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Abstract

A wide range of maternal exposures– undernutrition, obesity, diabetes, stress and infection – are 

associated with increased risk of metabolic disease in offspring. Developmental influences can 

cause persistent structural changes in hypothalamic circuits regulating food intake in the service of 

energy balance. The physiological relevance of these alterations has been called into question 

because maternal impacts on daily caloric intake do not persist to adulthood. Recent behavioral 

and epidemiological studies in humans provide evidence that the relative contribution of appetitive 

traits related to satiety, reward and emotional aspects of food intake regulation changes across the 

lifespan. This article outlines a neurodevelopmental framework to explore the possibility that 

cross-talk between developing circuits regulating different modalities of food intake shapes future 

behavioral responses to environmental challenges.

Introduction

A thorough understanding of the mechanisms that regulate food intake is important because 

of the increasing incidence of obesity and metabolic disorders. Moreover, the consumption 

of ‘highly palatable foods’, is becoming more widespread; these foods are usually calorie 

dense and highly processed, and dysregulate the normal regulation of energy balance and 

can lead to weight gain. Although most high-profile studies have focused on acute factors 

influencing energy balance in adult humans and other animals, there is also evidence for 

developmental influences on energy balance regulation later in life. Indeed, a large body of 

epidemiological evidence indicates that intrauterine exposure to adverse maternal metabolic 

conditions such as undernutrition, obesity and psychological stress increases susceptibility 

of offspring to obesity1,2.

The prevailing theory to explain these observations, the Barker hypothesis, is that maternal 

influences on the developing brain and peripheral organs produce metabolic adaptations in 

their progeny that render them vulnerable to nutritional-intake excess later in life3,4. In 

animal models, manipulations of maternal nutritional status or hormonal status during 

gestation or the neonatal period produce marked effects on caloric intake at weaning. 

Exposure to overnutrition leads to increased caloric intake, while exposure to undernutrition 
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leads to decreased caloric intake5,6. This led many to hypothesize that maternal 

programming of obesity risk in offspring is possible, and is conveyed, in large part, through 

effects on the developing neuronal circuits regulating feeding behavior3,7,8.

The discovery that the adipokine leptin promotes the formation of key components of 

circuits that control feeding behavior in the service of energy balance (i.e. homeostatic 

regulation)9 ushered in a wave of studies of maternal influences on hypothalamic 

development. This research demonstrated that the neurons in the arcuate nucleus of the 

hypothalamus (ARH) directly sense circulating signals of metabolic status (i.e. leptin, 

ghrelin and insulin) and identified critical periods of development when maternal influences 

on their levels exert a lasting impact on the structure and function of key components of 

circuits that regulate homeostatic feeding behavior7,8. Given the robustness and persistence 

of these neuroanatomical effects, it was initially assumed that they underlie maternal 

programming of obesity risk.

More recently, however, there is a growing appreciation that this model of maternal 

influences on caloric intake in offspring is over simplistic: although alterations in maternal 

nutrition are closely correlated with early growth rates, they rarely persist to adulthood10,11. 

In fact, a recent meta-analysis of 35 rodent studies did not find evidence that maternal 

influences on susceptibility of offspring to diet-induced obesity are due to changes in caloric 

intake12. This indicates that the model in which maternal programming of obesity risk 

occurs by developmental alterations in hypothalamic feeding circuits needs to be 

reevaluated.

Epidemiological studies in humans and experiments in rodent models demonstrate that 

maternal influences can increase preferences for high fat foods, independent of caloric 

intake per se13–15. The mechanism by which information about maternal nutritional status is 

conveyed to mesolimbic dopamine reward circuits that regulate food choices and motivated 

feeding behavior is not known. A challenge to identifying conduits for maternal signals to 

reward circuits, which regulate the motivation to consume food, is that they do not function 

until the transition to independent feeding. Whereas links between early maternal influences 

and preferences for “junk food” in childhood are consistent, there are inconsistencies in the 

degree to which these effects persist and are associated with obesity risk in adults13,15–17.

This article synthesizes data from clinical and epidemiological studies of feeding behavior in 

humans with neuroanatomical and behavioral studies in rodents to present a 

neurodevelopmental framework to evaluate the contribution of maternal influences on 

neuronal development to feeding behavior and obesity risk in adults – a framework that can 

reconcile the apparently conflicting data. This framework was developed around three core 

considerations. First, systems that provide orosensory, visceral, reward, homeostatic and 

emotional control of feeding behavior develop in the same step-wise progression spanning 

gestation through adolescence in humans and rodents. Second, population-based behavioral 

studies in humans demonstrate that the relative contributions of different types of feeding 

control to weight gain changes across the developmental continuum. Third, studies in rodent 

models show that developmental influences on one control system can produce 

compensatory adjustments in later-developing systems to maintain stable levels of caloric 
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intake over the long term. In this review, I will first introduce the main systems influencing 

feeding behaviors and describe current knowledge of the ontogeny of feeding circuit 

development in rodents and humans. I will then describe maternal influences on feeding 

circuit development and discuss how crosstalk during development of the different circuits 

regulating food intake could determine future behavior.

Circuits Regulating Feeding Behaviors

Feeding circuit development in rodents and humans follows loosely similar trajectories, 

making rodent models appropriate for gaining insight into regulation of human food intake. 

The ontogeny and developmental influences on many neurobiological and/or behavioral 

correlates of feeding behavior have been characterized in rodents, and are described in the 

following sections. Several excellent reviews provide detailed descriptions of circuits that 

regulate different aspects of feeding behavior18–20. The neurobiological processes that 

determine food intake can be classified into direct and indirect controls over the size and 

duration of an individual meal21; these two control systems are covered in detail below.

Direct Control Systems

Direct controls arise from contact between food and sensory receptors during the 

consummatory phase of ingestion. Orosensory stimuli arising from palatable food (i.e. sweet 

and fat) provide positive feedback to the brain that increases the rate and amount of food 

consumption during a single meal. Conversely, post-ingestive stimulation of the 

gastrointestinal tract stimulates vagal signals (visceral inputs) that provide negative feedback 

that promotes satiation and meal termination. Direct stimuli transmit information about the 

quantity and nutrient composition of a meal via direct projections to the dorsal vagal 

complex in the hindbrain, where positive and negative feedback signals are processed and 

relayed to central pattern generators in the caudal pons and medulla that regulate 

somatomotor systems needed to consume food (i.e. swallowing and chewing) (black arrows 

in Figure 1)(reviewed in22).

