B, and Figure S2A). As specific granules have been shown to contain 

higher ratios of phospholipid to cholesterol in their vesicle membrane compared to azurophil 

or primary granules,47 this may be a general indicator of increasing concentrations of 

cytoplasmic specific granules as cells progress through granulopoiesis to form segmented 

neutrophils during the differentiation process.48 These spectral changes were consistent with 
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the biochemical compositional change in total phospholipid to protein content for round 2 of 

differentiation, as measured by phospholipase D (PLD) and bicinchoninic acid (BCA) assay 

(Figure S2B). A significant 2.5-fold increase in phospholipid- to-protein content was 

observed from day 0 to day 14 post-induction, while the peak ratio of choline-to-

phenylalanine (716 cm−1/1003 cm−1) increased 1.2-fold for the corresponding round.

Upon induction of neutrophilic differentiation with G-CSF, myeloperoxidase is reported to 

be abundantly expressed in myeloid cytoplasmic granules, but its transcription decreases to 

undetectable levels as cells differentiate to mature cells.49–51 Consistent with this 

observation, several negatively scoring protein peaks (1108, 1128, 1360, 1554–1560, 1590 

cm−1) corresponded to previously reported Raman peaks of myeloperoxidase (Figure 4A,B), 

analyzed in both native form and within the cytoplasm of neutrophilic granulocytes.
38,40,52,53

Globally, average PC 1 scores strongly correlated with the degree of 32D cell differentiation 

(Figure 4D). The most positive scores were observed for immature myeloblasts while the 

most negative scores were observed for fully segmented neutrophils. This trend remained 

when subpopulations were grouped based on the day of analysis as opposed to their nucleus 

shape (Figure S3). Additionally, 32D cells that were sorted based on their Gr-1 expression 

(Gr-1− vs Gr-1+ cell populations, collected from pre- and post-induction 32D cell 

populations, respectively) were clearly distinguishable based on PCA of their Raman 

spectra, regardless of their nucleus shape (Figure S4), suggesting cell classification based on 

Gr-1 expression may be a more reliable indicator of 32D cell maturation than identification 

based on their nucleus shape alone.

Consistent Spectral Changes Were Observed in Independent Rounds of 32D Cell 
Differentiation.

To demonstrate the reproducibility of monitoring 32D cell neutrophilic differentiation via 

Raman spectroscopy, spectra from three independent trials were analyzed using PCA (Figure 

5). Raman spectra of individual cells were organized based on their nuclear shape. PC 1 

captured 25.61% of the cumulative variance while PC 2 captured 3.95% of the cumulative 

variance (Figure 5A). As evident in the PCA plot, PC 1 scores correlated with the 

differentiation state of 32D cells, and the same spectral trends from individual rounds of 

differentiation were still observed. In particular, the most significant and relevant sources of 

spectral variance were not significantly affected by batch-to-batch variation or differences in 

acquisition conditions, such as fluctuations in laser intensity. Differences in PC 2 scores 

primarily corresponded to heterogeneity in cell populations and were not deemed relevant. 

Examples of cells from all three differentiation rounds in various differentiation states, 

classified according to their nuclear morphology, and their respective PC1 scores are shown 

in Figure 5B. A demonstrable decrease in PC 1 scores indicated an increased level of cell 

maturation or the degree of cell differentiation. Despite the significant overlap in PC 1 

scores among cells from four different subpopulations, which reflected limitations in cell 

classification based on their nucleus shape alone, our findings validate the use of Raman 

spectroscopy combined with multivariate analyses to assign a reproducible, quantitative 

“differentiation score” to individual 32D hematopoietic progenitor cells undergoing 
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neutrophilic differentiation. In this sense, biomolecular information-based screening of 32D 

cells via Raman data may allow more accurate segmentation of 32D cell differentiation 

along a continuum while avoiding the use of external labels required for traditional means of 

identification (i.e., nucleus staining, Gr-1 antigen staining) that fails to capture the 

biomolecular complexity observed during differentiation.

Partial Least-Squares Discriminant Analysis (PLS-DA) Accurately Discriminates Neutrophil 
Differentiation Based on Raman Spectra.

