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Abstract

Functional asymmetries, for example, the preferential involvement of 1 brain hemisphere to process

stimuli, may increase brain efficiency and the capacity to carry out tasks simultaneously. We investi-

gated which hemisphere was primarily involved in processing acoustic stimuli in goats using a head-

orienting paradigm. Three playbacks using goat vocalizations recorded in different contexts: food

anticipation (positive), isolation (negative), food frustration (negative), as well as 1 playback involving

dog barks (negative) were presented on the left and right sides of the test subjects simultaneously.

The head-orienting response (left or right) and latency to resume feeding were recorded. The direc-

tion of the head-orienting response did not differ between the various playbacks. However, when the

head-orienting response was tested against chance level, goats showed a right bias regardless of

the stimuli presented. Goats responded more to dog barks than to food frustration calls, whereas re-

sponses to food anticipation and isolation calls were intermediate. In addition, the latency to resume

feeding, an indicator of fear reaction, was not affected by the kind of vocalization presented. These re-

sults provide evidence for asymmetries in goat vocal perception of emotional-linked conspecific and

heterospecific calls. They also suggest involvement of the left brain hemisphere for processing

acoustic stimuli, which might have been perceived as familiar and non-threatening.

Key words: auditory processing, brain asymmetry, emotions, lateralization, social cognition, vocal communication

Behavioral lateralization refers to how behaviors are performed pre-

dominantly using either the right or the left side of the body (Rogers

and Andrew 2002; Baruzzi et al. 2017). When an individual shows a

right or left preference, it indicates asymmetry at an individual level

(e.g., being left- or right-handed; Rogers and Andrew 2002). When

the majority of individuals show the same side preference, this sug-

gests asymmetry at the population level (Vallortigara and Rogers

2005). In humans, population-level asymmetries are represented by

the predominance of the left hemisphere in processing syntactic and

semantic information, and by the prevalence of the right hemisphere

in processing information about prosody, novelty, and emotional

content (Fitch et al. 1997; Friederici and Alter 2004).

The experimental procedure usually applied to test functional

auditory asymmetries in response to vocalizations of conspecifics and

heterospecifics is based on a major assumption (Teufel et al. 2007;

Siniscalchi et al. 2008). It is assumed that when a sound is perceived

simultaneously in both ears, the head orientation to either the left or

right side is an indicator of the side of the hemisphere that is primarily

involved in the response to the stimulus presented. There is strong evi-

dence that this is the case in humans; auditory input in humans is
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processed by the contralateral hemisphere when 2 auditory stimuli are

presented simultaneously from both sides (dichotic paradigm). The as-

sumption is also supported by the neuroanatomic evidence of the

contralateral connection of the auditory pathways in the mammalian

brain (Rogers and Andrew 2002; Ocklenburg et al. 2011).

In animals, brain lateralization seems to underline the different

response to conspecific versus heterospecific calls. Japanese ma-

caques Macaca fuscata, rhesus monkeys Macaca mulatta, California

sea lions Zalophus californianus and dogs Canis lupus familiaris dis-

played a left hemisphere asymmetry when processing calls from con-

specifics (Petersen et al. 1978; Heffner HE and Heffner RS 1984;

Hauser and Andersson 1994; Poremba et al. 2004; Böye et al.

2005). By contrast, mouse lemurs Microcebus myoxinus and

Barbary macaques Macaca sylvanus showed no orientation prefer-

ences in response to conspecific or heterospecific vocalizations

(Scheumann and Zimmermann 2005; Teufel et al. 2007). Vervet

monkeys Cercopithecus aethiops displayed a right hemisphere asym-

metry for conspecific vocalizations regardless of their familiarity

with these vocalizations (Gil-da-Costa and Hauser 2006). Horses

Equus caballus showed a left hemisphere (right ear turn) processing

for calls emitted by a familiar neighbor (familiar horse housed in a

close field or stall), but no preference for group members (also famil-

iar) or strangers (Basile et al. 2009). The lack of consistency between

species regarding which hemisphere processes specific types of

acoustic stimuli shows that further investigations are needed to ex-

plore the mechanisms underlying the variation in the direction of

auditory asymmetry across species.

