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Abstract

This paper provides a statistical methodology for quantifying causality in complex dynamical

systems, based on analysis of multidimensional time series data of the state variables. The

methodology integrates Granger’s causality analysis based on the log-likelihood function

expansion (Partial pair-wise causality), and Akaike’s power contribution approach over the

whole frequency domain (Total causality). The proposed methodology addresses a major

drawback of existing methodologies namely, their inability to use time series observation of

state variables to quantify causality in complex systems. We first perform a simulation study

to verify the efficacy of the methodology using data generated by several multivariate auto-

regressive processes, and its sensitivity to data sample size. We demonstrate application of

the methodology to real data by deriving inter-species relationships that define key food web

drivers of the Barents Sea ecosystem. Our results show that the proposed methodology is a

useful tool in early stage causality analysis of complex feedback systems.

Introduction

The first attempt at deriving causal inference between variables goes back to a study on feed-

back systems by Wiener [1], where by his definition, a given time series is causal to another if

knowledge of the first series reduces the mean square prediction error of the second. Granger

[2] followed this notion of causality, and applied it to the analysis of economic time series data.

The goal was to explore the causal relationship between two variables that were selected from

what was considered as a multidimensional complex feedback system. Granger applied bivari-

ate time series models within the time domain, and based on this, defined the prediction error

as a metric for assessing model results. Geweke [3] expanded on Granger’s idea to define a

measure for model comparison based on using the quasi-likelihood function. A parallel devel-

opment to Granger’s approach is by Akaike [4], who provided a feedback system analysis

based on a multivariate auto-regressive model. Here, we define feedback as being present

when given bivariate time series, each of them is mutually causal to the other [5]. Akaike’s

approach was a practical statistical method to investigate mutual relationship among variables

from two different angles—the open/closed impulse response calculated in time domain, and
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the relative power contribution calculated in frequency domain. The methodology is referred

to as the Akaike’s total causality approach. Numerous successful applications of the method

can be found in several fields such as engineering, physics, economics and medical science [6].

A similar approach to the relative power contribution using multivariate auto-regressive

models, the directed coherence method, has been introduced by Baccalá and Sameshima [7].

The directed coherence method however, focused mainly on the use of auto-regressive coeffi-

cients to capture the transfer characteristics and ignored the noise contribution to the system.

Noise however, is an important information for dynamical system evolution, and is referred to

as the innovation in dynamic system modeling [5]. Thus auto-regressive coefficients and noise

contribution both play important roles in the Akaike causality, as well as in the Granger causal-

ity formulations [8].

In the summary on causality analysis presented in Section 14 of [5], the following two con-

cepts are integrated—the Granger and Geweke type pair-wise causality, and the Akaike’s total

causality. The Granger-Geweke pair-wise causality can be derived for each pair of the variables

in a multidimensional (over two-dimensional) feedback system from the Akaike’s total causal-

ity of the system. It must be noted that while it is possible to derive pair-wise causality from

assessment of total causality, the opposite process (i.e., the integration of multiple pair-wise

causality measures to obtain the total causality information of a system) is non-trivial. The

identification of total causality is therefore the most important analysis procedure in the study

of complex multivariate feedback systems [5].

Despite novelty of the idea, using Akaike total causality to assess Granger-Geweke type

pair-wise causality information has hitherto not been applied to complex systems, where such

information is central for understanding and prediction of system dynamics.

The goal of this paper is to provide a new numerical algorithm for the integrated causality

approach, and to demonstrate its efficacy through application to simulated data, and to empiri-

cal observations. The simulation data is generated by several auto-regressive process models.

The performance of the method is evaluated with respect to sensitivity of the causal inference

to the sample size of the observation data. Based on results from the simulation study, we

apply the methodology to investigate inter-species and environmental factors that act as causal

drivers of the capelin fish stock in the Barents Sea.