The ability to discriminate myeloid differentiation states solely via Raman spectra was also 

evaluated using partial least-squares discriminant analysis (PLS-DA). PLS-DA determines 

the combination of variables that are specific to each class of a sample set.54 We identify 

Raman peaks that are specific and sensitive to 32D cells classified as myeloblasts or 

neutrophils during the course of neutrophilic differentiation via parallel measure of nuclear 

morphology. To define calibration and test sets, 32D cell spectra classified as myeloblasts or 

neutrophils based on their nuclear morphology from three differentiation rounds were split 

using a venetian blinds method.55 The calibration set consisted of 58 myeloblast cell spectra 

and 58 neutrophil cell spectra while the test set consisted of 57 myeloblast cell spectra and 

92 neutrophil cell spectra. The peak at 1047 cm−1, originating from the cell acquisition 

media, was removed from analysis due to its high Q residual score. For our PLS-DA model, 

two latent variables (LV), which represent linear combinations of variables with the best 

predictive power,56 were chosen to minimize the cross-validation error. LV 1 captured 

19.4% of the variance while LV2 captured 2.54% of the variance, and the resulting PLS-DA 

model predicted myeloblasts and neutrophils with high sensitivity and specificity with a 

classification error of 11.3% (Figure 6A; Table S2). Notably, the model accurately identified 

the differentiation state regardless of the day post-induction. Corresponding variable 

importance in projection (VIP) plots showed the most significant peaks used to discriminate 

between immature myeloblasts and neutrophils were primarily composed of nucleic acid 

Raman peaks, with a relatively small contribution from choline (716 cm−1) and other lipid 

peaks (Figure 6B). Here, the most informative determinant of differentiation state was the 

spectral nucleocytoplasmic ratio related to shifts in nuclear morphology with differentiation. 

Interestingly, five out of the six “misclassified” myeloblasts in the test set were cells from 

days 7 and 14 post-induction, suggesting the sensitivity of our model was limited more by 

the single-cell accuracy of the traditional metrics we used to visually classify the 32D cells 

based on nuclear shape.

When we built a PLS-DA model using Raman spectra from all four subpopulations of 

differentiation (myeloblasts, promyelocytes/metamyelocytes, band cells, and neutrophils), 

classification errors ranged 19–44% (Table S2). This relatively high classification errors 

pointed to the fact that the intermediate differentiation states did not present with distinct 

Raman spectra that were specific to these states. We suspect Raman spectral scanning and/or 

mapping over a larger cell area may improve the sensitivity in discriminating intermediate 

cell types.

Table S2 further summarizes two other PLS-DA models. When we built a PLS-DA model 

using spectral data from a single round of differentiation (round 2), it showed a higher 
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classification error of 15.3% in discriminating myeloblasts from neutrophils. We infer that, 

in generating a classification model, the inclusion of spectral data from multiple 

differentiation rounds can be used to filter out irrelevant spectral variability, thereby 

increasing model robustness and accuracy. A PLS-DA model calibrated using Raman spectra 

of 32D cells collected based on their Gr-1 expression (Gr-1− vs Gr-1+ cells flow sorted from 

days 0 and 14 post-induction, N = 32 each) yielded a classification error of 16.0% in 

discriminating myeloblasts from neutrophils. For this model, its prediction capability was 

highly dependent on the preprocessing parameters and the Savitzky-Golay smoothing filter 

had to be increased from 25 to 31 to minimize the error. The higher classification error in 

this model suggests that the Gr-1 antigen expression does not correlate well with changes in 

nuclear morphology. Together, these findings again suggest that changes in nuclear shape or 

Gr-1 expression level may be too subjective to be used to accurately determine 

differentiation state at the single-cell level, further supporting the need for new objective 

classification strategies such as those enabled via Raman spectroscopy.

CONCLUSIONS

We report the successful application of noninvasive Raman spectroscopy to trace 

neutrophilic differentiation of 32D cells. Raman spectroscopic analysis of individual cells 

revealed identifiable spectral differences between discrete states during neutrophilic 

differentiation, as well as population-wide spectral trends correlated with known 

biomolecular changes during granulopoiesis. Nuclear content decreased over time while 

contribution from cellular lipids, particularly choline headgroups, increased. Several Raman 

peaks known to associate with myeloperoxidase were also observed. These findings were 

consistent with decreasing nucleus-to-cytoplasm ratios quantified from microscopic images 

of the cells and increasing levels of total phospholipid from biochemical assays (PLD assay). 

Moreover, a PLS-DA model built from the Raman spectral information was able to predict 

the degree of neutrophilic differentiation with high specificity and sensitivity, with a 

classification error of 11.3%. Our findings highlight the utility and reliability of Raman 

spectroscopy as a robust molecular screening tool for tracing the heterogeneity of stem cell 

differentiation events in vitro. Raman spectroscopy of HSPC populations may serve as a new 

bioanalytical tool that can dynamically, noninvasively monitor individual cells in real time, 

in situ, to provide an alternative to the conventional methods of HSPC analysis.

EXPERIMENTAL PROCEDURES

Cell Culture and Differentiation.

