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Abstract

Case-control design is widely used in epidemiology and other fields to identify factors associated 

with a disease. Data collected from existing case-control studies can also provide a cost-effective 

way to investigate the association of risk factors with secondary outcomes. When the secondary 

outcome is a continuous random variable, most of the existing methods focus on the statistical 

inference on the mean of the secondary outcome. In this paper, we propose a quantile-based 

approach to facilitating a comprehensive investigation of covariates’ effects on multiple quantiles 

of the secondary outcome. We construct a new family of estimating equations combining observed 

and pseudo outcomes, which lead to consistent estimation of conditional quantiles using case-

control data. Simulations are conducted to evaluate the performance of our proposed approach, 

and a case-control study on genetic association with asthma is used to demonstrate the method.
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1 Introduction

Case-control design is widely used in epidemiology and other fields as a cost-effective 

alternative to prospective cohort designs. It samples “cases” from a specific disease 

population and “controls” from those free of the disease. By comparing the distribution of 

exposures/predictors between cases and controls, one could identify factors that associate 

with the disease risk. Besides the primary disease status (D) and exposures of interest (X), 

case-control studies often collect additional variables (Y), which can be important 

biomarkers and characterizations of the disease or anthropometric parameters of the 

subjects. Hence, data are available to analyze the associations between the exposures and 

these secondary outcomes and can facilitate our understanding on the mechanism relevant to 

the secondary outcomes. The analyses on these secondary outcomes using existing case-

control data are known as “secondary analyses” in the literature (Kraft, 2007; Richardson et 

al, 2007).
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Due to the case-control sampling scheme, the selected subjects are no longer representative 

of the general population. Ignoring the data structure in secondary analyses would lead to 

biased inference on the association between the covariates of interest and the secondary 

outcomes. Naive approaches include analyzing among controls only or stratifying the 

association by disease status, but they do not directly address the question about the 

association at the population level. A few proposals have been made to estimate the 

population association while utilizing the case-control sample. Among them, the Inverse 

Probability Weighting (IPW) is a popular approach, which weights each observation by the 

reciprocal of its selection probability (Jiang, Scott and Wild, 2006; Richardson et al., 2007; 

Monsees, Tamimi and Kraft, 2009;). The IPW method usually performs well when the 

selection probability only depends on the disease status, but may suffer both bias and 

inflated variance due to the difficulty of correctly estimating the selection probability that 

may relate to the covariates or certain auxiliary variables. Other common approaches are 

likelihood-based methods, including Roeder, Carroll and Lindsay (1996), Lee, McMurchy 

and Scott (1997), Jiang, Scott and Wild (2006), and Lin and Zeng (2009). These methods 

estimate covariate effects on the mean of secondary outcome, which is only one measure of 

the central tendency of the outcome, and often require parametric distributional assumption 

on the secondary outcome.

In many applications, the vulnerable or high risk group to certain disease often consists of 

subjects with high or low values for their quantitative traits. For example, people with high 

body mass index (BMI) are predisposed to diabetes, cancers and many other disorders 

(Hjartaker, Langseth, and Weiderpass, 2008). Therefore, instead of examining risk factors 

for the mean of BMI, it is practically meaningful to investigate the risk factors for the upper 

quantiles of BMI, which are directly associated with high risk for many disease. Many 

studies also observe that covariate effect often varies across quantile levels. For example, 

Yang et al. (2012) found that an important genotype FTO is not only associated with the 

mean of BMI (Frayling et al, 2007) but also with the variance, suggesting that the FTO 

genotype influences the entire distribution of BMI and impacts differently at various 

quantiles. Hence, examining covariate’s effects at multiple quantiles provides a 

comprehensive view of association between the exposures and the outcome. For these 

reasons, quantile-based analyses have great potential to deepen and expand the existing 

knowledge from traditional secondary analysis.

In this paper, we propose to extend quantile regression (Koenker and Bassett, 1979) 

techniques to estimate the conditional quantiles of the secondary outcomes in case-control 

studies. The rest of the paper is organized as follows. Section 2 describes the proposed 

methods, where we first introduce the ideas of constructing estimating equations using both 

observed and pseudo outcomes, and then present two estimation algorithms to solve the 

equations. Large sample properties of the resulting estimators are also presented in Section 

2. Section 3 includes simulation studies to illustrate the finite sample performance of the 

proposed methods with comparison to existing methods. In Section 4, we apply the proposed 

methods to a case-control asthma study and compared our methods to the least squares-

based mean regression. We conclude with discussions in Section 5.
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2 Proposed Methods

2.1 Notation and settings

Suppose we have a case-control sample, which consists of n1 cases randomly selected from 

a disease population (D = 1), and n2 healthy controls randomly selected from a disease-free 

population (D = 0). Potential risk factors for disease are denoted by X and measured from 

each enrolled subject. The primary goal of collecting the case-control sample is to identify 

the risk factors that are associated with the disease D. In addition to (D, X), certain subject 

characteristics or biomarkers of the disease, which we call “secondary outcomes” and denote 

as Y, are also measured on each subject. Denoting QY (τ|X) as the τth conditional quantile 

of Y given X, we assume that in the general population, QY (τ|X) is a linear function of X,

QY(τ|X) = X⊤β0, τ, (1)

where the coefficients β0,τ denote the true effects of covariates X on the τth quantile of Y 
and are of primary interest in secondary analyses.

