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Abstract

There is an ever-increasing recognition that bile acids are not purely simple surfactant molecules 

that aid in lipid digestion, but are a family of molecules contributing to a diverse range of key 

systemic functions in the host. It is now also understood that the specific composition of the bile 

acid milieu within the host is related to the expression and activity of bacterially-derived enzymes 

within the gastrointestinal tract, as such creating a direct link between the physiology of the host 

and the gut microbiota. Coupled to the knowledge that perturbation of the structure and/or 

function of the gut microbiota may contribute to the pathogenesis of a range of diseases, there is a 

high level of interest in the potential for manipulation of the gut microbiota-host bile acid axis as a 

novel approach to therapeutics. Much of the growing understanding of the biology of this area 

reflects the recent development and refinement of a range of novel techniques; this study applies a 

number of those techniques to the analysis of human samples, aiming to illustrate their strengths, 

drawbacks and biological significance at all stages. Specifically, we used microbial profiling 

(using 16S rRNA gene sequencing), bile acid profiling (using liquid chromatography-mass 

spectrometry), bsh and baiCD qPCR, and a BSH enzyme activity assay to demonstrate differences 

in the gut microbiota and bile metabolism in stool samples from healthy and antibiotic-exposed 

individuals.
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1 Introduction

1.1 Overview

The last few years have been associated with a rapid increase in understanding of the 

profound contribution of the gut microbiota to the health of the host, as well as its potential 

roles in the onset and maintenance of a range of diseases. Much initial interest in the gut 
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microbiota has focused on observational studies which defined changes to the structure of 

the microbiota in different scenarios (e.g. different disease states, impact of diet or 

antibiotics, etc). However, more recent emphasis has moved away from solely defining the 

structure of the microbiota, but refocused upon better defining its function, and specifically 

the many complex routes of communication (including metabolic pathways, immune axes, 

etc) between the gut microbiota and the host [1]. Given that a key regulator of the 

composition of the bile acid pool within mammals is the action of bacterially-derived 

enzymes within the gastrointestinal tract [2], an improved understanding of the close 

interplay between the gut microbiota and the host’s bile acid metabolism is an area of 

particular interest.

1.2 Gut microbiota-bile acid interactions in vivo

Primary bile acids (BA) are synthesised from cholesterol in the liver, where they are 

conjugated with glycine or taurine. These conjugated bile acids subsequently enter the 

gallbladder, and are released into the duodenum following the intake of food. Once in the 

small bowel, the bile acids undertake one of their key physiological roles, the emulsification 

and solubilisation of dietary lipids. Bile acids will continue along the small intestine, 

towards the terminal ileum; whilst approximately 95% of bile acids will be reabsorbed via 

the enterohepatic circulation pathway, the remaining 5% (~400-800 mg per day) are not 

recovered, and will continue through the distal gut of the terminal ileum and on to the colon 

[3].

It is within the small intestine that bile acid modification by the gut microbiota is initiated, 

driven by enzymes that are produced and secreted by gut microbiota members, but which are 

not produced by the mammalian host. The first stage of bile acid modification by the gut 

microbiota is from the enzymes named bile salt hydrolases (BSHs). These enzymes 

deconjugate the taurine and glycine groups from conjugated bile acids via a hydrolysis 

reaction, and therefore reform the primary bile acids cholate (CA) and chenodeoxycholate 

(CDCA). BSHs are found mainly within the bacterial phyla Firmicutes and Bacteroidetes, 
but are widely-distributed throughout most major bacterial divisions and archaeal species of 

the human gut microbiota [4]. At least eight different bsh genes exist (see Supplementary 

Figure 1), with each form having specific properties relating to optimal pH, specificity for 

taurine- or glycine-conjugated bile acids and gene size [4]. The secondary enzymatic steps 

are 7-α-dehydroxylation. In these steps, the hydroxyl group of C-7 is removed, thus 

converting primary bile acids to secondary bile acids. Specifically, in humans, this includes 

the conversion of cholate to deoxycholate (DCA), and the conversion of chenodeoxycholate 

to lithocholate (LCA), along with the biosynthesis of other secondary bile acids. 7-α-

dehydroxylation is a complex, multi-step process, and only performed by strictly anaerobic 

bacteria with the bile acid-inducible (bai) operon. Based on current microbial genomic 

annotation, it is estimated that only a very small percentage of gut microbiota members 

possess 7-α-dehydroxylation activity, with those organisms that do predominantly belonging 

to the genera Clostridium clusters XIVa and XI [5], [6]. Generation of secondary bile acids 

creates a more hydrophobic bile acid pool, facilitating the elimination of these bile acids 

within faeces. A range of other gut microbial metabolic actions against bile acids are also 
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described, including the epimerisation of CDCA to synthesise ursodeoxycholic acid, as well 

as other pathways that result in the generation of iso-, allo- and oxo-/keto-bile acids [2].