Emotional content could account for the variation observed be-

tween species in auditory asymmetries. Historically, 2 main theories

of brain lateralization have been proposed for the cortical lateraliza-

tion of emotional processing (Demaree et al. 2005). The “right-

hemisphere model” proposes right hemisphere dominance for ex-

pression and perception of emotionally loaded signals, regardless of

valence. By contrast, the “valence model,” suggests a dominance of

the right hemisphere in processing negative emotions and a domin-

ance of the left hemisphere in processing positive emotions (Tucker

1981; Silberman and Weingartner 1986; Ehrlichman 1987;

Demaree et al. 2005). In dogs, a left hemisphere preference has been

observed when processing different types of vocalizations from a

conspecific and a right hemisphere preference (head turning to the

left side) when processing thunderstorm sounds (Siniscalchi et al.

2008). In addition, a right hemisphere preference was linked with

conspecific calls produced in a context eliciting intense arousal, like

isolation and play (Siniscalchi et al. 2008). The involvement of the

right side of the brain for processing emotional signals was also con-

firmed by later research showing a left turning bias in response to

the visual presentation of threatening (silhouette of snake) and

alarming (silhouette of cat) stimuli (Siniscalchi et al. 2010), and also

in response to broadcasted dog barks (Reinholz-Trojan et al. 2012).

This left turning bias was claimed to result from the emotional con-

tent of the barks used, which were recorded when an unknown dog

appeared (Reinholz-Trojan et al. 2012; Andics et al. 2017). Dogs

also exhibit a right hemisphere asymmetry (left head-orienting bias)

in response to a meaningless human voice (phonemic components

removed) with positive intonation (Ratcliffe and Reby 2014). In

addition, fMRI in dogs found a left hemisphere bias for processing

human and dog sounds with positive valence (Andics et al. 2014,

2016, 2017; Andics 2017; Reinholz-Trojan et al. 2012). These find-

ings indicate that both the familiarity with the stimulus, whether it

is produced by a conspecific or heterospecific, and its emotional

arousal and valence, could interact to affect lateralized behavioral

responses in non-univocal ways.

Goats display different behavioral, neural, and physiological reac-

tions to situations inducing positive (i.e., food anticipation) and nega-

tive emotions (i.e., isolation or food frustration, in which food was

inaccessible; Gygax et al. 2013; Briefer et al. 2015). When goats were

expected to receive food reward after 3 days of habituation and when

they experienced food frustration, they had high physiological and be-

havioral activation compared with a control and isolation situation,

and also high activation in the prefrontal cortex (Gygax et al. 2013;

Briefer et al. 2015). Bilateral prefrontal cortex activation was found

in the negative condition, whereas in the positive situation, the activa-

tion was mainly revealed in the left hemisphere (Gygax et al. 2013).

This suggests that situations that elicit positive emotions preferentially

engaged one side of the brain (i.e., left hemisphere). Remarkably, goat

vocalizations also vary according to the emotional arousal and va-

lence experienced by the animals (Briefer et al. 2015). However, to

date, hemispheric lateralization in goats in response to emotional

vocalizations from conspecifics, and how this compares to processing

heterospecific vocalizations, remains to be investigated.

Potential auditory processing asymmetries in goats were investi-

gated in this study. A head-orienting paradigm was used to examine

perceptual asymmetry in response to playbacks of conspecifics emit-

ted under positive high arousal (food anticipation), negative low

arousal (isolation) and negative high arousal (food frustration) emo-

tional states, and to dog barks (i.e., stimuli potentially perceived as

negative). According to previous findings (Petersen et al. 1978;

Hauser and Andersson 1994; Siniscalchi et al. 2008), it was pre-

dicted that goats would turn their heads toward the right (left hemi-

sphere processing) in response to conspecific calls, and to the left in

response to dog barks (right hemisphere processing). Alternatively,

if the right hemisphere processes only high arousal sounds (“right-

hemisphere model”; Demaree et al. 2005), we would expect a right

hemisphere bias to process food anticipation calls, food frustration

calls, and dog barks, because they are all produced under high

arousal and likely elicit high arousal in receivers (Briefer et al.

2015). A right hemisphere (left side) bias for processing all tested

acoustic stimuli could also be expected, because this hemisphere is

involved in processing novel stimuli and/or stimuli with emotional

content. Finally, according to the “valence model” (Demaree et al.