We denote the observed data by {xi, yi, di}i=1,…,n where n = n1 + n2 is the total sample size; 

di = 1, i = 1, …, n1 for the cases and di = 0, i = n1 + 1, …, n for the controls. When both X 
and Y are related to the disease D, the association between X and Y often differs between 

the cases and controls. Consequently, direct regression of yi against xi using a case-control 

sample yields biased estimation for β0,τ. In the next section, we propose an estimating 

equation based approach for secondary quantile analyses.

2.2 Proposed estimating equations

Let ψτ(X, Y, β) = [τ – I{Y ≤ X⊤β}] X be the original set of quantile regression estimating 

functions. For any randomly drawn (Y, X) from the general population, the following 

equations hold at the true β0,τ,

EY ψτ(X, Y , β0, τ) |X = 0.

Conditioning on the disease status D, we expand the above equations to

EY ψτ(X, Y , β0, τ)|X = EY ψτ(X, Y , β0, τ)|X, D = 0 P(D = 0|X)

+EY ψτ(X, Y , β0, τ)|X, D = 1 P(D = 1|X) = 0,
(2)

which will be the basis for constructing the proposed estimating equations. We now 

introduce a pseudo observation ỹ as the outcome under alternative disease status. 

Specifically, for i = 1, …, n1, we define ỹi as the pseudo outcome of subject i if selected as a 

control, and for i = n1 + 1, …, n, we define ỹi as the pseudo outcome of subject i if selected 

as a case. If we were able to observe those counter-factual outcomes, we could construct 

unbiased estimation equations for (2) with
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𝒮n, τ(β) = ∑
i = 1

n
ψτ(xi, yi, β)p(di |xi) + ψτ(xi, y∼i, β)p(1 − di |xi) = 0, (3)

where p(di | xi) is the probability of being the observed disease status given xi, and p(1 − | xi) 

is the probability of being counter-factual disease status. One can show that, for each 

summand of (3), its conditional expectation given (xi, di) is zero at the true β0,τ and thus 

constitutes an unbiased estimating equation. Note that the disease risk may relate to Y or 

other auxiliary variables Z, and p(D|X) in (3) denotes the conditional probability given X, 

i.e. p(D|X) = ∫y,z p(D|X, y, z) d F(y, z) (y, z).

Because those pseudo outcomes are unobserved in reality, we propose two approaches to 

circumventing this difficulty. We first propose a model-based simulation approach to 

generating the pseudo counter-factual outcomes, and assemble the estimating equations 

accordingly. In the second approach, we replace ψτ (xi, ỹi, β) by its conditional expectation, 

which is then estimated by a kernel smoothing technique.

2.3 Approach A: simulating pseudo counter-factual outcomes

To simulate the pseudo outcomes for a cases or control, we will model the conditional 

quantile process among its counterpart samples. Since quantile regression does not assume 

any parametric distribution in Y, we need expand the main model (1) to the entire quantile 

process in order to simulate counter-factual outcomes. This joint modeling approach has 

been explored in recent work, including Wei and Carroll (2009), Wei, Ma and Carroll 

(2012), and Wei and Yang (2014), to approximate the conditional quantile function without 

assuming a parametric likelihood. Specifically, we assume that the linear quantile model 

holds for any quantile level τ ∈ (0, 1). Under this assumption, we define β0(τ | d)d=0,1 as the 

quantile coefficient functions given disease status D = d such that

β0(τ |d) = arg min
β

EY[ ∥ ψτ(Y , X, β) ∥ |X, D = d] (4)

for any τ ∈ (0, 1). Therefore, x⊤β0(τ | 0) defines the conditional quantile function of y given 

x among controls, and x⊤β0(τ | 1) defines that among disease population.

In what follows, we outline an estimation algorithm to estimate β0(τ | d) from the data, and 

simulate counter-factual outcomes accordingly. Let 0 < τ1 < τ2 < ⋯ < τkn
< 1 be a set of kn 

evenly spaced quantile levels.

1. We denote β̂(τk |d), d = 1/0 as the estimated quantile coefficients for β0(τk | d), in 

(4) within cases and controls, respectively.
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2. To approximate the coefficient process β0(τ | d), we define β̂(τ |d) be a piecewise 

linear functions on [0,1] that concatenates the estimates β̂(τk |d) for 

0 < τk < τ2 < ⋯ < τkn
< 1 and is subject to the constraint of β′̂(0 |d) = β′̂(1 |d) = 0.

3. For the ith subject, i = 1, …, n, we simulate its pseudo outcome ỹi by 

y∼i
^ = xi

⊤β̂(ui | 1 − di), where ui is a random draw from Uniform (0, 1) distribution.

The simulated y∼̂i’s follows the model-estimated conditional distribution of Y given xi and di. 