There is now increasing recognition of the diverse roles of bile acids within the host, in 

particular via their role as endogenous ligands for host cell receptors. These include the 

nuclear receptor farnesoid X receptor (FXR), and the G protein-coupled plasma membrane 

bile acid receptor TGR5, all exhibiting varying affinities for different bile acids and their 

moieties [2]. Bile acids as FXR and TGR5 agonists contribute to a wealth of host 

physiological processes including the modulation of lipid, glucose and energy homeostasis, 

as well as the regulation of bile acid synthesis, conjugation and transport. To add to the 

complexity, there is also evidence that bile acids influence microbiota composition, both via 

direct and indirect actions [2]. Collectively, the growing evidence for the multiple functions 

of bile acids within the host – coupled with evidence demonstrating the complex interplay 

between bile acid metabolism and the gut microbiota – highlights that this axis is a key 

mechanism by which the gut microbiota directly influences a range of aspects of host 

physiology.

Two of the most important questions in gut microbiome research are “who is there?” and 

“what are they doing?”. In the context of bile metabolism we can describe changes in the gut 

microbiota at several different levels: we can use microbial DNA to define the composition 

of the gut microbiota and quantify the amount of bile metabolising genes, we can look at the 

amount of bile metabolising proteins expressed by measuring their enzymatic activity, and 

we can look at the metabolites being produced by characterising the quantity and 

composition of bile acid metabolites. In this study we use a set of stool samples from 

individuals exposed to antibiotics and non-antibiotic-exposed controls to demonstrate how 

researchers can apply a wide variety of techniques to more fully characterise microbiota-bile 

interactions in the gut. These techniques include 16S rRNA gene sequencing, liquid 

chromatography-mass spectrometry-based bile acid profiling, BSH and 7-a-dehydroxylase 

qPCR, and a BSH enzyme activity assay. In addition, we correlated metataxonomic and 

metabonomic data to gain a better understanding of the modulation of the bile acid pool by 

the gut microbiota.

2 Material and methods

2.1 Study participants

The study was performed under approval from the UK National Research Ethics Centre 

(13/LO/1867). Stool samples were collected from a total of eight healthy individuals, and 

five patients who had recently taken recurrent courses of antibiotics. Antibiotics had been 

prescribed for a variety of indications, had been used for at least three continuous weeks 

within the past month, and had last been used between 3 – 6 days prior to sample collection 

(Supplementary Table 1). Healthy individuals had not used antibiotics or been prescribed 

regular medications for at least six months prior to sample collection. Stool specimens were 

put on ice within 15 minutes after collection, transferred to the hospital laboratory, and 

homogenised and aliquoted within 30 minutes. Samples were frozen to and maintained at 

-80°C prior to analysis.
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2.2 DNA extraction and 16S rRNA gene sequencing

DNA was extracted from 250 mg of stool using the PowerLyzer PowerSoil DNA Isolation 

Kit (Mo Bio, Carlsbad, CA, USA) following manufacturer’s instructions, with the addition 

of a bead beating step for 3 minutes at speed 8 in a Bullet Blender Storm (Chembio Ltd, St 

Albans, UK). DNA was stored at -80°C until it was ready to be used.

Sample libraries were prepared following Illumina’s 16S Metagenomic Sequencing Library 

Preparation Protocol [7] with two modifications. Firstly, the V1-V2 regions of the 16S rRNA 

gene were amplified using the primers listed in Table 1. Additionally, the index PCR 

reactions were cleaned up and normalised using the SequalPrep Normalization Plate Kit 

(Life Technologies, Paisley, UK). Sample libraries were quantified using the NEBNext 

Library Quant Kit for Illumina (New England Biolabs, Hitchin, UK). Sequencing was 

performed on an Illumina MiSeq platform (Illumina Inc., Saffron Walden, UK) using the 

MiSeq Reagent Kit v3 (Illumina) and paired-end 300bp chemistry.

The resulting data was analysed using the Mothur package following the MiSeq SOP 

Pipeline [8]. The Silva bacterial database was used for sequence alignments (www.arb-

silva.de/) and the RDP database reference sequence files were used for classification of 

sequences using the Wang method [9]. The non-metric multidimensional scaling (NMDS) 

plot and PERMANOVA p-values were generated using the UniFrac weighted distance 

matrix generated from Mothur, and analysed using the Vegan library within the R statistical 

package [10]. Family-level extended error bar plots were generated using the Statistical 

Analysis of Metagenomic Profiles software package using White’s non-parametric t-test 

with Benjamini-Hochberg FDR [11]. The α diversity (Shannon diversity index, H’) and 

richness (total number of bacterial taxa observed, Sobs) were calculated within Mothur and 

statistical tests (independent t-test and Mann-Whitney U test, respectively) were performed 

using IBM SPSS Statistics Software version 23. A p-value of 0.05 and a q-value of 0.05 was 

considered significant.