2005), we would expect the right hemisphere to process negative

sounds (dog barks, food frustration, and isolation calls), and the left

hemisphere to process positive sounds (food anticipation calls).

Materials and Methods

Subjects and management conditions
The study was carried out at a goat sanctuary (Buttercups Sanctuary

for Goats, http://www.buttercups.org.uk; Kent, UK). Employees

and volunteers at the sanctuary provided routine care for the ani-

mals (120 animals housed at the time of testing), and therefore the

goats were fully habituated to human presence and handling (Briefer

et al. 2015). During the day, goats were released together into 1 or 2

large fields where shelters are provided. During the night, goats

were kept indoors either in individual or shared pens (average

size¼3.5 m2) with straw bedding. Goats had ad libitum access to

hay, grass, and water, and were also fed with a commercial concen-

trate in quantities that vary according to their size, health, and age.

In total, 18 adult goats (9 females and 9 castrated males) of different

breeds and ages (age range: 2–16 years old) housed at the sanctuary

68 Current Zoology, 2019, Vol. 65, No. 1

Deleted Text: two 
Deleted Text: ,
Deleted Text: s
Deleted Text: <xref ref-type=
Deleted Text: ,
Deleted Text: <xref ref-type=
Deleted Text: M
Deleted Text: s
Deleted Text: ,
Deleted Text: s
Deleted Text: s
Deleted Text: neighbour
Deleted Text: two 
Deleted Text: ,
Deleted Text: <xref ref-type=
Deleted Text: ,
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: <xref ref-type=
Deleted Text: ,
Deleted Text: lateralised
Deleted Text: behavioural
Deleted Text: behavioural
Deleted Text: , <xref ref-type=
Deleted Text: three 
Deleted Text: behavioural
Deleted Text: to 
Deleted Text: <xref ref-type=
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: s
Deleted Text: ,
Deleted Text: <xref ref-type=
Deleted Text: s
Deleted Text: since 
Deleted Text:  
Deleted Text: M
Deleted Text: m
http://www.buttercups.org.uk
Deleted Text: one 
Deleted Text: two 
Deleted Text:  


for at least 1 year were randomly selected and tested from

September to October 2016.

Playback test
Sound recordings

The goat vocalizations used in the playback test were obtained from a

previous study (Briefer et al. 2015) at the same location. Vocalizations

were recorded at distances of 3–5 m from the focal animal using a

Sennheiser MKH-70 directional microphone (frequency response

50–20, 000 Hz, max SPL 124 dB at 1 kHz) connected to a Marantz

PMD-660 numeric recorder (sampling rate: 44.1 kHz with amplitude

resolution of 16 bits in WAV format), and were then edited and

rescaled to the same maximum amplitude using PRAAT software

(Boersma and Weenink 2009). The vocalizations for the playback test

were recorded during 3 different contexts: 1) food anticipation (posi-

tive, high arousal), in which the animals, tested in pairs in 2 adjacent

pens, learned to anticipate a food reward after 3 days of training (1 ses-

sion per day to the situation), and were recorded on the 4th day when

the experimenter approached them with the food; 2) food frustration

(negative, high arousal), in which only 1 of 2 goats tested in adjacent

pens received food from the experimenter (duration: 4 min); 3) isola-

tion (negative, low arousal), in which goats were left alone for 5 min in

an outdoor isolated pen, after 3 days of habituation (1 exposition per

day to the situation; Briefer et al. 2015). The arousal and valence of the

situations during which the calls were recorded were validated using

physiological and behavioral indicators of emotions. The arousal was

established based on the heart rate elicited by the various situations

and revealed that the food anticipation and food frustration triggered

emotions of similar high arousal, whereas the isolation situation trig-

gered emotions of low arousal that did not differ from the control situ-

ation (by pair, undisturbed, with hay in the feeders). Analyses revealed

that the high arousal situations (food anticipation and food frustra-

tion), compared with the low arousal ones (isolation and control),

were also associated with lower heart-rate variability, higher respir-

ation rate, more movements, more calls, more time spent with ears

pointing forward and less time with ears on the side. In the positive

situation (food anticipation), compared with the neutral (control) and

negative situations (isolation and food frustration), goats had their ears

oriented backward less often and spent more time with their tails up

(Briefer et al. 2015). These indicators of positive situations are similar

to those found in other studies (e.g., Reimert et al. 2013, 2015). The

detailed acoustic vocal parameter analysis identified 6 acoustic param-

eters affected by the arousal. F0 contour over time and energy quartile

increased with arousal, whereas the 1st formant decreased. F0 vari-

ation within the call was influenced by valence and decreased from

negative to positive valence (for more details see Briefer et al. 2015). In

addition, a 4th kind of vocalization (heterospecific) was played back:

dog barks (obtained from sounddog.com), with a sampling rate of

44.1 kHz and amplitude resolution of 16 bits in WAV format.