Under certain mild conditions as outlined in Wei and Carroll (2009), β(τ |1) and β(τ |0)
uniformly converge to the underlying true ones over the interval [1/(kn + 1), kn/(kn + 1)] as 

n1 and n2 go to the infinity. Hence, with a reasonably large sample sizes, the simulated y∼i

approximates the counter-factual outcome y∼i well.

With the simulated be y∼i’s we construct the sampling estimating equations as

∑
i = 1

n
ψτ(xi, yi, β)p(di |xi) + ψτ(xi, y∼i, β)p(1 − di |xi) = 0. (5)

Simulating pseudo outcomes is subject to sampling uncertainty, and brings extra variability 

into parameter estimation. To further stabilize the variance, we suggest to repeat the above 

simulation procedures m time, and use their average as final estimation. Let βn, τ
(ℓ)  as the 

estimated coefficients from the ℓ-th replicate using (5), we then use the average of βn, τ
(ℓ)  as the 

final estimate of the coefficients. i.e.

βn, τ = m−1 ∑
ℓ = 1

m
βn, τ

(ℓ) .

Similar to the multiple imputation technique that is commonly used to handle missing data, 

the variance of βn, τ is fairly stable with a small number of m between 5 and 10. We will 

demonstrate the effect of different m in the section of simulations. In the rest of paper, we 

call βn, τ the SICO estimate since it uses SImulated Counter-factual Outcomes.

2.4 Approach B: estimating ψτ (xi, ỹi, β) by its conditional expectation

Another way to circumvent the difficulty of unobserved counter-factual outcomes is to 

replace ψτ(xi, ỹi, β) by its conditional expectation ψ∼τ(xi, β) = Ey∼i
[ψτ(xi, y∼i, β) |xi]. We 

reconstruct the estimating equations by
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Sn, τ(β) = ∑
i = 1

n
ψτ(xi, yi, β)p(di |xi) + ψ~τ(xi, β)p(1 − di |xi) = 0, (6)

where ψ~τ(xi, β) is estimated from the control sample if di = 1 and from the case sample if di = 

0. In a simple scenario where we have sufficient number of cases and controls given each 

value of xi, we could estimate the expectation terms by

ψ~̂τ(xi, β) =
∑ j = n1 + 1

n1 + n2 I(x j = xi)ψτ(x j, y j, β)

∑ j = n1 + 1
n1 + n2 I(x j = xi)

, i = 1, …, n1; (7)

ψ~̂τ(xi, β) =
∑ j = 1

n1 I(x j = xi)ψτ(x j, y j, β)

∑ j = 1
n1 I(x j = xi)

, i = n1 + 1, …, n (8)

where I(·) is an indicator function. These are essentially the sample means of the estimating 

function with the same xi but alternative diseases status. Following the law of large numbers, 

both estimates converge to the true expectations with n rate. Such applications can be found 

in single loci analysis in genetic studies (Kraft, 2007). In more general scenarios, especially 

when X includes continuous variables, the indicator function no longer produces valid 

estimates, since we may have very few observations at a given value of X. We propose to 

replace it by some suitable kernel function Kh(·) with bandwidth h, and approximate the 

expectation by

ψ~̂τ(xi, β) =
∑ j = n1 + 1

n1 + n2 Kh(‖x j − xi‖)ψτ(x j, y j, β)

∑ j = n1 + 1
n1 + n2 Kh(‖x j − xi‖)

, i = 1, …, n1; (9)

ψ~̂τ(xi, β) =
∑ j = 1

n1 Kh(‖x j − xi‖)ψτ(x j, y j, β)

∑ j = 1
n1 Kh(‖x j − xi‖)

, i = n1 + 1, …, n (10)

With the estimated ψ~τ(xi, β), we can assemble the working estimating equations
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Ŝn, τ(β) = ∑
i = 1

n
ψτ(xi, yi, β)p(di |xi) + ψ~̂τ(xi, β)p(1 − di |xi) = 0. (11)

Note that the estimates in (7) – (10) are linear functions of the original quantile regression 

estimating functions. Hence one could reorganize the estimating functions (11) as

Ŝn, τ(β) = ∑
i = 1

n1
wiψτ(xi, yi, β) + ∑

j = n1 + 1

n
w jψτ(x j, y j, β)

where wi = p(di = 1|xi) + ∑ j = n1 + 1
n1 + n2 Kh(‖x j − xi‖)p(d j = 1|x j)

∑i = 1
n1 Kh(x j = xi)

 and 

wi = p(di = 0|x j) + ∑i = 1
n1 Kh(‖x j − xi‖)p(di = 0| xi)

∑ j = n1 + 1
n Kh(‖x j − xi‖)

. Since the weights wi are not functions of 

β, solving the working estimating equations is equivalent to a weighted quantile regression 

and is computationally straightforward. We denote the resulting estimator as β~n, τ.