2.3 Inference of gut microbiota function from 16S rRNA gene sequencing data

To predict the bile-metabolising ability of the microbial communities within the samples, an 

inferential tool, Piphillin, was applied [12]. This algorithm uses direct nearest-neighbour 

matching between 16S rRNA gene sequencing datasets and microbial genomic databases to 

infer the metagenomic content of the samples [12]. In this case, Piphillin was used online 

[13], using the KEGG May 2017 as reference database, and applying 97% identity cut-off. 

Inference of gene abundance was assessed for KEGG orthology K01442 (cholylglycine 

hydrolase, an alternative name for BSH), KEGG orthology K15870 (baiCD, a bacterial gene 

specific to the 7-α-dehydroxylation pathway) and KEGG pathway ko00121 (corresponding 

to the secondary bile acid biosynthesis pathway).

2.4 Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) profiling of 
faecal bile acids

Faecal samples were lyophilized for 24 hours using a VirTis Benchtop BTP 8ZL freeze 

dryer (BPS, UK). The dried samples were weighed and bile acids were extracted using a 

2:1:1 (vol) mixture of water, acetonitrile and 2-propanol in a Biospec bead beater with 1.0 
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mm Zirconia beads. After centrifugation (16,000 x g, 20 minutes) the supernatant was 

filtered using 0.45 μm microcentrifuge filters (Costar, Corning).

Quality control (QC) samples were prepared using equal parts of the faecal filtrates. QC 

samples were used as an assay performance monitor[14], and as a proxy to remove features 

with high variation. QC samples were also spiked with mixtures of bile acid standards (55 

bile acid standards including 36 non-conjugated, 12 conjugated with taurine, seven 

conjugated with glycine (Steraloids, Newport, RI, USA)) and were analysed along with the 

stool samples to determine the chromatographic retention times of bile acids and to aid in 

metabolite identification.

Bile acid analysis of faecal extracts was performed using ACQUITY UPLC (Waters Ltd, 

Elstree, UK) coupled to a Xevo G2 Q-ToF mass spectrometer equipped with an electrospray 

ionization source operating in negative ion mode (ESI-), using the method described by 

Sarafian and colleagues [15].

Waters raw data files were converted to NetCDF format and data were extracted using 

XCMS (v1.50) package with R (v3.1.1) software. Probabilistic quotient normalisation [16] 

was used to correct for dilution effects and chromatographic features with coefficient of 

variation higher than 30% in the QC samples were excluded from further analysis.

The relative intensities of the features were corrected to the dry weight of the faecal samples.

2.5 Integration of 16S rRNA gene sequencing data and bile acid mass spectrometry data

Correlations between two “omic” datasets acquired from the same set of samples were 

determined using regularised Canonical Correlation Analaysis (rCCA). rCCA modelling of 

metataxonomic (16S rRNA gene sequencing) and metabonomic (bile acid mass 

spectrometry) data was employed in the mixOmics library within the R statistical package 

[17], [18]. The regularisation parameters were determined using the shrinkage method. The 

rCCA similarity scores between the variables were plotted as heatmaps using the clustered 

image maps (cim) function. Hierarchical clustering (complete linkage, Euclidean distance) 

was used to obtain the order of the variables. The correlation circle plot was generated using 

the plotVar function, which plots strong correlations between variables (plots variables with 

a correlation above 0.5 outside of the inner circle).

2.6 Abundance and activity of bile-metabolising enzymes

2.6.1 Real-time PCR for the quantification of BSH and baiCD gene 
abundance—qPCR was performed using extracted DNA to quantify gene abundance. 

Gene abundance was quantified for i) specified groups of bsh (using degenerate primer sets 

previously designed and optimised by our group (Table 2)) and ii) baiCD (using primers 

previously described in the literature [19]).