The audio stimuli used in the playback test consisted of one sin-

gle vocalization each (mean duration: 0.74 6 0.12 s). In total, 4

treatments were prepared: food anticipation, food frustration, isola-

tion, and dog bark (Figure 1). For each treatment, 3 unique stimuli,

produced by 3 different individuals (for both goats and dogs) were

selected to reduce pseudoreplication (Waller et al. 2013). The goat

calls used were recorded in 2011 at the same location. The calls se-

lected belonged to goats that did not share a pen with the subjects

during the night, or to goats that were no longer at the sanctuary at

the time of testing. Therefore, we expected all goat calls used in our

experiment to be equally familiar for the subjects (Pitcher et al.

2017).

Test procedure

Figure 2 illustrates the experimental setup (7 m�5 m), which was

placed in the usual daytime range of the goats. A feeding bowl filled

with a mixture of dry pasta and hay and familiar to the goats was

fixed in the center, on the opposite side of the entrance of the arena.

Each vocalization was broadcasted from 2 Mackie Thump TH-12 A

loudspeakers (LOUD Technologies Inc., Woodinville, WA; fre-

quency response: 57–20 kHz 6 3 dB) connected to an active box to

boost the sound (Active Box DI-100 Fame) and an Mp4 player

(Technika MP111), at approximately natural amplitude commonly

used in previous studies (Briefer and McElligott 2011a,

80.08 6 0.90 dB measured at 2 m using an ASL-8851 sound level

meter). Both speakers were set at the same, constant volume. The

speakers were positioned at equal distance (2 m) from the right and

left side of the bowl, and were aligned to it. In addition, the speakers

were concealed using camouflage netting.

Each subject received 3 sessions, with 1 session being administered

per day. Each session consisted of 8 consecutive trials, that is, 2 repeti-

tions of each treatment (same stimulus was repeated within the session

but changed across the sessions), adding up to 6 repetitions per treat-

ment over the 3 sessions. The order in which the treatments were tested

within each session was counterbalanced between subjects and ses-

sions. As soon as the goat started to feed from the bowl, 1 of 4 treat-

ment vocalizations was played from the 2 speakers simultaneously.

The minimum time between each playback trial was 10 s. The max-

imum time to resume feeding (i.e., the subject moved the head inside

the bucket) was set at 30 s (average time to resume feeding after the off-

set of the playback: 3.706 0.21 s). Playbacks were initiated only if the

test subject’s body was positioned orthogonally to the speakers. In

cases where the subject was in an incorrect position, a 2nd experi-

menter adjusted the body position of the goat before the next trial

started. During the test, this 2nd experimenter was standing still, be-

hind the goat, close to the gate inside the testing arena (Figure 2).

All trials were video recorded using a digital video camera placed

behind the subject (Sony HDR-CX190E). The head-orienting re-

sponses of goats toward the speakers were recorded, from the time

the sound started to 30 s after. Four possible responses were con-

sidered and scored: head oriented right (head toward the right side

when the body of the goat was orthogonal to the speaker), head ori-

ented left (head toward the left side when the body of the goat was

orthogonal to the speaker), head up (no turning to either the left or

right sides and head raised toward the horizon from the initial pos-

ition), and no response (i.e., the subject did not move its head within

30 s from the start of the sound). The latency to resume feeding

from the bowl (measure of fear reaction) was scored directly during

the testing. The maximum time to resume feeding was set at 30 s

after the offset of the sound. If the subject did not resume feeding

within the 30 s time window, they were gently moved toward the

bucket and all goats tested continued feeding.