The Barents Sea, like many marine ecosystems, is characterized by several levels of interac-

tions between marine species (populations of fish, birds, sea mammals etc.) and the marine

environment [9]. Understanding the nature of these interactions is imperative because they

define ecosystem functioning, and provide insight into the effect of e.g., climatic change, on

the marine system dynamics [10]. Information about the interaction between marine species

and the environment often exists in the form of time series data obtained from scientific sur-

veys (see e.g. [11] and [12]). The time series data may be obtained from direct measurements

(e.g., temperature) or from processed information (e.g., conversion of acoustic observations to

population indices of abundance). Information about ecosystem state and function is therefore

usually derived from collation of data spanning different temporal and spatial scales of obser-

vation. The goal is to demonstrate the efficacy of our methodology for causal inference by

applying it to multidimensional temporal data from the Barents Sea.

Method

Our causality analysis method involves two procedures namely, application of a Multivariate

Autoregressive (MAR) model to capture the inter-component relationships, and a frequency

domain analysis using the estimated MAR coefficients and the covariance matrix of the

prediction error. The frequency domain analysis is an important procedure for physical
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interpretation of the estimated MAR model parameters. We use the Akaike noise contribution

approach to quantify the pair-wise causal link between variables. We show that unlike other

pair-wise causality methodologies (e.g., the Granger-Geweke’s approach) our algorithm only

requires the application of a bi-variate model in assessing the presence or absence of a causal

relationship. In the sections to follow, we introduce: 1. the MAR model and the model selec-

tion procedure, 2. the Akaike noise contribution approach, 3. the Granger-Geweke type pair-

wise causality analysis, and finally 4. A causal inference method metric- delta log-likelihood

values—that is based on integrating the pair-wise causal inference and Akaike’s total power

contribution.

The multivariate auto-regressive model and model selection. Let the observed k-dimen-

sional time series be denoted by xt = (x1(t), x2(t), � � �, xk (t))' (t = 1,� � �, N), where (�)’ denotes

transposition. We assume that the variables are mutually interactive in a system that is driven

by a multivariate auto-regressive (MAR) process

xt ¼
XM

m¼1
Amxt� m þ εt; ð1Þ

where M is the AR order, Am is the AR coefficients matrix, and εt follows a multinomial distri-

bution with mean zero vector and variance-covariance matrix S. The AR coefficients matrix

can be estimated by the Ordinary Least Squares (OLS) method. Other numerical algorithm

such as the Yule-Walker or alternatively, the Levinson’s method, can be applied to obtain sta-

ble estimates [6]. The AR order is identified by statistical model selection approaches, such as,

the Akaike Information Criterion (AIC) [2], defined by

AIC ¼ � 2� log � likelihoodþ 2� #models parameters: ð2Þ

Akaike noise contribution. The physical interpretation of the estimated AR coefficients is

obtained by considering the following procedure in the frequency domain. First, the cross-

power spectra Pf of the data is given by

Pf ¼ FfSF�f ¼

p11f p12f � � � p1kf

p21f p22f � � � p2kf

..

.

pk1f pk2f � � � pkkf

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; 0 � f � 0:5D; ð3Þ

where Δ indicates a sampling interval, and F�f is the complex conjugate of Ff, which is the fre-

quency response defined by

Ff ¼ I �
XM

m¼1
Ame� 2pfm

n o� 1

: ð4Þ

I is the identity matrix, and the off-diagonal components of Pf represent the cross-power

spectrum. Next, assuming S is of diagonal form, the power spectrum of xi is formed as sum of

terms by the jth frequency response function Fij f and the variance s2
jj for the prediction error of

xj by

pii f ¼ jF11 f j
2
s2

11
þ jF12 f j

2
s2

22
þ � � � þ jF1k f j

2
s2

kk: ð5Þ
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The effect from the noise of jth variable xj is given by

rij f ¼
jFij f j

2
s2

jj

jpii f j
2 ½0; 1�; ð6Þ

which is called the Relative Power contribution (RPC) or the Akaike’s RPC, after its originator

[4]. The extended power contribution approach, introduced by Tanokura and Kitagawa [13],

deals with situations involving significant correlated noise. Following [5], since (5) integrates

causality relationships among all variables, it is called the total causality of the whole variable

set and (6) is referred to as the partial innovation contribution ratio. The computed value rij f is

called the partial causality.