A total reaction volume of 25µl was used for each reaction, consisting of 20µl master mix 

and 5µl diluted DNA (12.5ng total per reaction). All DNA was diluted in buffer EB (Qiagen, 

Hilden, Germany). A standard master mix consisting of 5.5µl PCR grade water (Roche, 

Penzberg, Germany), 12.5µl of 2x SYBR green master mix (ThermoFisher Scientific, 
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Waltham, Massachusetts, USA), 1µl of 10µM forward primer (Eurofins Genomics, 

Wolverhampton, UK) and 1µl of 10µM reverse primer (Eurofins Genomics) was used. One 

bacterial strain from the relevant reference group was selected as a standard for each primer 

set (bsh group 1a – Bacteroides plebius; bsh group 1b – Bacteroides ovatus; bsh group 3c/e – 

Blautia obeum; baiCD – Clostridium scindens (DSMZ 5676, Braunschweig, Germany) 

(Supplementary Methods). Serial dilutions of each isolate were used to create a standard 

curve. Thermocycling conditions for each primer set are summarised in Table 2. A melt 

curve stage was performed post-cycling to confirm primer specificity. Products were also 

visualised using the 2200 Tapestation System (Aligent Technologies, Santa Clara, 

California, USA) in combination with D1000 Reagents and D100 Screentapes (Aligent 

Technologies), following the manufacturer’s protocol.

Copy number was calculated from qPCR data using the following formula: gene abundance 

= (quantity (ng) x 6.022 x 1023 (gene copy number/mol)) / (length of product x 1 x 109 

(ng/g) x 660 (g/mol)). A mean copy number for each set of triplicates was calculated and 

divided by the total DNA per reaction to obtain average copy number per ng DNA.

2.6.2 Bile salt hydrolase enzyme activity assay—Faecal water was prepared and 

total faecal protein quantified using a similar method to that previously-described by Morris 

and Marchesi [20], but with the addition of bacterial and mammalian protease inhibitor 

cocktails (G Biosciences, St Louis, MO, USA), as well as DTT to 1mM final concentration 

(Roche, Welwyn Garden City, UK) to minimise enzyme oxidation [21].

The BSH assay itself was an adaptation of a precipitation-based assay [21]–[23]. The assay 

was performed in a clear flat-bottomed 96-well microtitre plate and incubated at 37°C at pH 

5.8 for up to 8 hours. In a total volume of 200μl, 500μg of faecal protein was incubated with 

sodium phosphate buffer (pH 5.8, final concentration of 0.02mM), and taurodeoxycholic 

acid (Merck, Damstadt, Germany) (at final concentration 1mM). To prevent evaporation 

during incubation, wells were overlaid with 50μl of light paraffin oil (0.85g/ml; PanReac 

AppliChem, Barcelona, Spain) [23]. Samples were assayed in triplicate, with precipitation of 

insoluble deoxycholic acid monitored by absorbance measurement at 600nm (A600) using a 

microplate reader (MultiSkan Go, Thermo Scientific, Dartford, UK). Faecal protein 

incubated with phosphate-buffered saline served as a negative control, and faecal protein 

incubated with varying concentrations of deoxycholic acid (Merck) was used to establish a 

standard curve to quantify precipitate formation.

2.6.3 Statistical analysis—A Mann-Whitney U test was used to compare the BSH 

activity and the BSH and baiCD gene abundance data between the antibiotic treated and 

healthy cohorts. A p-value of <0.05 was considered significant.

3 Results

3.1 16S rRNA gene sequencing

16S rRNA gene sequencing analysis showed patients taking recurrent antibiotics had altered 

compositions of their gut microbiotas compared to healthy controls (Figure 1A, p < 0.01, 

PERMANOVA). Patients taking recurrent antibiotics had lower microbial community 

Mullish et al. Page 6

Methods. Author manuscript; available in PMC 2019 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



diversity (Figure 1B, p < 0.001, independent t-test) and richness (Figure 1C, p < 0.01, Mann-

Whitney U test) compared to healthy controls. Statistical analysis showed that the altered 

microbiota in patients taking recurrent antibiotics were due to decreases in the relative 

abundances of the families Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, and 

Oscillospiraceae, and increases in the relative abundance of the family Enterobacteriaceae 
compared to healthy controls (Figure 1D).

3.2 Inference of gut microbiota function from 16S rRNA gene sequencing data

Results from Piphillin analysis are shown in Figure 2. Predicted gene abundance for bsh 
(KEGG orthologue K01442) was significantly reduced in patients who had taken recurrent 

antibiotics (Figure 2A, p < 0.05, Mann-Whitney U test). It was not possible to predict gene 

abundance counts for all samples for baiCD (KEGG orthologue K15870) at the cut-off of 

97% identity used, implying very low counts. Predicted secondary bile acid biosynthesis 

(ko00121) trended lower in patients with recurrent antibiotic use compared to controls, but 

this was not significant (Figure 2B, p = 0.08).