Finally, to choose an optimal bandwidth or a kernel function in (9), we propose to use K-fold 

cross-validation. Specifically, we randomly partition the data into K subsets and denote 

β( − ℓ)(h) as the estimated quantile coefficients using bandwidth h without the the ℓth subset 

of data, ℓ = 1, …, K. The optimal bandwidth is defined as

hopt = arg min
h

∑
ℓ = 1

K
∑

i ∈ Cℓ
wiρτ{xi, yi, β( − ℓ)(h)} + ∑

j ∈ Γℓ
w jρτ{x j, y j, β( − ℓ)(h)} ,

where Cℓ is the index set for the ℓ-th case subset, Γℓ is the index set for the ℓ-th control subset, 

and ρτ(x, y, β) = (y − x⊤ β)(τ − I {y − x⊤ β < 0}) is the quantile regression objective 

function. Essentially, we choose the bandwidth that minimizes the weighted cross-validated 

quantile regression loss functions. In Supplementary Material, we present additional 

numerical studies to investigate the impacts by the choice of bandwidth and the proposed 

CV-based bandwidth selection.

We call β
∼

n, τ in Approach B as the KS estimates, since the kernel smoothing technique is 

used to approximate the estimating function. When the dimension of x increases or when 

covariate space is sparse, the kernel smoothing in the approach B could be difficult due to 

the curse of dimensionality. Approach A avoids the smoothing, and hence is readily 

applicable for any dimension of x. However, it makes a stronger assumption that linear 

quantile model holds for the entire quantile process. This assumption could be relaxed by 

using more general models such as semiparametric partly linear models.
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2.5 Sample estimation of p(di | xi)

In both approaches, we need to estimate the conditional disease probability p(di | xi) and 

assume a logistic model

P(D = 1|X) = exp(γ0 + X⊤γ1)/{1 + exp(γ0 + X⊤γ1)} . (12)

Note that model (12) is a working model to approximate the distribution of disease given X 
and may differ from the true disease model because the secondary outcome Y may also 

affect disease risk. In our simulation study in later section, we generate the data from logit 

{P(D = 1|X, Y)} = γ0 + X⊤γ1 + Y γ1. When disease prevalence low, which is one of the 

main reasons to employ a case-control design, P(D = 1|X, Y) = exp(γ0 +X⊤γ1 + Y γ1)/

{1+exp(γ0 +X⊤γ1 + Y γ1 ≈ exp{γ0 + X⊤γ1 + Y γ1}. Consequently, the logistic model also 

holds for P(D = 1|X) if Y follows an exponential family distribution.

Further note that the intercept γ0 cannot be consistently estimated directly from the case-

control data, and needs to be re-calibrated to yield valid estimation of p(di | xi) (Prentice and 

Pyke, 1979). Assuming that the overall disease prevalence in the general population, denoted 

by P0, is known, we can estimate γ0 by solving the following equation

P0 = ∫
x

exp(γ0 + X⊤γ̂1)/ 1 + exp(γ0 + X⊤γ̂1)d Fx, (13)

where Fx is the joint distribution of X, and γ̂1 is the estimated slope from the case-control 

sample. When the covariate X is of high dimension, the joint distribution Fx is difficult to 

obtain. In this case, we propose to approximate γ0 by solving its sample version:

γ̂0 = arg min
γ0

P0 − n−1 ∑
i = 1

n
exp(γ0 + xi

⊤γ̂1)/{1 + exp(γ0 + xi
⊤γ̂1)

2
(14)

Both (13) and (14) are univariate optimization. Therefore, obtaining γ̂0 from either equation 

is computationally easy. The estimate of the conditional disease probability p(di | xi) can be 

written as p̂(di |xi) = exp(γ̂0 + xi
⊤γ̂1)/ 1 + exp(γ̂0 + xi

⊤γ̂1) .

2.6 Large sample properties of the proposed estimators

In this section, we establish the large sample properties of the proposed SICO estimator β̂n, τ
and KS estimator β~n, τ. We first make the following assumptions.

Assumption 1—There exists a compact set Θ ⊂ Rp such that the true coefficient β0,τ ∈ Θ 
is the unique solution to the estimating equations (2).
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Assumption 2—The covariate x has bounded support 𝒳, and there exists a consistent 

estimator of p(di | xi) such that maxi | p(di |xi) − p(di |xi) | = op(1).

Assumption 1 is the identifiability condition, and commonly assumed in Z- and M- 

estimations. If p(di | xi) truly follows a logistic model, Assumption 2 is satisfied readily. 

These assumptions lead to the estimation consistency. Recall that x⊤β0(τ | 0) is the 

conditional quantile function of y given x among controls, and x⊤β0(τ | 1) is that among 

disease population. We define a quantile density functional h(τ; x |d) = 1/ x⊤β′0(τ |d) , and 

introduce smoothness condition on β0(τ | d).