Indirect Control Systems

Indirect control systems modulate the potency of direct positive and negative feedback 

control systems through connections between the forebrain and hindbrain. They permit the 

fine tuning of behavior in response to the energy density and palatability of food, anticipated 

need for energy, and likelihood of securing food.

Visceral Control Systems

In addition to direct (vagal) inputs, post-absorptive visceral inputs are relayed by neural 

signals and gut peptide factors released into the circulation upon ingestion of a meal that act 

on distributed sites in the CNS to promote satiation (i.e. meal termination) (green arrows in 

Figure 1). The nucleus of the solitary tract (NTS) is a key node in circuits regulating satiety. 

In addition to receiving direct control signals from the vagus, it receives indirect signals 

from blood-borne gut-derived factors. This information is relayed to nuclei in the rostral 

brainstem that promote meal termination – the lateral parabrachial nucleus (PB) and 
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periaqueductal gray (PAG). The PB relays visceral signals to reward circuits via the lateral 

hypothalamic area (LHA), ventral tegmental area (VTA) and nucleus accumbens (NAc)23–25 

and to cortico-limbic circuits via the central nucleus of the amygdala (CeA)26–29. The NTS 

also relays visceral cues to circuits regulating homeostatic feeding behavior via the 

paraventricular nucleus of the hypothalamus (PVH)30.

Reward Control Systems

Rewards circuits regulate consummatory behaviors related to the “liking” of food (i.e. 

palatability) and appetitive behaviors relating to “wanting” of food (i.e. food seeking) to 

guide behavioral strategies to meet energy requirements in an efficient manner (light blue 

arrows in Figure 1). Information about the sensory properties of food that drive motivated 

intake is relayed from prefrontal and orbitofrontal cortices via the NAc to the LHA and 

VTA, critical nodes in the mesolimbic dopamine system. Reward-related signals are relayed 

to other feeding control systems via projections from the LHA to the PB and PVH31,32.

Homeostatic Control Systems

Homeostatic systems assess nutritional requirements to maintain metabolic homeostasis, by 

sensing circulating levels of hormones reflecting energy stores (i.e. leptin, insulin and 

ghrelin)(pink arrows in Figure 1) in conjunction with endocrine and neural correlates of 

energetically costly processes, such as thermogenesis, growth and reproduction (dark blue 

arrows in Figure 1). Neurons in the ARH that express neuropeptide Y (NPY), agouti-related 

protein (AgRP) and γ-aminobutyric acid (GABA) (hereafter called AgRP neurons) are 

activated by nutrient, hormonal and neural signals of negative energy balance, and 

conversely, are inhibited by signals of the energetically replete state33,34. They transmit a 

potent inhibitory signal to many downstream targets to ensure that food-seeking behavior is 

prioritized over other potential activities. Targets of AgRP neurons include critical nodes in 

circuits regulating satiety (PVH, PB, PAG), reward (LHA) and emotional (bed nucleus of the 

stria terminalis (BNST), CeA) aspects of feeding behavior35–37. Over the long term, actions 

of AgRP neurons are opposed by the actions of proopiomelanocortin (POMC)-expressing 

neurons in the ARH. In addition to neural projections from the ARH, homeostatic 

information is conveyed by circulating signals of energy status (i.e. ghrelin, leptin) that act 

directly on neurons in key nodes in reward (LHA, VTA) and visceral circuits (NTS, PB) to 

modulate feeding behavior38–43. Homeostatic systems do not regulate food intake per se44 

but modulate the strength of reward and satiety circuits to favor motivated behavior in a 

manner that is appropriate for the situation. For example, food is less rewarding when it 

follows a meal or is likely poisonous, while it is more rewarding under conditions of 

negative energy balance, such as fasting or starvation. Functional images studies in humans 

demonstrate that ghrelin activates regions associated with reward and emotional feeding 

control systems (i.e. amygdala and orbitofrontal cortex) and that this response is correlated 

with hunger ratings45.

Emotional Control Systems

Systems that relay information about behavioral emotional states arising from stimuli in the 

external environment, such as those that predict threats, can override other regulatory 

systems (red arrows in Figure 1). Sensory cues processed by the prefrontal cortex and 
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anterior cingulate cortex are transmitted to limbic circuits via projections to the basolateral 

amygdala; this information is then integrated by neurons in the CeA to regulate feeding 

behavior46. Threat-related stimuli are also conveyed to reward circuits via projections from 

the CeA to the LHA, VTA and NAC47,48 and from the BNST to the LHA49. These circuits 

are relatively understudied from a developmental perspective, so will not be discussed 

further in this review. In the next section, I will discuss how the circuits underlying the direct 

and indirect systems controlling food intake develop in both rodents and humans.

Ontogeny of Feeding Circuits

To consider the possibility that maternal influences program later feeding behavior in 

offspring, it is necessary to appreciate the time frame over which different control systems 

develop. In humans and animal models, systems regulating distinct modalities of food intake 

develop asynchronously. The most basic types of feeding regulation - direct positive and 

negative feedback - are established shortly after birth, whereas the emergence of indirect 

control systems occurs gradually and extends into adolescence.

Feeding circuit development in rodents

The timing of key steps in the maturation of orosensory, visceral, reward and homeostatic 

feeding control systems in rodents has been characterized at both the behavioral and 

neuroanatomical levels. Studies of orosensory, visceral and reward circuits have largely 

utilized rats, whereas studies of homeostatic circuits have largely used mice. There are small 

(i.e. 1–3 days) differences in developmental timelines in rats vs. mice, but the timepoints 

corresponding to major developmental stages – gestation, lactation (0–3 weeks), post-

weaning (>3 weeks) and pubertal transition (4–6 weeks) – is highly conserved. Thus, 

references in this review to a particular day in development are an approximation only. 

Figures 2–5 present an overview of when key neuroanatomical projections are formed within 

distinct control systems (dotted line), when they actively transmit signals (dashed line) and 

when their functional properties mature (solid line).