3.3 Multivariate statistics analysis of UPLC-MS profiling data

The data table produced by XCMS after normalization to the dry weight of the samples was 

introduced to SIMCA 14.1 (MKS Umetrics AB). Principal component analysis (PCA) was 

performed to visualise clustering of samples and assess the quality of the run using the QC 

samples (Figure 3A). Furthermore, supervised OPLS-DA was performed (Figure 3B) to 

reveal the features that were responsible for the discrimination between the recurrent 

antibiotic-treated and healthy control groups. This feature identification was achieved using 

the S-plot presented in Figure 3C, where feature in the edges of the S-shaped cloud of 

features were responsible for the separation. Features on top right were higher in the healthy 

control group, and in bottom left higher in the group treated with recurrent antibiotics. 

Annotated bile acids are highlighted in the plot.

Univariate analysis for differences in specific bile acids between healthy participants and 

people treated with recurrent antibiotics was also performed; data are presented in 

Supplementary Figure 2.

3.4 Integration of metataxonomic and metabonomic data

rCCA modelling was used to determine correlations between metataxonomic (16S rRNA 

gene sequencing) and metabonomic (bile acid mass spectrometry) data (Figure 4). We 

found that correlations between bacterial families and bile acids clustered into three distinct 

groups (Figure 4). Group 1 consisted of correlations where bacterial families were positively 

associated with conjugated and unconjugated primary bile acids, and negatively correlated 

with secondary bile acids DCA and LCA. Group 2 consisted of families positively correlated 

with ursodeoxycholic acid. Group 3 consisted of families positively correlated with 

secondary bile acids DCA and LCA, and negatively associated with unconjugated primary 

bile acids CA and CDCA. Enterobacteriaceae, which increased in the recurrent antibiotics 

group, clustered in group 1. Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, and 

Oscillospiraceae, which decreased in the recurrent antibiotics group, clustered in group 3.
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3.5 Abundance and activity of bile-metabolising enzymes

Results from qPCR assays are displayed in Figure 5. Recurrent antibiotic use was associated 

with a significantly reduced abundance of bsh genes for all BSH groups tested compared to 

healthy control participants. Specifically, after recurrent antibiotic use, there was reduced 

abundance of the genes of bsh group 1a gene (p < 0.01, Mann-Whitney U test), bsh group 1b 

gene (p < 0.05, Mann-Whitney U test), and bsh group 3c/e gene (p < 0.01, Mann-Whitney U 

test). baiCD gene abundance also significantly reduced after recurrent antibiotic use (p < 

0.05, Mann-Whitney U test).

Use of recurrent antibiotics is associated with marked reduction in BSH enzyme activity 

within faecal samples (Figure 6, p < 0.01, Mann-Whitney U test).

4 Discussion and Conclusions

In this study, we performed a range of analyses upon stool samples taken from healthy 

participants and people with recent antibiotic use as a means of demonstrating a range of 

techniques that may be applied to delineate gut microbiota-host bile acid interactions.

We found that patients taking recurrent antibiotics had gut microbiotas with reduced 

proportions of known bile-metabolising enzyme function, including the families 

Bacteroidaceae, Lachnospiraceae and Ruminococcaceae. Consistent with this, recurrent 

antibiotic use was associated with enrichment of stool primary bile acids (both conjugated 

and unconjugated) and loss of secondary bile acids. Correlation analysis showed a distinct 

clustering of bacterial families and bile acids into three groups, where Enterobacteriaceae 
was positively correlated with unconjugated primary bile acids, and Bacteroidaceae, 
Lachnospiraceae, Ruminococcaeceae and Oscillospiraceae were positively correlated with 

secondary bile acids. Further analysis demonstrated a loss of BSH gene abundance and 

enzyme activity within the gut of antibiotic-treated patients, coupled with a loss of 7-α-

dehydroxylase baiCD gene abundance related to antibiotic use. Most fundamentally, these 

results emphasise the close and complex interplay between the gut microbiota and bile acid 

metabolism, and reinforce that any perturbation of the gut microbiota (in this case by 

antibiotics) may result in marked changes to host physiology. These findings are consistent 

with other comparable work within this area, including the demonstration that early life 

antibiotic exposure is associated with a long lasting reduction in bile salt hydrolase function 

[24]. Furthermore, it has also been recognised that Clostridium difficile infection (a 

gastrointestinal infection occurring predominantly in patients with antibiotic-associated gut 

dysbiosis) is associated with perturbation of host bile acid profiles, possibly mediated 

through alteration of gut bile metabolising enzyme functionality [25]–[27].