Prior to inducing differentiation, 32D cells (32D Clone 3, murine cell line CRL- 11346; 

ATCC) were maintained in complete growth culture media according to ATCC’s 

recommended culture protocol for cell expansion. Complete growth media consisted of 

RPMI 1640 medium with 2 mM L-glutamine adjusted to contain 1.5 g/L sodium 

bicarbonate, 4.5 g/L glucose, 10 mM HEPES, and 1.0 mM sodium pyruvate, supplemented 

with 10% heat-inactivated FBS, 10% mouse interleukin-3 culture supplement (Corning Inc.), 

and 1% Pen/Strep. To induce differentiation, 32D cells were collected, washed twice with 

warm PBS, and resuspended in the induction media at 5E5 cells/mL as previously reported.
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57 Induction media consisted of RPMI 1640 medium with 2 mM L-glutamine adjusted to 

contain 1.5 g/L sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, and 1.0 mM sodium 

pyruvate, supplemented with 10% heat-inactivated FBS, 0.1% mouse interleukin-3 culture 

supplement, 1% Pen/Strep, and 25 ng/mL of G-CSF for the first 4 days following induction 

then consisted of RPMI 1640 medium with 2 mM L-glutamine adjusted to contain 1.5 g/L 

sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, and 1.0 mM sodium pyruvate, 

supplemented with 10% heat-inactivated FBS, 1% Pen/Strep, and 25 ng/mL of G-CSF for 

the rest of the differentiation cycle. All cell cultures were maintained in tissue culture Petri 

dishes until analysis.

Raman Spectroscopic Analysis of Live 32D Cells.

Cells maintained in tissue culture Petri dishes were analyzed with Raman spectroscopy 

daily. Cells were first seeded on gridmarked glass-coated gold mirrors (Thorlabs) for 2 h, 

rinsed with PBS, then carefully resuspended in phenol-red free RPMI 1640 supplemented 

with 10% FBS, 1% Pen/Strep, and 2.5% HEPES buffer for Raman spectral acquisition. 

Raman spectra were acquired at room temperature using a Horiba LabRAM HR confocal 

Raman microscope (Horiba Scientific) equipped with a Horiba Synapse back-illuminated, 

deep-depletion CCD camera. A 785 nm laser (15 mW power at the sample, theoretical spot 

diameter of 958 nm) was focused on the center of each cell for 40 s through an Olympus 

60× water-dipping objective (2 mm working distance). The grating was set to 300 

grooves/mm, and the pinhole and slit sizes were set to 500 and 100 μm, respectively.

Multivariate Analysis of Raman Spectra.

Raman cell spectra were preprocessed and analyzed as previously described.26,29 Spectral 

preprocessing was performed using LabSpec 5 (Horiba Scientific) and the PLS Toolbox (v 

8.1, eigenvector Research) run in MATLAB (8.4.0.150421, R2014b, MathWorks Inc.) prior 

to multivariate analysis. Raman spectra were individually examined for cosmic spikes or 

inconsistent peaks, which were removed manually. Spectra were manually aligned in Excel 

to the phenylalanine peak at 1003 cm−1. The spectral range was then reduced to 624–1750 

cm−1 and 2850–2987 cm−1 to remove the asymptotic behavior at the outer limits of the 

spectra that were present after variable alignment, and to remove unnecessary signal from 

the “cell-silent” region (1750–2850 cm−1). Each cell spectrum was preprocessed by taking 

the second derivative, followed by Savitzky-Golay smoothing (second order polynomial, 25 

points), alignment using zero-order offset alignment (slack = 2) to a randomly assigned cell 

spectrum, normalization to the area under the CH def. peak (range 1427–1479 cm−1), 

multiplying the entire spectrum by –1 in order for original peaks to have positive values after 

differentiation, and mean-centering to the data set.

PCA and PLS-DA were performed on the preprocessed spectra using the PLS Toolbox run 

in MATLAB.54–56 PCA models were constructed using spectra from individual 

differentiation rounds, spectra from all three differentiation rounds, and spectra from sorted 

Gr-1− and Gr-1+ cells. Principal components (PC) were selected such that they constituted 

>1% of cumulative spectral variance. Several PLS-DA models of varying calibration and 

validation sets were constructed for comparison of discriminatory performance. The number 

of latent variables (LV) was selected such that the cross-validation and prediction errors 
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were minimized (either 1 or 2 LVs). All models captured at least 70% of the variance in the 

model spectra. Incorrectly calibrated samples that exhibited unusual spectral variance, as 

evidence by Q residual statistics greater than the 95% confidence limit, were removed from 

the calibration set and omitted from further analysis.

Statistical Analysis.