Orosensory Control Systems

Influences of maternal diet on infant responses to maternal breast milk50,51 are likely 

mediated via effects on the development of orosensory control systems. In rodents, irect 

orosensory positive feedback (Figure 2) resulting from maternal milk stimuli can be detected 

shortly after birth52,53, although intake in the first postnatal week is driven by thirst and not 

by nutritional content54. Orosensory systems develop the capability to drive dose-response 

increases in feeding in response to sweet between 1–2 weeks, with responses to fat maturing 

between 2–3 weeks55. The rewarding properties of olfactory stimuli associated with milk 

develop in rats by P6 and diminish after P1256, whereas preferences conditioned by taste 

stimuli (i.e. sweet and fat) can persist after weaning57,58. These early positive sensory 

feedback systems depend on opioid signaling59 and precede the development of the 

mesolimbic dopamine reward system (see below). Sensory stimuli are also transmitted to 

indirect control systems that regulate reward and emotional aspects of feeding behavior (see 

below).
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Visceral Control Systems

Maternal influences on early patterns of caloric intake are major determinants of meal size 

and growth in the postnatal period60,61. These effects could, in theory, be mediated through 

influences on satiety-related control systems. At birth, the cytoarchitecture of the NTS in 

rodents (Figure 3) is largely mature62 and the density and distribution of vagal sensory 

inputs to the NTS is established63,64. In neonates, direct negative feedback from gastric 

distension and gut-derived peptides (i.e. cholecystokinin) (visceral inputs) provide the only 

inhibitory control over feeding54,65,66. This direct negative feedback system does not require 

communication with forebrain circuits67,68 and declines in strength after P1469, concomitant 

with the development of indirect visceral control systems that engage forebrain circuits.

Transmission of visceral signals to indirect control systems in the brainstem (PB) and limbic 

regions (CeA, BNST) rapidly expand across the first two postnatal weeks69. Signaling to the 

PB, an important node in satiety circuits, continues to increase through 5–6 weeks54,65,69–71. 

Visceral signaling to limbic regions (CeA) declines markedly after P14, concomitant with 

extensive synaptic remodeling and pruning72,73. Although physical connectivity between the 

NTS and PVH is established at birth, there is a delay in the transmission of visceral signals 

until the second postnatal week70,74. Visceral signaling in the PVH reaches adult levels by 2 

weeks70, and there is no evidence of pruning or remodeling of these inputs75. The 

maturation of the electrophysiological properties of NTS neurons occurs at 3 weeks76. In 

summary, direct negative feedback systems promoting meal termination operate from birth, 

but indirect systems form and mature across lactation. More detailed information about the 

ontogeny of visceral inputs can be obtained from several excellent reviews7,77.

Reward Control Systems

Maternal exposures that increase preference for high fat foods13,14 are likely conveyed via 

effects on the developing mesolimbic dopamine reward circuits. Connectivity between the 

LHA and VTA is established by within the first week of life in rats (Figure 4)78,79. 

Projections from dopaminergic neurons in the VTA to the NAc are formed and remodeled 

through axon pruning by the end of gestation80. Varicosities on dopaminergic fibers are first 

detected at the end of gestation. The expansion of varicosities across the first two postnatal 

weeks is paralleled by the expression of dopamine and opioid receptors in the NAc81–83. 

Expression levels of the dopamine 2 receptor and opioid receptors declines after lactation 

(3–4 weeks), consistent with remodeling in these signaling pathways84,85. Synaptic 

connectivity between neurons in the VTA and their primary targets in the NAc, the medium 

spiny neurons, does not form until the end of the third postnatal week82,86. There is evidence 

of extensive pruning and remodeling within the dopaminergic system in the post-weaning 

period87. Thus, although reward circuits are physically formed by the end of lactation, 

processes that control learning-based aspects of feeding behavior are not developed until 

post-ingestive consequences can be reinforced by the action of cortico-limbic circuits, which 

mature in the post-weaning period88. More detailed information about the ontogeny of 

reward circuits can be obtained from83.
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Homeostatic Control Systems

Subpopulations of neurons in the ARH directly sense a wide range of circulating factors and 

thus serve as a conduit for transmitting maternal signals to feeding circuits in the brain. The 

majority of newly-born ARH neurons initially express pro-opiomelancortin (POMC) (Figure 

5)89. The transmitters and neuropeptides that comprise the signaling outputs in adults (NPY, 

GABA and AgRP) are progressively turned on in the latter half of gestation and the early 

postnatal period89. During the early postnatal period, AgRP neurons that project to pre-

autonomic neurons in the PVH that regulate feeding transiently express leptin receptor 

(LepR); the onset of expression in other AgRP neurons takes an additional two weeks to 

complete37,90–92. Throughout lactation, leptin activates and ghrelin inhibits AgRP neurons 

to regulate axonal outgrowth to downstream targets that control food intake75,92–95. In the 

latter half of lactation, AgRP neurons are also activated by excitatory inputs, but inhibitory 

inputs do not arrive until the post-weaning period96. Projections from AgRP neurons reach 

pre-autonomic components of the feeding circuitry in the PVH between at P14 in 

mice75,93,94 and P15–16 in rats93. AgRP→PVH projections reach adult levels by weaning 

(at P21), with no evidence of pruning75. In mice, AgRP projections to the reward circuits via 

the LHA appear at P12, while projections to cortico-limbic circuits via the BNST appear at 

P1675. Intrinsic (ion channels) and extrinsic (synaptic inputs) inhibitory regulation of AgRP 

neurons emerges in post-weaning period92,97. Less is known about the onset of homeostatic 

modulation of visceral and reward systems by direct signaling via leptin and ghrelin in these 

circuits. Leptin receptor expression and signaling in the rat VTA emerges in the second 

week78,79. In summary, although connectivity with homeostatic circuits is established by the 

second half of lactation, regulation of feeding behaviors in response to the availability of 

short- and long-term energy stores does not emerge until one week after weaning 

(P28)92,98–101. Before this stage, food intake is primarily driven by energetic requirements 

for temperature regulation and growth102. Thus, genetic disruptions in homeostatic circuits 

in the hypothalamus lead to increased growth103–105. More detailed information about the 

ontogeny of homeostatic circuits can be obtained from7,106.