Granger causality. Here, we briefly review the basic concept for Granger causality [14].

For the observed two-dimensional time series data x1t and x2t, we consider a time series

model, with a variance of prediction error Var(x1,t | Us), where Us is the universal set that

contains all information about the system being modeled, up to time s. Granger causality is

defined as

Definition1.
If Var(x1,t | Ut−l)< Var(x1t | Ut−l − x2,t−l), x2,t causes x1,t.

Definition2.
If Var(x1,t | Ut−l)< Var(x1t | Ut−l − x2,t−l) and Var(x2,t | Ut−l)< Var(x2,t | Ut−l − x1,t−l), since

x1t also causes x2t a feedback relation exists between x1t and x2t.

Geweke [15] generalized Granger’s Definition 1 as:

Definition3.
The time series vector x1t Geweke-causes another time series x2t if log | Var(x1t | x1t−)|

− log | Var(x1t | x1t−,x2t−) |> 0, where x1,t− = (x1,t−1,x1,t−2,� � �)’ and x2,t− = (x2,t−1,x2,t−2,� � �)’.

Here, Var(x1t | x1t−) is the variance of the prediction error of x1,t obtained by Model(0),

which is a prediction model for x1,t with only x1,t−. On the other hand, Var(x1,t | x1,t−,x2,t−) is

the variance of the prediction error of x1,t, obtained by Model(1), which is a prediction model

for x1,t with both x1,t− and x2,t−. Ozaki [5] points out that the mathematical criterion of

Granger and Geweke are essentially equivalent to the following general criterion, given by

Definition 4:

Definition4.
The observed x2,t causes another observed x1,t, in the sense of ‘log-likelihood’, when

� 2 log pModelð0Þ ðx1 tÞ � 2 log pModelð1Þ ðx1 tÞ > 0:

The pairwise total causality assesses the difference in likelihood between the model with,

and without causal influence from other variables.

Pair-wise causal inference based on Akaike’s total power contribution. Kolmogorov

[16] defined a relationship between the variance of the prediction error σ2 of a stationary pro-

cess and the power spectrum p(f) by:

logs2 ¼

ð1=2

� 1=2

log pðf Þdf : ð7Þ
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Using (7), the power spectrum pii,f in (3) can be expressed in terms of log value of the vari-

ance of the prediction error for the ith variable. We derive

logs2
i ¼

ð1=2

� 1=2

log piiðf Þdf ¼

ð1=2

� 1=2

log
XK

k¼1
jaikðf Þj

2
s2

kdf

¼

ð1=2

� 1=2

log ðjFi1ðf Þj
2
s2

1
þ jFi2ðf Þj

2
s2

2
þ � � � þ jFiKðf Þj

2
s2

KÞdf :

ð8Þ

In the original MAR model, if we exclude the contribution of the noise effect from the jth to

the ith variable, the logarithm of the variance for the prediction error, logs2
i^j, is given by

logs2
i^j ¼

ð1=2

� 1=2

log pðjÞii ðf Þdf

¼

ð1=2

� 1=2

logð
Xj� 1

k¼1
jaikðf Þj

2
s2

k þ
Xk

k¼jþ1
jaikðf Þj

2
s2

kÞdf :

ð9Þ

The difference between logs2
i^j and logs2

i (see [15]) can be written as

logs2
i^ j � logs2

ii ¼

ð1=2

� 1=2

log pðjÞii ðf Þdf �
ð1=2

� 1=2

log piiðf Þdf

¼

ð1=2

� 1=2

log
pðjÞii ðf Þ
piiðf Þ

df ¼
ð1=2

� 1=2

log
piiðf Þ � jaijðf Þjs2

jj

piiðf Þ
df

¼

ð1=2

� 1=2

logð1 �
jaijðf Þjs2

jj

piiðf Þ
Þdf

�

ð1=2

� 1=2

jaijðf Þjs2
jj

piiðf Þ
df ¼

ð1=2

� 1=2

rij;f df ;

ð10Þ

which is equivalent to the integration of the noise contribution from the jth to the ith variable

in the whole frequency domain. This measure defines the Granger-Geweke type pair-wise

causality that is derivable from the Akaike’s total causality relationship [5]. In the rest of this

manuscript, ΔLL will represent the difference between log-likelihoods for two models as given

by (10).