Assumption 3—The true coefficient functions β0(τ | d) are smooth functions on (0, 1), 

and for d = 0, 1 and any x,

i. 0 < h(τ; x | d) < ∞, and limτ→0 h(τ; x | d) = limτ→1 h(τ; x | d) = 0;

ii. there exist constants M and ν1, ν2 > −1 such that the first derivative of h(·) is 

bounded in a sense that

sup
x

|h′(τ; x |d)| < Mτ
v1(1 − τ)

v2 . (15)

Assumption 3 is used to achieve the uniform convergency of the estimated quantile 

coefficient process β̂(τ |1) and β̂(τ |0). Similar assumptions were used in Wei and Carroll 

(2009) and Wei, Ma and Carroll (2011). Condition 3(i) basically assumes that the 

conditional density f (y | x, d) is continuous, bounded away from zero and infinity, and 

diminishes to zero as τ goes to 0 and 1, while Condition 3(ii) is on the tail behavior of f (y | 

x, d), since h′(τ; x | d) determines how smooth the density function diminishes as the 

quantile level goes to zero and one. The smaller ν1 and ν2, the heavier the tails of the 

condition distribution of y given x. Condition (15) covers a wide range of distributions, such 

as exponential, Gaussian and the student-t distributions. Assumptions 1–3 together ensure 

the consistency of β̂n, τ. In what follows, we state the assumptions for the asymptotic 

normality.

We define the following matrixes.

Gn = n−1 ∑
i = 1

n
f yi

(xi
⊤β0, τ)p(di |xi) + f y∼i

(xi
⊤β0, τ)p(1 − di |xi) xixi

⊤,

where f yi
(xi

⊤β0, τ) is the density of yi evaluated at xi
⊤β0, τ, and f y∼i

(xi
⊤β0, τ) is the density of 

counter-factual ỹi at xi
⊤β0, τ.

Wei et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vn, 1 = n−1 ∑
i = 1

n
var ψτ(yi, xi, β0, τ)p(di |xi)

Vn, 2 = n−1 ∑
i = 1

n
var ψτ(y∼i

(ℓ), xi, β0, τ)p(1 − di |xi)

Un, 1 = n−1 ∑
i = 1

n
cov ψτ(yi, xi, β0, τ)p(di |xi), ψτ(y∼i

(ℓ), xi, β0, τ)p(1 − di |xi)

Un, 2 = n−1 ∑
i = 1

n
covℓ ≠ ℓ′ ψτ(y∼i

(ℓ), xi, β0, τ)p(1 − di |xi), ψτ(y∼i
(ℓ), xi, β0, τ)p(1 − di |xi)

We then assume that.

Assumption 4—There exists a positive definite matrix G0, such that Gn → G0 in 

probability as n goes to infinity.

Assumption 5—There exists non-negative definite matrixes V1, V2, U1 and U2, such that 

limn→∞ Vn,1 = V1, limn→∞ Vn,2 = V2, limn→∞ Un,1 = U1, limn→∞ Un,2 = U2.

Theorem 2.1—Under Assumptions 1–5, for kn → ∞ and kn/n→0, we have

n(βn, τ − βn, τ) N(0, G0
−1∑0G0

−1),

where Σ0 = V1 + m−1 V2 + 2U1 + {(m − 1)/m}U2

To establish the asymptotic propertiess for KS estimates β
∼

n, τ, Assumptions 3 and 5 need to 

be modified into the following assumptions.

Assumption 3*—The conditional density of the outcome Y given (X, D) is absolutely 

continuous with bounded second derivative.

Assumption 5*—Let Vn = n−1 var{Sn,τ(β0,τ)}. We assume that there exists a nonnegative 

definite matrix V0 such that limn→∞ Vn = V0.

Theorem 2.2—When h = o(n−1/5), n → ∞, and nh → ∞, the following statements hold 
under Assumptions 1, 2, 3*, 4 and 5*,

n(βn, τ − βn, τ) N(0, G0
−1V0D0

−1) .

We here establish the theoretical properties for the proposed estimators but note that the 

asymptotic variances are difficult to estimate by any analytically tractable form. For our 

simulations and the real study application, we thus use the bootstrapping method to obtain 

the variance-covariance matrix of our proposed estimators.
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3 Simulation Studies

3.1 Finite sample performance

In this section, we present several numerical studies to investigate the finite sample 

performance of the proposed estimation method with comparison to comparable existing 

methods. We consider the following base model with different distributions of (yi, xi, zi)

yi = 1 + 0.12xi + 0.1zi + (1 + 0.02xi)ei . (16)

Under this heteroscedastic model, the covariate z has constant effect at all the quantile levels 

with coefficient 0.1, while the covariate effect of x is stronger on the upper quantiles than the 

lower ones. Specifically, the true x coefficient at the τth quantile is 0.12 + 0.02Qei
(τ). We 

consider the following distributions of (yi, xi, zi).

• Model 1: xi = ui,1 + ui,2 where ui,1 and ui,2 are i.i.d. Bernoulli random variables 

with p = 0.3. zi ~ N(0, 1), and ei ~ N(0, 1)

• Model 2: xi = ui,1 + ui,2 where ui,1 and ui,2 are i.i.d. Bernoulli random variables 

with p = 0.3. zi ~ N(0, 1), and ei ∼ χ1
2/ 2

• Model 3: xi ~ N(0, 1), zi ~ N(0, 1), and ei ~ N(0, 1)

• Model 4: xi ~ N(0, 1), zi ~ N(0, 1), and ei ∼ χ1
2/ 2

Models (1) and (2) mimic data collected from a genetic study, where the covariate xi is a 

single SNP with MAF 0.3. The outcome follows a normal distribution in Model (1) and a 

skewed chi-square distribution in Model (2). We scale ei in Model (2) so that it has the same 

error variance as in Model (1) to standardize the signal-to-noise ratio. Models (3) and (4) 

consider continuous xi with normal and skewed error distributions, respectively.