Feeding circuit development in humans

As mentioned above, the ontogeny of human feeding circuit development has parallels with 

rodents. Human neonates have the ability to respond to maternal odors, mediated by 

olfactory control systems. At birth they exhibit a preference for amniotic fluid, but within 

the first week, this transitions to a preference for breast odor107. Tactile and social bonding 

are sufficient to positively reinforce the preference for breast odor, but orosensory reward 

likely contributes as well108,109. Infants are also capable of basic reactions to sweet or bitter 

taste. These responses are generated within the brainstem and do not require connectivity to 

higher brain structures110.

The ontogeny of indirect control systems in humans can be approximated by the onset of 

appetitive traits that distinguish between satiety, reward, homeostatic and emotional aspects 

of feeding behavior. The validation of the Baby and Child Eating Behavior Questionnaires 

as standardized methods to quantify distinct appetitive traits in infants and children111,112 

made it possible to conduct prospective analyses of changes in their relative contributions to 
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feeding behavior across the developmental continuum, an issue that has not been assessed in 

rodent models.

Within the first six to eight weeks of life, infants regulate food intake in response to nutrient 

and hormonal cues to maintain consistent levels of caloric intake over a 24 hour period – 

which involves input to the brain from the viscera. They compensate for variation in the 

frequency of meals or in the caloric density of a milk-based formula by adjusting the amount 

they consume113–116. This precise regulation of caloric intake is maintained through one 

year of age and the initial introduction of solid foods with different caloric densities113–116. 

The emergence of basic feeding regulation systems as assessed in the laboratory, is also 

reflected by the acquisition of quantifiable traits related to “satiety responsiveness” and 

“food responsiveness” that are associated with specific patterns of food intake117. High 

“satiety responsiveness” scores are associated with a smaller meal size but not with meal 

frequency, while high “food responsiveness” scores are associated with more-frequent meals 

but not with meal size118. In the first year of life, regulation of feeding behavior is largely 

driven by control systems that modulate food seeking versus meal terminating behaviors119, 

consistent with the maturation of orosensory and visceral control systems.

Basic patterns of connectivity are established within homeostatic circuits during 

gestation120. During the first year of life, there is no evidence of homeostatic regulation of 

food intake in response to signals of energy stores. Instead, nutrient intake is tightly 

correlated with and predictive of growth, not adiposity121–123. As observed in rodents, 

mutations that disrupt homeostatic systems exhibit increased growth in humans124. During 

the early childhood years, the association between intake and growth is gradually lost125.

Similar to rodents, mesolimbic reward circuits are formed during gestation126, but reward-

based learning and motivation do not develop until the transition to independent feeding. As 

variety is increasingly introduced into the diet, toddlers learn to form associations between 

foods and post-ingestive consequences of eating and develop aversions to new foods127,128. 

These learned behaviors are strongly influenced by child-feeding practices and other 

environmental factors115,127. Between 1–4 years of age, compensatory reductions in portion 

sizes when consuming energy dense foods are progressively weakened, and individual 

differences in responsiveness to foods emerge115,116,127,129. Thus, circuits regulating 

reward-based aspects of feeding behavior develop in early childhood and gradually 

supersede regulation by orosensory and visceral systems.

Comparisons of rodent and human feeding circuits

Crucial to understanding how experimental manipulations of maternal nutrition in rat and 

mouse relate to humans is an appreciation for the comparative developmental biology of the 

species. The step-wise ontogeny of different feeding control systems progresses similarly in 

rodents and humans (Figure 6). Direct orosensory systems operate soon after birth in both 

species. During the period when milk or formula is the primary source of food, the balance 

between orosensory and visceral systems maintains a stable level of caloric intake. Although 

reward circuits are formed during gestation in rodents and humans, reward-based control of 

food intake is not a primary determinant of feeding behavior until more variety is introduced 
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into the diet and learned associations can be drawn. At this point, visceral satiety systems 

become less prominent. Connectivity with homeostatic feeding circuits is established within 

the second postnatal week in rodents and within the third trimester in humans. Initially the 

function of homeostatic circuits is tightly linked to requirements for thermogenesis and 

growth, and the regulation of feeding behavior in response to circulating signals of energy 

status emerges after puberty. As children enter adolescence, traits related to “emotional 

eating” emerge as the principal determinants of eating behavior119,128,130,131. Little is 

known about the ontogeny of emotional control systems in rodent models.

Maternal Programming of Feeding Behaviors

Studies in humans and animal models consistently find a link between maternal metabolic 

status and long-term impact on susceptibility to obesity. Experiments in animal models 

provide strong evidence of pronounced maternal influences on the formation of 

hypothalamic feeding circuits and on feeding behavior at weaning. However, more detailed 

analysis reveals a more complex picture, with two main areas of contention: whether 

maternal influences on feeding behaviors persist to adulthood; and whether influences on 

feeding behavior contribute to obesity risk, or whether effects on energy expenditure are 

responsible. Resolving these issues is critical to elucidating the underlying mechanism.

Maternal Influences in Humans

A large body of epidemiological evidence supports the idea that exposure to maternal 
undernutrition and obesity programs increased obesity risk (for excellent reviews of this 
literature, see132–134). Because maternal nutritional and metabolic status are usually similar 
across all of human gestation, it is difficult to determine the time window for these effects. 
Two types of studies have been used to parse the contribution of early vs. late gestational 
influences to programming of obesity risk. Epidemiologists took advantage of the fact that 
famine conditions during the Dutch Hunger Winter of 1944–45 was limited in duration to 
evaluate the consequences of exposure to maternal undernutrition in the first vs. third 
trimester135. Temporal considerations were incorporated into studies of maternal obesity by 
comparing the influence of pre-gravid maternal BMI vs. gestational weight gain on later 
adiposity in offspring136. In both situations, the data point toward the first trimester as the 
critical period for programming susceptibility to obesity, while the third trimester is most 
important for birth weight. There is a growing appreciation that a rapid growth rate during 
infancy, and not initial birth weight, is the critical determinant of obesity risk137–141.