One-way analysis of variance (ANOVA) with Tukey post-hoc testing was used to determine 

statistical differences between data groups at a significance level of p < 0.05. All errors are 

reported as standard error of the mean (SEM) unless otherwise noted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Tracing neutrophilic differentiation of 32D hematopoietic progenitor cells. (A) Neutrophilic 

differentiation of 32D cells is accompanied by characteristic changes in their nuclear shape. 

Undifferentiated 32D cells display large circular nuclei. During neutrophilic differentiation, 

32D cells transition from myeloblasts to promyelocytes, metamyelocytes, band cells, and 

finally mature neutrophils with a segmented nucleus. (B) Representative bright field (top 

panel; inset: Wright Giemsa-stained cells) and fluorescent (bottom panel; Hoechst 33342) 

labeled 32D cells during the course of 14-day neutrophilic differentiation. Day 0 cells refer 
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to undifferentiated cells before inducing differentiation. Scale bar: 10 μm. (C) 32D cells 

were classified as myeloblasts, intermediates (promyelocytes, metamyelocytes, band cells), 

or segmented neutrophils during the course of differentiation based on Hoechst 33342-

stained nuclear shape. N = 7–93. (D) Change in nucleus-to-cytoplasm ratiobased on 

brightfield and fluorescent images. N = 5–40. (E) Gr-1 expression of 32D cells over the 

course of neutrophilic differentiation as measured by flow cytometry. Gray peak represents 

isotype control. Peaks (black line) represent histograms of the analyzed cells, and the 

percentages of Gr-1+ cells in the cell populations increased from 5.5% (Day 0) to 38.6% 

(Day 7) and 79.4% (Day 14) post-inducing differentiation. (F) Cell cycle status of Day 0 

(undifferentiated) and Day 7 cells were quantified with Multicycle DNA analysis available 

in FCS Express software.
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Figure 2. 
Schematic of Raman spectroscopic analysis. 32D cells seeded on glass-coated gold 

substrates were analyzed with Raman spectroscopy on days 0, 1, 4, 7, and 14 post-induction 

using a 785 nm laser. Immediately following the analysis, 32D cells were stained with 

Hoechst 33342 and Live/Dead stain and imaged with an upright fluorescence microscope to 

obtain corresponding nuclear images and to check cell viability. Individual cells were 

classified as a myeloblast (M), a promyelocyte or a metamyelocyte (P), a band cell (B), or a 

neutrophil (N).
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Figure 3. 
Population-wide changes in Raman spectra during differentiation. Average baseline-

subtracted Raman spectra of 32D cells on days 0, 1, 4, 7, and 14 following induction of 

neutrophilic differentiation showed pronounced changes in several peaks corresponding to 

nucleic acids and lipids. Raman spectra were acquired at room temperature using a Horiba 

LabRAM HR confocal Raman microscope (Horiba Scientific) equipped with a Horiba 

Synapse back-illuminated, deep-depletion CCD camera. A 785 nm laser (15 mW power at 

the sample, theoretical spot diameter of 958 nm) was focused on the center of each cell for 

40 s through an Olympus 60× water-dipping objective (2 mm working distance). The grating 

was set to 300 grooves/mm, and the pinhole and slit sizes were set to 500 and 100 μm, 

respectively.
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Figure 4. 
PCA analysis of spectral variations during neutrophilic differentiation. (A,B) PC 1 and PC 2 

of PCA of individual 32D cells during the 14- day differentiation identify significant sources 

of spectral variance over time. (C) PCA demonstrated spectral trends as cells progressed 

through neutrophilic differentiation states (myeloblast, promyelocytes, metamyelocytes, 

band cells, neutrophils). (D) Average PC 1 scores correlated with the level of cell 

maturation. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 5. 
32D cell lineage specification from independent rounds of differentiation. (A) PCA plot of 

32D cell spectra combined from three differentiation rounds. (B) Representative cell nuclei 

images corresponding to the four differentiation states were selected from days 0, 1, 4, 7, 

and 14 from all three cycles and assigned PC1 scores from the above PCA plot.

Choi et al. Page 18

Bioconjug Chem. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
PLS-DA for the discrimination of myeloid cells. A PLS-DA model was generated and tested 

using cell spectra of myeloblasts and neutrophils, as determined by nuclear morphology, 

from all three differentiation rounds. (A) A classification threshold was established via a 

Calibration set (red dashed line). The remaining cells (Prediction set) were classified relative 

to the classification threshold, with the accuracy established by comparing model prediction 

(color) to direct nuclear morphology assessment (symbols). Error bars represent the 

estimation error for each prediction. (B) Corresponding VIP plot showing Raman peaks 
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most significant for discriminating between myeloblasts and neutrophils. Peaks above the 

red dashed line were estimated to be important in predicting the cell type. Select peaks with 

the most significant scores are labeled.
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