For a given value for ΔLL, it is desirable to define a threshold level for assessing the signifi-

cance of the jth variable causal contribution to the dynamic of the ith variable. This article

defines such a threshold level based on the AIC concept [17]. Using the model comparison

given in (10), the difference between AIC for a full model and AIC for the model that excludes

noise from the jth variable is given by

AICs2

i^ j
� AICs2

ii
¼ � 2� logs2

i^ j þ 2� ðk � 1Þ � f� 2� logs2
ii þ 2� kg

¼ DLL � 2:
ð11Þ

The implication of (11) is that, it is difficult to assume the existence of a significant influence

from j to i if ΔLL< 2. We summarize the procedure in the algorithm shown in Fig 1.

Simulation study

This paper uses numerical simulations for illustration, and in evaluating the proposed method-

ology. We present two types of simulation studies (labelled as Study 1 and Study 2) where, the

goal of Study 1 is to confirm the accuracy of the causal inference by MAR model including full

IMQC in complex ecosystem
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variables, and Study 2 aims at confirming the performance of the proposed ΔLL metric for sev-

eral simulated multi-dimensional data.

We first generate four types of multidimensional simulation data using AR models, where

the model order is fixed, for the sake of simplicity. Four datasets were generated using the fol-

lowing coefficients:

1. 3 variables:

a11 a12 a13

a21 a22 a23

a31 a32 a13

0

B
@

1

C
A ¼

0:5 0:3

0:5 0:4

0:5

0

B
@

1

C
A;

Fig 1. Block diagram of the algorithm summarizing the calculating procedure of ΔLL.

https://doi.org/10.1371/journal.pone.0208078.g001
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2. 5 variables:

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a13 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼

0:7 0:5 0:6

0:7

0:7 0:6

0:7 0:6

0:7

0

B
B
B
B
B
@

1

C
C
C
C
C
A

;

3. 8 variables case 1:

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

¼

0:5

0:4 0:5

0:3 0:5 0:3

0:5

0:5

0:3 0:5

0:4 0:4 0:5

0:3 0:5

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

;

and

4. 8 variable case 2:

a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

¼

0:5 0:3 0:4 0:3

0:5 0:3

0:5 0:4

0:5

0:3 0:5

0:5 0:2 0:3

0:3 0:3 0:5 0:3

0:3 0:2 0:5

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

Blanks in the matrices represent zero elements. In Fig 2, the latter 200 points of generated

data are plotted on the Left-hand side (Lhs) and the assumed causal relationships among vari-

ables are summarized for each case by diagrams on the Right-hand side (Rhs). The noise term

is generated as a uniformly distributed random variable with zero mean and unit variance.

Matlab has been used as a platform for data generation and numerical computations. The pro-

grams are collected as S1 Zip folder.

Study 1. We apply Granger causality analysis to the five-dimensional data, where the vari-

ables are given by

x1ðtÞ ¼ a11ð1Þx1ðt � 1Þ þ ε11ðtÞ and

x1ðtÞ ¼ a11ð1Þx1ðt � 1Þ þ a12ð1Þx2ðt � 1Þ þ ε12ðtÞ:

For Var(ε11)> Var(ε12), x2 causes x1. On the other hand, considering the following mod-

els:

x2ðtÞ ¼ a22ð1Þx2ðt � 1Þ þ ε22ðtÞ; and

x2ðtÞ ¼ a21ð1Þx1ðt � 1Þ þ a22ð1Þx2ðt � 1Þ þ ε21ðtÞ:

If Var(ε12)> Var(ε21), x1 causes x2. The same procedures are perform for the pair x1 and

x3, x1 and x4, . . ., and, x4 and x5. For comparison, we use the sum of residuals in a F-test, to

IMQC in complex ecosystem
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calculate the F statistics. The computation is done using the causality function in the R package

library(vars). The derived p-values are given in the following matrices:

p12 p13 p14 p15

p21 p23 p24 p25

p31 p32 p34 p35

p41 p42 p43 p45

p51 p52 p53 p54

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

2:0� 10� 4 1:93� 10� 6 <2:2� 10� 16 1:1� 10� 5

0:91 0:11 0:84 0:97

0:35 0:87 0:040 <2:2� 10� 6

0:0053 0:64 0:28 <2:2� 10� 16

0:58 0:96 0:72 0:69

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

To avoid multiple testing problem, False Discovery Rate (FDR) [5] analysis was applied to

the p-values. Finally, p12, p13, p14, p15, p35, p45, and p41 are selected at a 5% FDR significance

Fig 2. The 3, 5 and 8 variables simulation data. The 200 points data generated by the MAR(1) model are plotted on the Lhs, while the diagrams on Rhs represent the

assumed relationships among the variables.

https://doi.org/10.1371/journal.pone.0208078.g002
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level. The results are presented in Fig 3, which, in addition to the true flows, also captures

three incorrect flows.

Next, we applied the MAR model to the same dataset and calculated the ΔLL values. We

summarize the results and inferred flows in Fig 4. This case captures only one extra flow in

addition to the true flows. In fact, the extra flow is interpreted as a direct flow 5! 1 that sum-

marizes the flows 5!4!1. That is, the flows 5! 1 and 5!4!1 follow an identical flow direc-

tion. Comparing the results of the MAR model to those using the bivariate model, we infer

that using the former leads to more certain inference on causal flow direction, based on causal

flow diagrams. We discuss how to detect direct/indirect flows in Study 2.

Fig 3. The inferred flows based on applying the Granger’s causality method to five-dimensional simulation data.

https://doi.org/10.1371/journal.pone.0208078.g003

Fig 4. The calculated ΔLL values for five-dimensional simulation data and the inferred causal flow diagram.

https://doi.org/10.1371/journal.pone.0208078.g004
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Study 2. We first investigate the sensitivity of the MAR model to data sample size by

applying it respectively, to 50, 100, 150 and 200 points data for the various multidimensional

variables. The values for Δ LL were then calculated using (4), (5) and (10), based on the esti-

mated coefficients by Levinson’s method [6] and the covariance matrix of the prediction error.

The procedure was iterated 10,000 times and Table 1 summarizes the mean and standard devi-

ation for number of correct/wrong flows for each case.

In general, the methodology appears to be accurate in capturing the correct number of

flows (irrespective of the sample size), although number of incorrect flows appears to increase

with increasing variable dimension. On the other hand, for 150–200-sample sizes, the correct

number flows become stable, and indicate approximately the actual number of correct rela-

tionships. The number of wrong connections is mostly related to cases where intermediary

flow relationships are ignored, i.e., when the flow A—> B—> C is registered as A—>C. We

illustrate this in Fig 5, for a case involving a sample size of 200 data points.

The number beside each arrow is the ΔLL value that underpins our inference, where we

have assumed the existence of a causal relationship when ΔLL> 2.5. In each diagram, the dot-

ted line with the symbol ‘?’ represent flows that were not originally assumed in the model, but

which evolved during the analysis as being significant (ΔLL>2.5). For example, in the case of 3

variables, the flow 3!1 was not originally assumed to exist in the model. However, this flow

results direct connection for the two flows for 3!2 and 2!1. For the sake of consistency, we

compare the models including only inferred influence by with the models including the flows

drawn by the dotted lines. We prepare all possible combinations for the inferred influence by

ΔLL as the alternative models. Furthermore, we applied the all possible models to the data and

calculated the AIC again. The original model including only inferred influence by ΔLL are

compared with the model indicating the minimum AIC among all possible models. The results

are summarized in Table 2.