Statistical analyses
In order to determine if the strength of the responses differed be-

tween treatments, we tested the effect of the sound treatment on the

proportion of head movement response and on the time to resume

feeding. The proportion of head movement response was treated as

a binary choice (head oriented right, head oriented left or head

up¼1, and no response¼0) and was analyzed with a generalized

mixed-effects model (GLMM) fit with binomial family distribution

and logit link function (GLMM; glmer function, lme4 library;

Pinheiro 2000) in R v.3.2.2 (R Core 2013). The time to resume feed-

ing was analyzed with a linear mixed-effects model (LMM) fit with
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Gaussian family distribution and identity link function (lmer func-

tion, lme4 library). Both models included the treatment (Food

Anticipation, Isolation, Food Frustration, and Dog) and the order of

presentations of stimuli for each treatment over the 3 sessions as

fixed factors. Including the presentation order allowed us to control

for any potential habituation effect over the 3 sessions. The session

nested within the identity of the goats was included as a random fac-

tor to control for repeated measurements.

We also analyzed the effect of the treatment on the head-

orienting response of the goats. Head orientation was treated as a

binary choice variable (head oriented right¼1, head oriented

left¼0, head up and no response¼NA) and was analyzed using

a GLMM fit with binomial family distribution and logit link

function (glmer function). This model included the same fixed ef-

fects (treatment and presentation order) and random effect struc-

ture (session nested within goat identity) as the models described

above.

For all models (GLMM and LMM), we checked the residuals

of the models graphically for normal distribution and homoscedas-

ticity (simulateResiduals function, DHARMa library). In order to

Figure 1. Examples of calls used in the experiment. Oscillograms (above) and spectrograms (below) of (A) goat food anticipation call, (B) goat isolation call, (C)

goat food frustration call and (D) dog bark used in the playback experiment.
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meet the model assumptions, the latency to resume feeding was

log-transformed. P-values (PBmodcomp function, pbkrtest library)

were calculated using parametric bootstrap methods (1,000 boot-

strap samples). To this aim, models were fitted with maximum like-

lihood. P-values calculated with parametric bootstrap tests give the

fraction of simulated likelihood ratio test (LRT) statistic values that

are larger or equal to the observed LRT value. This test is more ad-

equate than the raw LRT because it does not rely on large-sample

asymptotic analysis and correctly takes the random-effects structure

into account (Halekoh and Højsgaard 2014). When a significant

treatment effect was detected, we carried out Tukey post hoc tests

for 2-by-2 comparison (glht function, multcomp library in R).

In addition, we investigated whether the head-orienting response

showed a deviation from chance level. This was done by comparing

the average head-orienting response for each goat (ranging from 0

to 0.5 for a left bias, and from 0.5 to 1 for a right bias) to a hypo-

thetic mean of 0.5 (absence of laterality) using a 1-sample t-test. The

average head-orienting response was logit-transformed beforehand

in order to approximate a normal distribution.

Results

Proportion of head movement responses and latency to

resume feeding
The kind of vocalization presented during the playback (food antici-

pation, food frustration, isolation, and dog bark) affected the pro-

portion of head movement responses of the goats (GLMM: n¼432

trials, 18 goats; P¼0.005; Figure 3). Post hoc comparisons revealed

that goats moved their heads more often after dog barks compared

with food frustration calls (z¼�3.36, P¼0.005; Figure 3). The

other 2-by-2 comparisons were not significant (P�0.11). An effect

of the order of stimulus presentation was also found (P¼0.001;

Figure 4), with goats gradually habituated to the vocalizations dur-

ing the 6 presentations.

The time to resume feeding was affected neither by the treat-

ments (LMM: n¼267 trials, 18 goats; v2
3 ¼ 1:13, P¼0.89;

Figure 5) nor by the presentation order (P¼0.43). Overall, this sug-

gests that goats were more alert when hearing dog barks compared

with food frustration calls, and that they habituated to the sound

treatments during the 6 trials.

Head-orienting response and head-orienting bias
The head-orienting response was not affected by the kind of vocal-

izations presented (GLMM: n ¼149 trials, 18 goats; P ¼ 0.26;

Figure 6). This parameter was also not affected by the order of

stimulus presentations (P ¼0.29), suggesting that the direction of

the head-orienting response did not differ between treatments.

Figure 2. Experimental enclosure. The experimental apparatus (7 m�5 m)

consisted of a door that allowed access to a central arena. A familiar feeding

bowl was fixed at the center of the opposite side of the arena. The speakers

were positioned at a distance of 2 m from the right and left side of the bowl

and were aligned to it. X indicates the position of Experimenter 2.