After birth, there is strong evidence to support the idea that maternal factors influence the 

development of orosensory positive feedback systems regulating infant feeding behavior. 

The responsiveness of olfactory and gustatory sensory systems to maternal odors and flavors 

is positively reinforced by tactile stimuli and social bonding. Whereas preferences for sweet 

and avoidance of bitter flavors are strongly influenced by innate factors, exposure to certain 

volatile flavors in amniotic fluid as well as breast milk shapes flavor preferences later in 

life142. In addition, offspring preference for fat and protein at 10 years of age is correlated 

with maternal consumption of these macronutrients during gestation, but not with postnatal 

maternal diet or paternal diet50. Studies in non-human primates further support the idea that 
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maternal pre-gravid obesity and high fat diet consumption during pregnancy synergize to 

promote fat consumption in offspring at weaning, without effects on overall calorie intake51.

Development of gustatory systems in pre-term infants exposed to severe IUGR may be 

delayed143, but the ability to detect sweet or fat tastes is not impaired in adulthood15,144. 

Similar to observations with maternal obesity, exposure to maternal undernutrition or 

intrauterine growth restriction (IUGR) is also consistently associated with increased 

preference for palatable foods in the first few years of life, without effects on total caloric 

intake. However, there are differences between studies in the preferred macronutrient as well 

as the persistence of the effect. Some groups reported increased consumption of 

carbohydrates144, while others observed increased fat consumption15,17,145,146. Some 

studies reported that the preference for palatable food is diminished with age17, while others 

could detect effects in adults15,144,146. There also differences with regard to whether the 

primary impact is on females144, males145, or both genders15. Apparent inconsistencies 

between effects could stem from differences in the severity and duration of gestational 

restriction, as well as conditions in the postnatal environment.

The major limitation of epidemiological studies of maternal programming in the context of 

this article is that the main outcome measure is BMI, and rarely feeding behavior. 

Questionnaire-based quantification of appetitive traits has not yet been applied to investigate 

possible influences of maternal metabolic or nutritional status on specific appetitive traits. 

However, observations that satiety-related scores in infancy are more strongly correlated in 

monozygotic vs. dizygotic twins are consistent with the possibility that the gestational 

environment influences the development of visceral control systems147.

Maternal effects on obesity risk?

Prospective studies of appetitive traits in two independent cohorts in Europe and Asia found 

that low “satiety-responsiveness” trait scores at 3 months are associated with increased meal 

size, and are the largest determinants of excess weight gain in the first two years of 

life148–151,52. Importantly, the inverse relationship between satiety-related appetite scores 

and weight gain in infancy is observed across the BMI spectrum and is independent of initial 

body weight. However, early appetitive traits do not continue as far as adolescence and the 

tight association with BMI is lost by 5–8 years of age119,152. This observation raises the 

possibility that maternal influences on orosensory and visceral control systems are not the 

primary determinants of obesity risk in adulthood.

The gradual shift in strength from satiety- to reward-based regulation of food intake that 

occurs during early childhood (1–5 years) is reflected in the relationship between appetitive 

traits and subsequent weight gain115,116,119,127,128,130,153. Satiety-related appetitive scores 

are no longer predictive of later weight gain, while scores related to emotional and motivated 

aspects of feeding are associated with higher BMI119,152,154,155. Prospective twin studies 

support the idea that feeding behavior in middle childhood is strongly influenced by 

environmental factors, including the quality and quantity of available food, parenting styles 

and psychosocial stress128,131,156. During adolescence, influences of environmental factors 

on feeding behavior decrease while genetic (and shared placental) contributions increase156. 
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Emotional eating in the absence of hunger, but not deficits in satiety or homeostatic 

regulation, has been implicated as a primary driver of weight gain in adolescence119,128.

In summary, studies in humans identified influences of gestational exposures on early 

appetitive traits that do not persist or predict weight gain in adulthood, yet long-lasting 

impacts on food preferences and obesity risk can be observed. To begin to understand the 

mechanism underlying these apparently paradoxical observations, I provide an overview of 

studies maternal influences on neurobiological and behavioral correlates of feeding control 

systems in rodents.

Maternal Influences in Rodents

A wide variety of developmental exposures have been used to investigate the timing and 

persistence of maternal influences on food intake in offspring. Despite some inconsistencies 

between findings in individual studies, there general principles that emerge from this body 

of research. These are discussed in the next section followed by a brief overview of impacts 

of maternal influences on reward and homeostatic circuits, where they are best 

characterized. For more comprehensive reviews of maternal influences on feeding circuits 

see7,106,157–159.

Although in humans, the formation of circuits regulating basic feeding behaviors is largely 

complete during gestation, in rodents, connectivity is not established until the suckling 

period160. By targeting experimental manipulations to gestation and/or lactation, researchers 

identified periods, and therefore processes, that are sensitive to maternal influences. The 

most common strategies to study developmental programming of obesity risk involve 

manipulations of the maternal diet (i.e. caloric or macronutrient restriction or high fat diet 

(HFD)) or reducing or increasing postnatal litter size (to achieve over- or under-nutrition, 

respectively). These experimental paradigms consistently produce significant effects on 

offspring body weight and food intake at weaning. However, there are disagreements about 

the degree to which effects on feeding behavior are permanently “programmed”. A major 

limitation of studies in rodents is that caloric intake of a single diet provided ad libitum is 

usually examined over a period of 1 to 7 days, which does not distinguish between different 

types of feeding control systems. In addition, a major confound that has rarely been 

addressed in rodent studies is the effect of rearing below the thermoneutral zone, which 

leads to increased metabolism and food intake161–164.

Impacts of Maternal Undernutrition

Reward Control Systems—Exposure to undernutrition exclusively during rodent 

gestation has been used to model maternal influences during the first trimester in humans, 

the time frame implicated in epidemiological studies of the Dutch Hunger Winter135. A 

meta-analysis of 89 effect sizes from 13 studies in 4 strains of mice and 40 studies in 3 

strains of rats found weak, non-significant effects of gestational undernutrition on offspring 

caloric intake12. However, exposure to a low-protein diet during gestation (but not caloric 

restriction per se) is associated with mild hyperphagia in adult females (12 weeks), but not 

males12. Consistent with observations in humans15,165, exposure to undernutrition during 

gestation is associated with an increased preference consumption of high fat foods in male 
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and female rats13 and increased motivation for palatable food reward in male rats166,167 and 

mice168. However, preferences for fat are only linked to increased adiposity in females, with 

no effect on body weight in either gender13. With age, effects on food preference are no 

longer apparent (30 weeks)13.