The MAR model basically includes full relationships among all variables and the numerical

algorithm outputs all coefficient estimates. The feedback relationships become complicated as

the number of variables increases and the output for ΔLL> 2.5 leads to redundant connection

including direct and undirect both flows as seen in the inferred relationships’ models. For all

cases, the best model is a simple model without undirect flows. In real situations, the true rela-

tionships are usually unknown. Hence it is important that the results be evaluated with back-

ground knowledge about the data, especially for cases where the data sample size is small.

Furthermore, more rigorous model fitting is required, and model selection must be guided by

standard selection criteria as shown on Table 2.

Causal analyses of Barents Sea capelin population dynamics

Data. Capelin is a short-lived (1–4 years) species that are the most important fish stock in

the Barents Sea [18]. It is the main diet for Northeast Arctic cod and juvenile herring ([19],

Table 1. Results for the sensitivity analysis. The table summarizes the mean (standard deviation) values for the number of correct/wrong flows, based on ΔLL> 2.5. The

first row shows four variations of the simulation data. The figures in the parentheses are the assumed number of correct flows (relationships) among the variables. The first

column represents the dimension of the simulation data.

3var (2) 5var (4) 8var case1 (7) 8var case2 (13)

size correct wrong correct wrong correct wrong correct wrong

50 1.8±0.37 1.4±0.98 3.9±0.26 4.5±2.35 6.9±0.33 47.6±5.7 12.8±0.59 41.0±5.76

100 2.0±0.21 0.8±0.70 4.0±0.09 1.9±1.08 6.5±0.67 4.4±2.01 11.8±1.09 6.2±2.46

150 2.0±0.10 0.7±0.57 4.0±0.00 1.2±0.56 6.8±0.46 2.0±1.34 12.3±0.83 4.2±1.95

200 2.0±0.10 0.6±0.54 4.0±0.00 1.1±0.45 6.9±0.31 1.1±1.02 12.6±0.7 3.2±1.52

https://doi.org/10.1371/journal.pone.0208078.t001
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[20]). Several marine mammals, seabirds, kittiwakes and guillemots are also known to prey on

capelin. The replenishment (recruitment) of the capelin stock is thought to be mainly regu-

lated by the degree of juvenile herring predation on capelin larvae, and the predation by

Northeast Arctic cod [21]. Both biotic (food supply—copepods, euphausiids, and hyperiids)

and abiotic (ambient temperature) have been reported to affect capelin feeding, condition fac-

tor and distribution [22]. Fig 6 (re-drawn after Hjermann et al. [23]) represents a simplified

food web of the Barents Sea, showing capelin (focal species) and its link to both lower and

higher trophic level species. Based on Fig 6, we define the biotic dataset by the annual bio-

masses of capelin of ages 1–4, the total annual biomass of cod and herring, and the density of

the krill biomass in the Barents Sea. The data are taken from the database of the WGIBAR [1],

and for particularly for capelin, the survey procedure and biomass calculations can be found

in Gjøsæter et al. [24]. We apply our methodology to infer causal relationships among the

biotic observations, and the influence of temperature on the dynamics of the biotic data, i.e.,

evaluating the environmental effect on the four species. Fig 7 shows plots of the data used in

the analyses.

Fig 7 shows the 5-dimensional time series matrix including capelin ages �, cod, krill, herring

and temperature, where capelin� represents age-dependent capelin biomass at ages 1, 2, 3, or

4. We use capelin biomass data from 1973 to 2014, and associated covariate data within the

same time range, where krill is used as a proxy for zooplankton in this paper.

Fig 5. Estimated flows for data sample size of 200.

https://doi.org/10.1371/journal.pone.0208078.g005
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Results and discussion

Biotic data analyses. We first applied the MAR model to the time series matrix, excluding

temperature. The minimum AIC identified MAR (1) models for capelin ages 1 and 4, and

MAR (2) models for capelin ages 2 and 3. Fig 8 presents the inferred flow diagrams based on

ΔLL> 2.5.