Figure 3. Proportion of head movement responses for each of the 4 treat-

ments (mean and 0.025 and 0.975 quantiles). The vocalizations presented dur-

ing the playback (Food Anticipation, Isolation, Food Frustration, and Dog)

affected the response pattern of the goats (P¼ 0.005). Post hoc comparisons

revealed that goats responded less when a food frustration compared with

dog call was presented (**P<0.01).

Figure 4. Proportion of head movement response over the 6 repetitions of the

stimuli (mean 0.025 and 0.975 quantiles). Goats gradually habituated to the

vocalizations during the 6 presentations of each treatment (P¼0.001).
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The 1-sample t-test performed on all treatments combined re-

vealed a significant deviation of head-orienting response toward the

right side (mean [95% confidence interval] head-orienting re-

sponse¼0.74 [0.50, 0.89]); 1-sample t-test: feeding, t17 ¼2.15,

P ¼ 0.046) compared with chance level (i.e., 0.50). Goats thus

showed a general right bias in their head-orienting responses.

Discussion

Auditory asymmetries were investigated in goats in response to vo-

calizations of conspecifics produced in situations eliciting positive

high arousal (food anticipation) or negative low and high arousal

emotions (isolation and food frustration, respectively), as well as

dog barks. The direction of the head-orienting response did not dif-

fer between treatments. However, goats showed a general right bias

toward the presented acoustic stimuli. These results suggest the in-

volvement of the left hemisphere in response to both conspecific and

heterospecific acoustic stimuli in this species. Brain asymmetries

provide neural advantages and a general increase in brain efficiency,

and therefore have been selected and favored over the course of evo-

lution (Rogers et al. 2004; Vallortigara 2007). However, brain

asymmetry direction (e.g., left or right side) could vary across spe-

cies due to genetics or environmental constraints (Rogers et al.

2004; Gil-da-Costa and Hauser 2006; Vallortigara 2007;

Ocklenburg et al. 2011). For example, head rotation in vertebrate

embryos is determined by several genes (e.g., Nodal, Lefty; Schier

2003). Furthermore, steroid hormones can reduce the degree of vis-

ual lateralization in chicks leaving the direction of lateralization un-

altered (Rogers and Deng 2005).

Goats showed a head-orienting response to the right side when

conspecific vocalizations were played back regardless of the context

on which the calls were recorded. Our findings could thus be in line

with the general interpretation that the left hemisphere (right side

bias) is specialized to process vocalizations that are familiar and/or

positive/non-threatening (Craig 2005; Demaree et al. 2005).

However, these findings have not been replicated consistently in re-

sponse to vocalizations of conspecifics in species such as Vervet

monkeys and dogs (Gil-da-Costa and Hauser 2006; Siniscalchi et al.

2008; Ratcliffe and Reby 2014). Vervet monkeys show a left ori-

enting response (i.e., right hemisphere asymmetry) when processing

conspecifics calls, but no side bias for heterospecific calls (Gil-da-

Costa and Hauser 2006). In dogs, the vocalizations emitted from

conspecifics are normally processed by the left hemisphere, whereas

the right hemisphere seems to be involved in processing auditory

cues eliciting intense emotions, for example, a thunderstorm

(Siniscalchi et al. 2008). In horses, a right head-orienting bias (i.e.,

left hemisphere asymmetry) is associated with a non-group member

(i.e., neighbors or strangers, thus the bias is affected by level of fa-

miliarity; Basile et al. 2009). In contrast to the head-orienting re-

sponse, the ears-orienting response is biased to the right side for of

familiar neighbor individuals, and to the left side for calls of stran-

gers (Basile et al. 2009). In addition, a positive correlation between

the right head-ears orienting response is associated with hearing a

known whinny (familiar neighbor and group member; Basile et al.

2009). Conclusions on which hemisphere is involved (left vs. right

direction across species) in specific stimuli processing are difficult to

draw because factors such as ontogeny, genetics or environmental

constraints interact to generate varying patterns of hemispheric pref-

erence (Vallortigara and Rogers 2005; Ocklenburg et al. 2011).

According to the “right-hemisphere model,” a left head-orienting

response to calls eliciting high arousal would have been expected.