Despite the robust link between gestational restriction and fat preference in rodents and 

humans, consistent neurobiological correlates have not been identified. Some groups 

reported increased responsiveness to a palatable food reward in the NAc of adult rats166,167, 

but other groups did not169,170. Although several groups reported changes in the expression 

of key components of the dopamine signaling pathway in the NAc, findings were not 

consistent across the groups168–171.

Homeostatic Control Systems—The most pronounced effects on growth and food 

intake are achieved by manipulations during the lactation period in rodents and the third 

trimester in humans136. Increasing litter sizes to cause undernutrition by limiting the milk 

supply to an individual pup results in marked reductions in caloric intake at weaning60,61, 

but these often do not persist to adulthood. Exposure to postnatal undernutrition has been 

linked to increased weight gain and adiposity when challenged with a HFD. However, higher 

weight gain is not due to increased caloric intake172–177. The only large-scale study to study 

the impact of litter size across the spectrum revealed that the main determinant of HFD-

induced weight gain in adulthood is post-weaning growth rate and adiposity, and not food 

intake177.

The maturation of circuits that provide pre-synaptic and post-synaptic inhibitory signals to 

AgRP neurons is delayed by postnatal undernutrition in rodents97. The increased time 

window for leptin-induced activation of AgRP neurons likely underlies the persistent 

increase in orexigenic AgRP→PVH projections in models of undernutrition97,178–181. The 

delay in the onset of negative feedback from leptin signaling also promotes catch-up 

growth97, a significant predictor of obesity risk137–141.

Impacts of Maternal Obesity

Reward Control Systems—Maternal intake of an obesogenic diet has been used to 

model developmental exposure to obesity. Exposure throughout gestation and lactation to 

maternal consumption of an obesogenic HFD is correlated with increases preference for fat 

in offspring in young adult rats (10–12 weeks)14,182. Although some groups report that this 

effect is permanent194, others found that it diminished with age14,182. As reported in early 

childhood in humans128,131,156, environmental influences in the rodent post-weaning period 

are important determinants of food preferences. Exposure to a low fat/sugar diet from 3–6 

weeks can reverse food preferences associated with gestational exposure to high fat/sugar 

diets183, and conversely, exposure to high fat/sugar diets from 3–4 weeks is sufficient to 

program persistent preferences for dietary fat in adulthood16.

Several groups assessed the impact of exposure to an obesogenic maternal diet on the 

expression of opioid and dopamine pathway components in mesolimbic reward circuits. 

Among these studies, the most consistent finding is that mu opioid receptor (MOR) 

expression is elevated in the NAc182,184–187. Increased MOR expression is associated with 
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hypomethylation184 and is reversed with methyl donor supplementation188. However, 

normalization of expression levels by treatment with a methyl donor188 or naloxone189 is not 

sufficient to reverse the preference for fat. Another complexity in transcriptional analyses of 

dopamine and opioid circuits is that they undergo extensive remodeling in the peri-weaning 

period. For example, MOR expression is positively correlated with fat intake in the post-

weaning period (6 weeks)183, but this relationship is reversed at 3 months182. This plasticity 

likely underlies observations that the post-weaning diet can override earlier exposures183,16.

Homeostatic Control Systems—As seen with undernutrition, the largest impact of 

exposure to overnutrition on caloric intake and growth is observed during rodent lactation. 

Reductions in litter size to produce “overnutrition” due to less suckling competition or 

maternal HFD consumption during lactation lead to increased caloric intake and adiposity at 

weaning60,61,190–194. Although findings of programmed increases in body weight are 

consistent, observations about the impacts on offspring food intake are not. A meta-analysis 

of approximately 2500 unique individuals for food intake and body weight measurements 

from 53 studies in 8 laboratory strains of rats and mice identified the main source of 

variability in reported outcomes – whether food intake is scaled allometrically to body 

mass194. There are small and statistically non-significant difference in food intake, 

indicating that apparent increases in food intake likely reflect increased body mass of 

offspring. Notably, offspring diet did not interact with maternal HFD exposure to increase 

weight gain. Thus, overnutrition models in rodents recapitulate the observation that 

accelerated postnatal growth is the strongest predictor of obesity risk in humans139,195. 

However, the data support the idea that influences of early growth rates on later obesity risk 

are primarily mediated via effects on systems regulating energy expenditure and not food 

intake106,177,196.

AgRP neuronal maturation extends from mid-gestation through the post-weaning period. 

Although maternal factors can alter the number of NPY+ neurons during gestation and 

lactation, these differences rarely persist to adulthood197,198. Exposure to maternal obesity 

or over-nutrition during lactation can also reduce the number of neurons that express leptin 

receptors, with lasting decreases in responsiveness to negative homeostatic feedback by 

circulating leptin199,200. In parallel, genetic or nutritional manipulations that reduce leptin 

signaling during lactation (i.e. HFD, diabetes) are also associated with a permanent 

reduction in the number of orexigenic AgRP→PVH inputs193,199,201,202. These 

counterbalanced impacts of maternal obesity on the homeostatic system are reflected in the 

absence of persistent impact on caloric intake.

Maternal Programming: a framework

There are strong parallels between rodent and human studies with respect to the ontogeny of 

feeding control systems and key periods of susceptibility to maternal influences on feeding 

behaviors and obesity risk. Behavioral and epidemiological studies in humans provide 

insights into changes in the relative strength of different feeding control systems across the 

developmental continuum and the relative importance of environmental factors during each 

stage. Studies in rodent models identified critical periods of developmental when circuits 

regulating each type of control system are remodeled, and are thus sensitive to maternal 
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and/or environmental influences. In this section, I develop a generalizable framework for 

interpreting observations across a range of species and experimental manipulations by 

exploiting the strengths of each experimental system.