In all the models above, we also assume that the conditional disease probability

P(D = 1| X, Z, Y) =
exp γ0 + ln(1.2)X + ln(1.2)Z + ln(2)Y

1 + exp γ0 + ln(1.2)X + ln(1.2)Z + ln(2)Y , (17)

and select γ0 to make the overall disease prevalence approximately 5%. Under this setting, 

the odds ratio of Y for the disease is 2. Since the secondary trait Y is often biomaker for the 

disease, we expect strong association between Y and D, and relatively weaker associations 

between (X, Z) and Y. Similar settings were considered in Lin and Zeng (2009), except that 

they only considered a homoscedastic model, where the association between Y and X is 

constant across all the quantiles. When the disease prevalence is low, P(D = 1|X, Z) 

approximately follows a linear logistic model as well.

From each model above, we first simulate 500 cases and 500 controls to mimic a small case-

control study, and then increase 2000 cases and 2000 controls for large case-control study. 
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With each random sample, we estimate the quantile coefficients respectively at quantile 

levels 0.5, and 0.9 using the proposed SICO and KS estimators. For the SICO estimator, we 

simulate pseudo outcomes from the data with replicates m = 1, 10 and 100. In the KS 

estimation, we use a kernel function Kh((x1, z1)⊤, (x2, z2)⊤) = I(x1 = x2) exp {−(z1 − z2)2/h} 

for Models (1) and (2), where h is the bandwidth, and used standard Normal kernel function 

Kh((x1, z1)⊤, (x2, z2)⊤) = exp{−‖(x1, z1)⊤ − (x2, z2)⊤‖2/h} for Models (3) and (4). The 

bandwidths h is selected by the 5 fold cross-validation as in Section 2.3.2. When estimating 

p(D|X), we use the equation (14) with the disease prevalence of 5%. In order to show the 

impact from estimating p(D|X), we also recalculate the SICO and KS estimators using true 

p(D|X). Finally, we compare our estimates to the following approaches (1) unadjusted 

quantile regression (QR) using controls only; (2) unadjusted QR using cases only; (3) 

unadjusted QR using combined case control sample, (4) IPW approach using weights equal 

to 1/0.05 for all the cases, and weights 1/(1 − 0.05) for all the controls.

Tables 1 and 2 summarize the relative bias, standard errors, and mean square errors of the 

estimated x coefficients from various approaches. Very similar results for Models (1) and (3) 

can be found in Supplementary Materials. According to the tables, the estimated quantile 

coefficients from the three unadjusted quantile regression approaches are seriously biased in 

all the models. Hence, without appropriate adjustment, it is easy to miss the important 

factors. Both KS and SICO estimators produce fairly accurate estimates in all the models 

and at all the quantile levels with all the relative biases being controlled within 5%. We also 

compared the proposed estimates using the estimated p(D|X) to the ones using the true 

probabilities (results are not presented in the table), we found the differences between the 

two estimates are small. In these simulated data, we sample cases and controls solely 

depends on the disease status. As expected, the IPW also performs well in correcting the 

bias. The mean square errors of the SICO estimates (m >= 10) are slightly smaller than the 

IPW ones in all the four models. Overall, it suggests that the proposed estimating equation 

approach works well in performing unbiased secondary quantile analyses in case-control 

studies.

3.2 Further comparison between IPW and SICO estimates under various sampling 
schemes

The inverse probability weighting (IPW) technique has been widely used in secondary 

analysis of case-control data due to its simplicity. The validation of IPW estimates however 

relies on a correct specification of the selection probabilities, which are often unknown with 

few exceptions. In a simple scenario when the sampling only depends on the disease status, 

we have a representative random disease sample and a representative random control 

sample. In such case, the selection probability is homogeneous for all the cases and for all 

the controls, and IPW works well. However, when the sampling is related to the covariates 

or some auxiliary variables, the IPW estimates are either biased, or have low efficiency. The 

proposed estimates solving the estimating equations (5) are unbiased as long as yi’s is a 

random sample given (di, xi), hence the resulting estimates are less affected by sampling 

schemes. In this section, we compared the proposed and IPW estimates under the same 

Models (2)–(3), but two different sampling schemes. In the first sampling scheme, we over 

sample the cases with large X values from the disease population. In Model (2) where X is 
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discrete and model error follows Chi-square distribution, we sample half cases with X = 2 

and the rest from X = 0, 1; In Model (3) where X is continuous and model error follows 

Normal distribution, we over sample the extreme X values such that 40% case sample have 

X larger than 5. In the second sampling scheme, we assume there exists an auxiliary variable 

W ~ N(0, 1) that is independent of Y and X. In both case and control samples, positive W is 

oversampled with the selection probability 9 times that of the negative W.