We used 16S rRNA gene sequencing to determine the differences in the composition of the 

gut microbiota between patients taking recurrent antibiotics and healthy controls. We found 

an increase in the relative abundance of Enterobacteriaceae and a decrease in the relative 

abundance of Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae in 

the recurrent antibiotic group compared to healthy controls. However, it is important to note 

that we are reporting changes in the relative abundances of these groups, not the absolute 

abundances. The total read numbers per sample does not provide information on the total 
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number of 16S rRNA gene copies in the sample [28]. This is especially important in samples 

where a change in the total bacterial biomass occurs, for example with antibiotic treatment 

(as is the case in this study). While it is possible that the absolute abundance of 

Enterobacteriaceae increases after recurrent antibiotics, it is also possible that the absolute 

abundance of Enterobacteriaceae has remained unchanged, and there was a decrease in the 

total biomass due to a decrease in the absolute abundances of Bacteroidaceae, 

Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae. Studies can account for these 

changes in bacterial biomass by performing 16S rRNA gene qPCR, and weighting their 

relative abundance data to get a more informative representation of the microbial community 

composition.

Whilst 16S rRNA gene sequencing data provides information on the bacterial composition 

of the sample, it does not provide information regarding the potential functional capabilities 

of the bacteria and subsequent interactions with the host. Metagenomic sequencing provides 

information on the collection of genomes in a sample, followed by assembly or mapping to a 

reference database which allows gene annotation. However, metagenomic sequencing is 

more expensive than metataxonomics, and the data analysis can be more challenging. In this 

study, we used Piphillin [12] to indirectly infer the abundance of functional genes as a 

straightforward and cost-free addition to the study. Piphillin has certain advantages 

compared to other inferential software tools (including its ease of use, speed of output and 

the ability to select a reference database of interest [12]), but has not to our knowledge been 

applied before now for analysis of human gut metataxonomic data. Our intention was to use 

this method as an exploratory technique, to later confirm with additional methods of analysis 

(qPCR, LC-MS, and an enzyme assay). The Piphillin results here predicted a reduced bsh 
gene abundance in the recurrent antibiotic group compared to healthy controls, and our 

qPCR data and enzyme assay were consistent with this. Whilst Piphillin predicted a trend 

towards reduced secondary bile acid biosynthesis within the recurrent antibiotic group, it 

was not able to specifically predict baiCD gene abundance, and we used qPCR to explore 

this instead. Our experience here and in other work with inferential algorithms is that whilst 

they may be a helpful and broadly accurate additional tool to start exploring the function of 

the microbiota, the current limitations in metagenomic annotation mean that results obtained 

in this way must be interpreted with caution. However, the constant improvements in 

metagenome annotation are likely to make such tools ever-more accurate over time.

Mass spectrometric techniques are the workhorse of bile acids analysis due to their 

sensitivity and specificity compared to other assays. High resolution time-of-flight mass 

spectrometry using a soft ionization method (electrospray ionization, ESI) coupled with 

ultra-performance liquid chromatography is our analytical method of choice as it can 

provide comprehensive coverage of bile acids and lipids species from complex biological 

samples needing minimal sample pre-treatment [15]. In our study, we found that antibiotic 

exposure had a significant impact upon the composition of the bile acid pool, which could 

have implications on host physiology. In order to develop interventions that target the bile 

acid metabolic pathway, researchers need to be able to identify specific bacterial taxa 

responsible for these bile acid conversions.
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One difficulty with ‘omics’ methodologies is the complexity of the datasets generated, often 

with very large numbers of variables. Software packages such as mixOmics offer researchers 

useful exploratory approaches to highlight important correlations between bacteria and 

metabolites. Integration of metataxonomic and metabonomic data can provide researchers 

with information on the potential roles of microorganisms with in an ecosystem, however it 

is important to remember that correlation does not equal causation. Strong correlations 

between bacteria and metabolites must be confirmed with further experiments, such as 

assays in vitro where researchers can assess the direct effects of a substrate/metabolite on the 

growth or activity of a microorganisms of interest. Examples of assays in vitro which may be 

used include batch cultures, mammalian cell line assays, enzyme assays, etc. It is also 

important to note that there is no consensus on which data integration method is the best 

method to integrate metataxonomic and metabonomic data sets, as this is an actively 

developing field of research.