Indeed, the use of the right hemisphere has been linked with the ex-

pression of intense emotions (Quaranta et al. 2007; Siniscalchi et al.

2008; Ratcliffe and Reby 2014). By contrast, according to the “va-

lence model,” we would expect the right hemisphere to process nega-

tive sounds (isolation, food frustration calls, and dog barks) and the

left hemisphere to process positive sounds (food anticipation calls).

The vocalizations used in our experiment have been analyzed previ-

ously and were shown to be associated with different patterns of be-

havioral and physiological responses in the caller (Briefer et al. 2015).

Figure 5. Time to resume feeding (log-transformed) for each treatment (mean

0.025 and 0.975 quantiles). The latency to resume feeding(s) was not affected

by the kind of vocalizations presented (Food Anticipation, Isolation, Food

Frustration, and Dog; P¼ 0.89).

Figure 6. Head-orienting response toward the various vocalizations pre-

sented during the playbacks (mean 0.025 and 0.975 quantiles). The head-ori-

enting response was not affected by the kind of vocalizations presented

(P¼0.26). Values from 0 to 0.5 indicate a left bias, whereas values from 0.5 to

1 indicate a right bias.
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However, the behavioral and physiological reactions on hearing these

vocalizations and whether a conspecific is able to discriminate be-

tween calls with different valence and arousal have not been tested

yet. Therefore, it is not known if the calls produced under high

arousal (food anticipation and food frustration) also elicit high

arousal emotions in receivers, and if the calls produced under positive

emotional state (food anticipation) also elicited positive emotions in

receivers (and vice versa for negative calls). State matching between

producer and receiver of a signal is termed emotional contagion, and

is predicted to be widespread in the animal kingdom (de Waal 2008;

Briefer 2018). Such information would have been beneficial to disen-

tangle the results predicted according to the “right-hemisphere mod-

el” and “the valence model” of brain asymmetries. If emotional

contagion indeed had occurred in our study, according to the “right-

hemisphere model,” we would have expected an involvement of the

right hemisphere to process food anticipation and food frustration

calls (i.e., high-arousal calls). By contrast, according to the “valence

model,” we would have expected an involvement of the right hemi-

sphere to process food frustration and, isolation calls and possibly

dog barks (i.e., negative calls), and an involvement of the left hemi-

sphere to process food anticipation calls (i.e., positive calls). The lack

of positive calls of low arousal in this study represents a methodo-

logical limitation that has to be taken into account when considering

the involvement of the right hemisphere and the valence model of

brain asymmetries. Recent evidence has shown that contact calls in

goats convey information about size, sex, age, and individuality

(Briefer and McElligott 2011b, 2012; Pitcher et al. 2017), but the abil-

ity to extract emotional information from vocalizations had not been

experimentally tested yet. Overall, our study suggests that the spon-

taneous response in the head-orienting paradigm might be under the

control of the left hemisphere (Basile et al. 2009; Ghazanfar and

Hauser 1999; Siniscalchi et al. 2008, 2010).

Our results do not confirm the hypothesis of a left head-

orienting response (i.e., right hemisphere asymmetry) toward hetero-

specific calls or calls eliciting intense emotions (dog barks). Dogs are

potential predators of small ruminants and hearing a dog barking

from a close distance may induce a fear reaction and a more atten-

tive response (Beausoleil et al. 2005). Although goats were more

alert when hearing dog barks than conspecific food frustration calls,

responses to dog barks did not differ from those to conspecific food

anticipation and isolation calls. In addition, the time to resume feed-

ing (a measure of fear), in our study did not differ between dog

barks and the vocalizations of conspecifics. This suggests that goats

at our study site may have been habituated to dog barks and that

they did not perceive dog barks as a serious threat.

To summarize, goats showed a general head-orienting bias to the

right side, providing evidence for perceptual lateralization of both

conspecific and heterospecific acoustic stimuli, which might have

been perceived as familiar and non-threatening. The overall findings

of the study suggest that the head responses are potentially mediated

by general acoustic features rather than specific information con-

veyed (Teufel et al. 2007). The results also indicate the need to con-

trol for the characteristics of the stimuli employed, such as degree of

familiarity, emotional valence, and arousal, and the importance to

use appropriate controls (e.g., non-biological sound) in order to dis-

entangle the involvement of each brain hemisphere.
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