Table 3 displays the relative biases, standard errors and mean square errors of the resulting 

SICO and IPW estimates from 500 Monte-Carlo samples. When the cases with X = 2 are 

over-sampled in Model (2), both IPW and proposed SICO estimates work well. When the 

extreme X values are over-sampled in Model (3), however, IPW estimates start to be biased. 

Although less severe than the IPW estimates, SICO estimates are also slightly biased in this 

case. The bias comes from recalibrating γ0 following (14). When the sample distribution of 

X is seriously biased from that in population, the sample equation (14) with overall 

prevalence P0 does not produce unbiased γ0 estimation. Once one replaces the overall 

prevalence P0 by the expected sample prevalence, the SICO estimate is no longer biased. 

Another way to alleviate bias is to consider profile estimation similarly as in Lin and Zeng 

(2009). In the second sampling scheme where positive W was over sampled, IPW estimates 

suffered from inflated variance and bias especially in Model (2) at quantile level 0.9. The 

SICO estimates are unaffected in both models.

3.3 When the estimated P(D|X) is biased

The proposed estimates require a consistently estimated P(D|X). In this section, we 

investigate the robustness of the proposed methods when the estimated P(D|X) is biased. We 

consider two possible reasons that could lead to the bias. One, the disease prevalence P0 was 

not correctly estimated. Second, the logistic model for P(D|X) is misspecified.

We first simulate data from Model (1) in Section 3.1 and re-estimate the parameter in (16) 

with different disease prevalences, ranging from P0/2 to 2P0, where P0 is the true prevalence. 

The mean relative bias and standard errors of the resulting estimates from 500 Monte-Carlo 

replicates are listed in Table (4). We find the estimation bias does increase slowly as the 

prevalence deviates from the true one, but the differences are small even when doubling P0.

We then consider two scenarios where the logistic model for P(D|X) is misspecified. First, 

we assume that the true P(D|X) follows a Probit model

P(di = 1| xi, zi, yi) = Φ − 3.21 + ln(1.2)xi + ln(1.2)zi + ln(2)yi ,

where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal 

distribution. In second senerio, we use the same disease model (17) as in the earlier 

simulation, but disease prevalence is high, P(D|X) no longer follows a linear logistic model. 

Hence, we repeat the Model (2) with 10%, 20% and 30% disease prevalence rates. The 

results are displayed in Table (5). In all the cases, the relative biases from the SICO 

estimates are smaller than 4%, which indicates its robustness against the deviation from the 
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logistic model P(D|X). The KS estimates relatively more sensitive to the bias under Model 

(2) with higher disease prevalence.

4 Application to A Case-Control Genetic Association Study of Asthma

In this section, we apply our methods to study the association between the Thymic stromal 

lymphopoietin (TSLP) gene and asthma in a study from the New York University Bellevue 

Asthma Registry (Liu et al., 2011). The study consisted of 387 asthmatics and 212 healthy 

controls, and measured 10 tag SNPs in the TSLP gene. The secondary phenotype we 

considered was forced expiatory volume in one second (FEV1), an important quantitative 

measure of lung function. We modeled the quantiles of FEV1 by

QFEV1
(τ) = β0, τ + β2, τX + β3, τZ, (18)

where X is the minor allele count for each of the 10 TSLP SNPs, and Z is a continuous 

variable derived as the first principal component score from 213 ancestry informative 

markers (AIMs) to adjust for population stratification. To evaluate effects of the TSLP gene 

variants on various levels of FEV1, we estimated the model at quantile levels of 0.15, 0.25, 

0.5, 0.75 and 0.85, respectively. Three approaches were used to estimated the quantile 

coefficients: the proposed KS and SICO methods, and the IPW approach. Similar to the 

simulation studies, we use a Gaussian kernel and select the bandwidth using 5-fold cross-

validation for the KS estimates. When estimating the probability p(D|X), we calculated the 

overall asthma prevalence 9.1% based on 6 birth cohort studies. For comparison, we also 

applied the maximum likelihood method in Lin and Zeng (2009) to examine the association 

of mean FEV1 with the TSLP SNPs. The resulting estimated quantile coefficients and mean 

regression coefficients are summarized in Table 6. All the p-values in Table 6 were 

calculated using bootstrap, i.e. we bootstrap cases and controls separately, and re-apply the 

entire estimating procedure to the bootstrap case-control sample.

The estimated quantile coefficients from the three approaches are comparable. However, due 

to the small sample size in this particular example, the bootstrap standard errors of the KS 

estimates and IPW estimates are much bigger than the ones from SICO estimates. 

Consequently, the SICO estimates are more powerful to detect the quantile associations with 

small sample sizes. In the following discussion, we focus on comparing the quantile based 

inference using SICO method to the mean regression in Lin and Zeng (2009).