Orosensory and Visceral Control Systems

Maternal nutritional and metabolic status influences early patterns of food intake regulated 

by direct orosensory and visceral systems. These do not continue into adulthood and do not 

predict obesity risk, because reward and emotional control systems are the primary 

determinants of feeding behavior in the post-weaning period (early childhood).

Reward Control Systems

Exposure to maternal undernutrition13,15,203 and consumption of high fat/sugar 

foods14,50,51,182 are associated with increased preference for fat in the post-weaning period, 

but this behavior often diminishes with time. Across species, early gestation is a critical 

window for programming increased preference for high fat foods in response to maternal 

undernutrition13,15,203. However, in response to a maternal obesogenic diet, exposure during 

lactation is sufficient to program increased reward signaling in response to fat. Although the 

underlying neurobiology remains to be elucidated, it does not require changes in expression 

levels of critical components of the mesolimbic dopamine system188,189,204. Evidence from 

humans115,127 and rodents16,183 supports the idea that post-weaning diet and other 

environmental factors continue to influence pruning and remodeling in reward circuits 

during throughout childhood87, which overrides earlier effects.

Homeostatic Control Systems

Physical connectivity within homeostatic control circuits forms later than other systems 

(Figure 6B) and across rodent species and experimental paradigms, maternal influences 

during lactation produce marked and persistent effects on the structure of homeostatic 

feeding circuits. The onset of homeostatic control of feeding occurs 3–4 weeks after the 

circuits can sense and transmit leptin and ghrelin signals. The function of homeostatic 

circuits during lactation and the peri-weaning period in humans and rodents is linked to 

growth rate and not food intake. Thus, maternal influences on homeostatic systems are well-

positioned to mediate the impacts of catch-up growth on later obesity risk. Because the 

impact of catch-up growth is thought to be mediated via effects on energy expenditure and 

not on food intake106,139,152, it would seem to contradict the idea that maternal influences on 

homeostatic circuits are responsible for persistent impacts on feeding behavior.

Homeostatic Circuits and Reward Systems

Recent studies present another possible avenue by which maternal influences on 

hypothalamic homeostatic circuits during lactation might program lasting impacts on 

feeding behavior – through indirect effects on the development of reward control systems204. 

Although the focus of neuroanatomical studies of homeostatic feeding circuits has been on 

projections to the PVH, innervation of key nodes mediating reward (LHA) is also reduced in 

mice exposed to an obesogenic diet during lactation193. During lactation, transient 
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projections from AgRP neurons to the VTA provide another means by which nascent 

homeostatic circuits can communicate with reward circuits205. Projections from AgRP 

neurons are well-positioned to influence the maturation of opioid and dopamine signaling 

systems that spans the second to fourth postnatal weeks84,85 (Figure 6B).

Two different experimental paradigms that diminish the formation of AgRP projections to 

downstream targets in lactation – neonatal AgRP neuronal ablation and/or dysfunction205,206 

and exposure to overnutrition/obesogenic diet193,199,201,202 – increase the strength function 

of reward control systems in response to high fat diet184,191,204,207. These effects do not 

require changes in the expression of dopamine pathway components189,204, but are 

dependent on direct ghrelin signaling within the VTA204. Direct ghrelin signaling in 

dopamine neurons has also been linked to increased sensitivity of feeding behavior to social 

stress204,208. Thus, reductions in the function of neural homeostatic inputs during 

development may lead to an enhanced influence of the action of neuroendocrine signals of 

energy status (i.e. leptin and ghrelin) on the activity of reward systems.

Summary and Future Directions

Feeding behavior reflects the integrated output of orosensory, visceral, reward, homeostatic 

and emotional control systems. In adults, the balance between these system shifts in 

response to metabolic status (i.e. fasting vs. fed) and type of food (palatable vs. aversive). 

This review presents evidence that the balance between these systems changes across the 

developmental continuum as additional control systems emerge and mature. Studies in 

rodent models have provided insight into how maternal influences during the formation of 

reward and homeostatic circuits determine fat preference and growth. These effects are later 

overridden by environmental influences during the post-weaning period, a time of synaptic 

remodeling in reward circuits. Investigating how interactions between developing 

homeostatic and reward circuits regulate susceptibility to nutritional and environmental 

stressors in an important area for future research. In addition, we need to define 

neurobiological substrates of emotional control systems that emerge in adolescence as 

primary drivers of feeding behavior and weight gain. The application of advanced 

techniques to trace neuronal projections and synaptic architecture in the intact brain209 and 

systems to record activation in genetically-defined subsets of neurons in free-behaving 

animals210,211 will accelerate these efforts. To increase the likelihood that experimental 

paradigms in rodents are addressing physiologically relevant phenomena, studies to assess 

the influence of maternal factors on different types of feeding behavior across the 

developmental continuum in humans are critical.
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the sum of short-term energy availability and long-term energy stores; this information is 

transmitted by a combination of nutrient (i.e. glucose), hormonal (i.e. insulin) and neural 

(i.e. vagus-mediated gastric distension) signals.

Maternal undernutrition
insufficient food intake during pregnancy and/or lactation, usually resulting in growth 

restriction.

Pre-gravid
relating to the period before pregnancy

Emotional eating
eating to satisfy emotional needs rather than to satisfy hunger or homeostatic needs; a classic 

example is eating behavior in response to stress.

Dutch Hunger Winter
a famine that took place in the Netherlands near the end of World War II. Epidemiological 

studies of children of pregnant women exposed to this famine provided some of the earliest 

evidence of maternal programming of disease risk.

Orosensory inputs
information about food from sensory receptors in the oral cavity, such taste and texture

Intrauterine growth restriction
a condition when a baby is smaller than expected for its gestational age because it is not 

growing at the normal rate inside the uterus.
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Figure 1. Summary diagram illustrating cross-talk between circuits regulating different aspects 
of feeding behavior.
Orosensory (purple) and vagal (red) signals are transmitted directly to the nucleus of the 

solitary tract (NTS) to promote and terminate feeding, respectively. Visceral signals are also 

transmitted directly or via the parabrachial nucleus (PB) to higher brain structures, where 

they converge with other feeding control systems (red arrows). Food-related sensory cues are 

transmitted from the prefrontal cortex (PFC) to reward circuits (green arrows). Information 

about metabolic status is transmitted via neural (green arrows) and circulating signals (light 

blue arrows). Emotional cues are related via the bed nucleus of the stria terminalis (BNST) 

and central nucleus of the amygdala (CeA) to regulate feeding behavior in response to 

anxiety and threats in the external environment (pink arrows). Cross-talk and competition 

between these inputs while they are still forming could impact the balance between circuits 

regulating different modalities of food intake. Arrowheads represent excitatory inputs, while 

lines represent inhibitory inputs. Open circles represent dopamine signaling, while closed 

circles can be inhibitory or excitatory.