bsh qPCR primer sets were designed to quantify the differences in bsh gene abundance in 

our samples. We found a statistically significant decrease in bsh group 1a, group 1b, and 

group G3c/e gene abundance, together with a significant reduction in that of baiCD, 

associated with antibiotic use. Even though these primers were optimised by us to target a 

select group of BSH-producing bacteria and were confirmed to not cross-react between 

groups, the bacterial strains used from each group during the optimisation stage were subject 

to availability. Therefore, it is reasonable to suggest that, due to their degenerate nature, the 

primers could also target the bsh gene in other bacterial species within a group which were 

not tested during the optimisation stage, thereby potentially providing a more comprehensive 

assessment of bsh gene abundance within the faecal samples. DNA sequencing would be 

required to categorically confirm the BSH-producing bacterial species targeted by these 

primer sets. We also performed qPCR of the baiCD operon; whilst this operon is not found 

in all bacteria with 7-α-dehydroxylating ability, it is present within the two bacterial species 

with high activity of this enzyme, Clostridium scindens and Clostridium hiranonis, and most 

strains of these species will be amplified by this PCR [19]. Furthermore, Clostridium 
scindens is particularly of interest within this context, since its loss from the gut microbiota 

in association with antibiotic use has been associated with altered gut bile acid metabolism 

and a potential vulnerability to Clostridium difficile infection [27]. Whilst this qPCR will 

not amplify certain bacteria with low secondary bile acid biosynthesis functionality 

(including Clostridium leptum and Clostridium sordeii), good correlation has been noted 

between baiCD PCR assay results and 7-α-dehydroxylase activity in an in vitro assay, 

demonstrating that this is still a highly useful assay [19].

Whilst qPCR of bacterial genes is useful, similar to metataxonomic data, there are concerns 

that what is being assessed relates to which bacterial genes are present, rather than if those 

genes are being actively transcribed and the resultant functional effects. As such, 

metatranscriptomics – the sequencing of RNA from within a microbial community – is of 

great interest for its ability to more directly establish gene transcription and therefore 

microbiota functionality. However, there remain certain practical difficulties in undertaking 

such studies, including the considerable cost, the computational complexity, and the 

difficulties in high-quality RNA extraction and sequencing given its relative instability 

compared to DNA. Furthermore, whilst protocols have been described that aim to simplify 
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collection of stool and preserve samples for subsequent streamlined combined metagenomic 

and metatranscriptomic analysis (e.g. via the addition of ethanol or RNAlater to samples) 

[29], the implications of these preservatives upon the quality of the metabolic profile 

obtained from the sample remain undefined.

The quantification of gene abundance using qPCR data, metagenomic data, and Piphillin 

data cannot categorically confirm gene expression and functionality in vivo. Therefore, we 

developed an enzyme activity assay to measure the amount of BSH activity in each sample 

through substantial adaptation of a plate-based precipitation assay [21]. Other groups have 

used a ninhydrin assay to measure BSH activity [23], [30]; however, these studies used pure 

bacterial strains, and in our experience, this assay is not sensitive enough to detect BSH 

activity within faecal water. Whilst BSH activity does not require strict anaerobic conditions, 

7-α-dehydroxylation does [33], complicating development of a similar activity assay. 

However, an assay applying thin layer chromatography and radiolabelled cholic acid to 

human caecal aspirate or stool obtained after enema use to assess 7-α-dehydroxylase activity 

has been described [33], [32].

In this study, we compared healthy people with patients taking antibiotics, and did not match 

the participants for other demographics. There are a variety of variables that have been 

shown to influence the composition and/or functionality of the gut microbiota, which (in 

addition to antibiotics/microbial infections) include diet, age, surgery, stress, BMI, and 

pregnancy[34]–[36]. As such, we are unable to say if the differences seen between our 

groups related purely to antibiotic use, or if there was a contribution from other factors. 

Where studies compare healthy and diseased groups in attempting to generate novel 

hypotheses regarding the contribution of gut microbiota-bile acid interactions to the disease 

process, regard for these factors must be taken to ensure that control groups are appropriate.

Future challenges regarding methodology within this area remain. The relationship between 

the gut microbiota, bile acid metabolism and the host is complex and bidirectional, and 

methodologies that further delineate this relationship are required. Development of 

standardised pipelines for analysing these complex datasets – coupled with more 

standardised methods for integration of different data sets – are key immediate challenges. 

At present, whilst there is growing sophistication in our ability to define and correlate gut 

microbial and bile acid profiles, there is little work (particularly within humans) that has 

linked this back to systemic host effects. Given the growing recognition that bile acids are 

signalling molecules with complex systemic effects upon the host, it is clearly of interest and 

importance to be able to link microbial and bile acid interplay to host physiological function, 

in relation to health and disease.
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Figure 1. 
Antibiotics alters the gut microbiota composition in patients taking recurrent antibiotics 

compared to healthy controls. (A) Nonmetric multidimensional scaling (NMDS) plot 

showing the difference in gut microbiota composition of patients taking recurrent antibiotics 

and healthy controls (p < 0.01, PERMANOVA). (B) α diversity was decreased in patients 

taking recurrent antibiotics compared to healthy controls (*** p < 0.001, independent t-test). 