From the mean coefficients output in Table 6, we observed that SNPs rs11466743, 

rs2289278 and rs11241090 had significant associations with mean FEV1, with p-values of 

0.009, 0.041 and 0.042, respectively. The results from quantile regressions also indicated 

significant association with these SNPs, and these associations remain significant even after 

a conservative Bonferroni correction for estimating different quantile levels and the number 

of SNPs. Moreover, the quantile analysis presented a more comprehensive picture on the 

effects of these two SNPs and suggested that the SNPs have different impact on the 

distribution of FEV1. For example, having a G allele of SNP rs11241090 decreases the mean 

of FEV1 value by 4.8. Based on the quantile analysis, however, this SNP has no effect on the 
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median and lower quantiles (0.15th and 0.25-th quantiles) of FEV1, but significantly 

decreases the upper 0.75th quantile of FEV1 by 5.9. In addition, low FEV1 indicates poor 

lung function and thus it is important to know the TSLP effects on the lower quartile of 

FEV1. Specifically, our proposed method showed that SNPs rs2289276, rs11466741, and 

rs2289277 have significant association with the lower quartiles of FEV1; however, the mean 

regression did not indicate significant association, illustrating the potential for the new 

approach to discover new associations.

Moreover, to see how genetic variants impact the distribution of FEV1, we estimate the 

quantile coefficients on a fine grid of quantile levels. In Figures 1(a) and 1(b), we plotted the 

estimated conditional distribution functions with different genotypes at SNPs rs11466743 

and rs2289277, respectively. Specifically, the solid curve in Figure 1(a) is the estimated 

quantile function for the patients whose genotype at rs11466743 is GG, and the dashed line 

is that of those whose genotype is AG/AA at rs11466743. In Figure 1(b), the solid curve is 

the estimated quantile function with genotype GG at rs2289277, the dashed line is that of 

genotype CG, and the dotted line is for genotype CC. Both SNP were found to have 

significant impact on the distribution of FEV1. Based on Figure 1(a), rs11466743 has strong 

negative effect on both lower and upper quantiles of FEV1, and thus subjects with the 

mutation allele of rs11466743 tend to have lower FEV1 in general. In contrast, SNP 

rs2289277 only has strong impact on the lower quantiles, but makes little difference at the 

upper quantiles of FEV1. As indicated in Figure 1(b), the subjects with genotype GG in 

rs2289277 are more likely to have a very low FEV1 compared to those with genotype CC, 

however, they also have equal chance to have strong lung function. For example, for the 

subjects with rs2289277 genotype CC, the probability of FEV1 being lower than 80, which 

indicates poor lung function, is nearly zero. However, for the subjects with genotype GG, 

this probability is nearly 20%. However, the probabilities of FEV1 > 90 is 0.5 for all the 

genotypes, and the probabilities of FEV1 > 100 are about 0.8 for all the genotypes.

In the original case-control asthma study, we found that the SNP rs1898671 was associated 

with the asthma disease risk. When examining the association with the FEV1 level, we 

identified different associated SNPs. Asthma is an immune disorder, and induces airway 

inflammation with the manifestation of poor lung function. But between disease relapses 

lung function may be normal or sub-normal. In addition, the reduction of spirometry 

measures may be caused by different disease mechanism than asthma.

5 Discussion

Quantile regression is a valuable tool to analyze secondary outcomes in existing case-control 

studies. It provides a comprehensive picture of the association between exposures and the 

secondary outcomes, and has a great potential to reveal the undiscovered pathways of 

disease processes. To our best knowledge, it is the first attempt to conduct secondary 

quantile analysis. We propose a new family of estimating equations for consistent 

conditional quantile estimation using case-control sample. The construction of estimating 

equations combines observed and counter-factual outcomes, which is a novel approach in 

quantile regression and also in secondary analyses. As shown in the simulation study, the 

proposed approaches are less affected by the sampling schemes than the IPW methods. 
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These ideas can also be extended to construct estimating equations for other regressions, 

such as mean regression and generalized linear models.

The kernel smoothing technique works well with a small number of covariates. When 

covariates are of high dimension, or have sparse structure, it often encounters computational 

difficulty or bias. One natural solution is to incorporate penalty terms into the estimating 

functions, and select the covariates accordingly for a parsimonious model. Many 

penalization methods can be extended to the proposed model setting, such as the Lasso 

(Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), and 

the adaptive Lasso (Zhang and Lu, 2007). However, the theories and performance of 

resulting estimates need further investigation since the estimation equation involves kernel 

smoothing approximations. Another option is to reduce the model dimension using a 

propensity score approach (Rosenbaum and Rubin, 1984). Suppose X is the primary 

exposure of interest, and Z is a vector of controlling covariates. The propensity score is 

defined as a linear combination of Z⊤θ such that X ⊥ Z conditional on Z⊤θ. This way, one 

only needs to model Y against X and the propensity score Z⊤θ to control for Z. 

Consequently, the model is reduced to a parsimonious two-covariate model.

The SICO estimates using simulated counter-factual outcomes from stratified conditional 

quantile process are easy to implement, and can be used for any dimension of model. 

However, one needs to assume that linear quantile models holds for the entire quantile 

process. This assumption could be relaxed by adopting more general semiparametric or 

nonparametric quantile models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The estimated distribution functions of FEV1 associated with SNP rs11466743 and 

rs2289277.
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