Abbreviations: ARH, arcuate nucleus of the hypothalamus; BLA, basolateral nucleus of the 

amygdala; CPG, central pattern generator; LHA, lateral hypothalamic area; NAc, nucleus 

accumbens; PAG, periaqueductal gray; PVH, paraventricular nucleus of the hypothalamus; 

SC, superior colliculus; VTA, ventral tegmental area.

Zeltser Page 27

Nat Rev Neurosci. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Ontogeny of orosensory inputs in rodents.
Information about food during the consummatory phase is relayed from the mouth directly 

to the nucleus of the solitary tract (NTS) (gray arrows), where it is transmitted to reticular 

central pattern generators (CPGs) that drive motor outputs (red arrows). This direct control 

system operates within the hindbrain and does not require connections to forebrain circuits. 

Orosensory circuits are present at birth (postnatal day 0 (P0)) and are refined over the course 

of lactation (to P21). Projections relaying sweet tastes mature before those relaying fat. Thin 

dotted lines indicate that the presence of a physical connection, but weak or immature signal 

transmission. Bold dashed lines represent signal transmission that is robust, but immature. 

Solid lines represent mature connections.
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Figure 3. Ontogeny of visceral control systems in rodents
Visceral inputs are transmitted through direct and indirect control systems. Direct 

transmission via the vagus to the nucleus of the solitary tract (NTS) is sufficient to regulate 

meal termination and is present from birth (postnatal day 0, P0). Indirect control systems 

that transmit visceral signals from the NTS to higher brain centers develop across lactation 

(P7-P21). Projections from the NTS to the paraventricular nucleus of the hypothalamus 

(PVH) can be detected at birth. Visceral signals that are transmitted to key nodes in 

emotional control systems (bed nucleus of the stria terminalis (BNST) and central nucleus of 

the amygdala (CeA)) via the parabrachial nucleus (PB) are not fully functional until the end 

of lactation (P21). Thin dotted lines indicate the presence of a physical connection, but weak 

or immature signal transmission. Bold dashed lines represent signal transmission that is 

robust, but immature. Solid lines represent mature connections. Light gray lines represent 

projections for which developmental datapoints are missing.

Abbreviations: CPG, central pattern generator.
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Figure 4. Ontogeny of reward control systems in rodents
Information about the sensory properties of food is relayed from the prefrontal cortex (PFC) 

to key nodes in circuits that regulate reward. Projections between some nodes in the 

mesolimbic dopamine system can be detected at birth (lateral hypothalamic area (LHA)→ 
ventral tegmental area (VTA) and VTA→ nucleus accumbens (NAc)). Dopamine and opioid 

signaling pathways develop across lactation and are not fully functional until a week after 

weaning (postnatal day 28 (P28)). Thin dotted red lines indicate the presence of a physical 

connection, but weak or immature signal transmission. Bold dashed blue lines represent 

signal transmission that is robust, but immature. Solid blue lines represent mature 

connections. Gray lines represent projections for which developmental datapoints are 

missing. Arrowheads represent excitatory inputs, whereas lines represent inhibitory inputs. 

Open circles represent dopamine signaling.
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Figure 5. Ontogeny of homeostatic control systems in rodents
Interoceptive information about long-term energy stores is transmitted via neural projections 

from agouti-related peptide (AgRP) neurons (green arrows) and direct signaling via 

circulating factors (light blue arrows). Projections from AgRP neurons to downstream 

targets are not detected at birth. AgRP neuronal responsiveness to circulating leptin and 

ghrelin is observed within a week after birth; these signals regulate neurite outgrowth during 

lactation. A transient projection to the ventral tegmental area (VTA) is formed by postnatal 

day 7 (P7), and projections to the lateral hypothalamic area (LHA) and paraventricular 

nucleus of the hypothalamus (PVH) are fully formed by the end of lactation, AgRP circuits 

do not regulate homeostatic feeding behavior until P28. Thin dotted lines indicate the 

presence of a physical connection, but weak or immature signal transmission. Bold dashed 

lines represent signal transmission that is robust, but immature. Solid lines represent mature 

connections. Gray lines represent projections for which developmental datapoints are 

missing. Arrowheads represent excitatory inputs, while lines represent inhibitory inputs. 

Light blue circles represent sites that directly sense circulating signals of energy status (i.e. 

leptin and ghrelin).

Abbreviations: ARH, arcuate nucleus of the hypothalamus; BNST, bed nucleus of the stria 

terminalis; CeA, central nucleus of the amygdala; LHA,; NTS, nucleus of the solitary tract; 

P, postnatal day; PAG, periaqueductal gray; PB, parabrachial nucleus.
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Figure 6. Step-wise progression of ontogeny of feeding control systems is conserved between 
humans and rodents.
In humans (top), population-based studies of feeding behavior demonstrate that the relative 

balance between different control systems changes across the developmental continuum. In 

rodents (bottom), the ontogeny of control systems has been defined at the neuroanatomical 

level. The start position of each arrow reflects the onset of a physical connection. Gradations 

of color intensity reflect increased maturation. Boxes outlined with dashed lines in reward 

and emotional systems represent periods of remodeling. Circuits are most sensitive to the 

effects of external influences during periods of maturation and remodeling.

While the absolute timing of developmental processes is necessarily different, the emergence 

of different control systems in relation to major developmental milestones is highly 

conserved. Orosensory (purple) and visceral (red) control systems are present at birth, but 

are superseded by other controls systems. Reward control systems (blue) gain in importance 

after weaning and are influenced by environmental factors. Emotional control systems (pink) 

are the primary driver of weight gain in adolescence. Homeostatic control systems (green) 

have not been assessed in studies in humans.
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