(C) Richness (total number of bacterial taxa observed) was decreased in patients taking 

recurrent antibiotics compared to healthy controls (** p < 0.01, Mann-Whitney U test). (D) 

Extended error bar plot comparing the differences in the mean proportions of significantly 

altered families and the difference in the proportions of the means (White’s non-parametric 

t-test with Benjamini-Hochberg FDR). Plot only shows families where the difference 

between the proportions was greater than 1%.
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Figure 2. 
Inference of bile-metabolising function from 16S data using Piphillin. (A) Bile salt 

hydrolase KEGG orthologue counts (K01442) (* p < 0.05, Mann-Whitney U test). (B) 

Secondary bile acid biosynthesis KEGG orthologue counts (ko00121) (p > 0.05, Mann-

Whitney U test).
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Figure 3. 
Multivariate analysis of UPLC-MS bile acid profiling data. (A) PCA scores plot (B) OPLS-

DA scores plot (C) OPLS-DA S-plot, showing the contribution of bile acids to the separation 

of the two groups. AB: recurrent antibiotic treated patients; HC: healthy controls; QC: 

quality controls.
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Figure 4. 
Regularized CCA (rCCA) modelling of metataxonomic (16S rRNA gene sequencing data, 

family-level) and metabonomic data (bile acid data). (A) The representation of units for the 

first two canonical variates showing the correlations between variables in patients receiving 

recurrent antibiotics and healthy controls. (B) Correlation circle plot showing strong 

correlations between metataxonomic and metabonomic data (plot only shows variables with 

a correlation above 0.5). Variables projected in the same direction from the origin have a 

strong positive correlation, and variables projected in opposite directions form the origin 

have strong negative correlations. Variables that are at a farther distance from the origin have 

a stronger correlation. (C) Heatmaps of the rCCA similarity scores between metataxonomic 

and metabolomic data. Bacterial families outlined in black boxes clustered according to 

correlations with distinct groups of bile acids.
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Figure 5. 
qPCR to quantify gene abundance of bile metabolising genes. (A) bsh group 1a gene (** p < 

0.01, Mann-Whitney U test); (B) bsh group 1b gene (* p < 0.05, Mann-Whitney U test); (C) 

bsh group 3c/e (** p < 0.01, Mann-Whitney U test); (D) baiCD gene (p < 0.05, Mann-

Whitney U test).

Mullish et al. Page 18

Methods. Author manuscript; available in PMC 2019 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. 
Bile salt hydrolase (BSH) enzyme activity assay. Taurodeoxycholic acid was used as the 

substrate for the enzyme assay, and results are therefore expressed as rate of deoxycholic 

acid formation (* p < 0.05, Mann-Whitney U test).
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Table 1

Primers used for 16S rRNA gene sequencing on the Illumina MiSeq. The forward primer mix was composed 

of four different forward primers, mixed at a ratio of 4:1:1:1 (28F-YM:28F-Borrellia:28FChloroflex:28F-

Bifdo). Bases in bold are the MiSeq adapter sequences.

Primer name Primer sequence

28F-YM
(forward primer)

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATYMTGGCTCAG

28F-Borrellia (forward primer) TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATCCTGGCTTAG

28FChloroflex (forward primer) TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATTTGATCTTGGTTCAG

28F-Bifdo
(forward primer)

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGTTCGATTCTGGCTCAG

388R
(reverse primer)

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGCTGCCTCCCGTAGGAGT
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Table 2

Primers sequence and PCR conditions for bsh and baiCD qPCR.

Group Primer Sequence (5’-3’) F/R Cycling Conditions
Expected 
Product 
Size (bp)

1a
CACATATTGTGGCACGAACAATHGAR TGGGG F 95°C for 10 min, (95°C for 15 sec, 55°C for 1 min) × 

40 cycles 570
CTGTGCCCGGATACAGATTAACRTAR TTRTT R

1b
CGGCGTTCCGCATTTYTAYGARAA F 95°C for 10 min, (95°C for 15 sec, 55°C for 1 min) × 

40 cycles 318
GTTCAATGCCAATCGGAATATCRAAR TTRTT R

3c/e
TTTTGGCCGAACACTGGAYTAYGARTT F 95°C for 5 min, (95°C for 15 sec, 54°C for 30 sec, 

72 for 10 min) × 40 cycles 774
TCAACGGAGCCCAGAATATGRAARA AYTG R

baiCD
GGWTTCAGCCCRCAGATGTTCTTTG F 94°C for 2 min, (94°C for 20 sec, 52°C for 30 sec, 

69°C for 90 sec) × 35 cycles, 68°C for 10 min 1300
GAATTCCGGGTTCATGAACATTCTKCKAAG R
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