From the diagrams, more causal relationships for capelin ages 2 and 3 appeared than causal

relationships for age-1 capelin. The case for capelin ages 4 showed less interactions. Observa-

tion data for capelin ages 4 and above is usually sparse and unreliable (see [24]). Hence these

age groups will be excluded from further discussions. The food web in Fig 6 indicated that cod

and herring prey on capelin, while capelin and herring both prey on zooplankton. From our

causal analyses, ages 1 to 3 capelin had influence on the variability of cod. Results for age-2

capelin indicated this age group is highly influenced by variability of the krill biomass. For age-

3 capelin, we registered an influence from herring to krill that was absent in other capelin age

groups. The influence level of herring on cod was slightly higher than that of cod on herring.

Table 2. Comparison of the models estimated by AIC.

variables model Log-likelihood # parameters AIC

3

Including inferred relationships

a11 a12 a13

0 a22 a23

0 0 a33

0

B
B
@

1

C
C
A

-824.2 12 1672.4

The best model: excluding 3!1 (a13) -824.6 11 1671.3

5

Including inferred relationships

a11 a12 0 a14 a15

0 a22 0 0 0

0 0 a33 0 a35

0 0 0 a44 a45

0 0 0 0 a55

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

-264.5 25 579.0

The best model: excluding 5!1 (a15) -265.4 24 528.8

8 case1

Including inferred relationships

a11

a21 a22

a31 a33 a34

a44

a53 a55

a65 a66

a75 a77

a85 a87 a88

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

-408.6 53 923.3

The best model: excluding 3!5 (a53) and 5!8 (a85) -408.8 51 919.5

8 case2

Including inferred relationships

a11 a12 a14 a17

a22 a23 a25

a33 a35

a44

a51 a54 a55

a66 a67 a68

a72 a74 a77 a78

a82 a86 a87 a88

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

-399.9 60 919.7

The best model: excluding 5!2 (a25),4!5 (a54) and 2!8 (a82) -398.3 57 910.6

https://doi.org/10.1371/journal.pone.0208078.t002

IMQC in complex ecosystem

PLOS ONE | https://doi.org/10.1371/journal.pone.0208078 January 25, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0208078.t002
https://doi.org/10.1371/journal.pone.0208078


The food web in Fig 6 also supports the weak relationship between zooplankton and herring,

and between herring and cod.

From Fig 8, we notice that the causal relationship (existence and strength) between capelin

and the other three species (cod, herring, krill) is different for the various capelin age groups.

The dynamic between cod, herring and krill, in the absence of capelin, was analyzed, and the

results are summarized in Fig 9. In this analysis, the feedback relationship between cod and

krill appeared to be strong, while the relationships between cod and herring, and between krill

and herring, appear to be less strong. This observation is supported by Bogstad et al. [25], who

showed that ages 3–6 cod prey more on capelin than on krill. It can be inferred that capelin is

the preferred prey for Northeast Arctic cod [19] and juvenile herring [20]. However, krill

becomes important as prey for both species (cod and herring) in the absence of capelin. This is

supported by the literature, especially diet compositions of cod during periods of capelin stock

collapse [19].

The influence from temperature as an abiotic factor. As a further analysis, we applied

the procedure for the biotic (four species) data to temperature, in order to investigate the influ-

ence of temperature on capelin of ages 1, 2 and 3. The identified regression orders were the

same as previously; MAR (1) for capelin ages 1 and 3, and MAR(2) for ages-2 capelin. Since

the influence from fish species to temperature is not realistic, elements in the AR coefficient

matrix corresponding to this influence can be set to naught, i.e., a51 = a52 = a53 = a54 = 0,

where x1, x2, x3, x4, and x5 represent the time series data for capelin, cod, krill, herring or tem-

perature. For this case, the other coefficients may be estimated by any other methods rather

than the Levinson’s algorithm. Applying numerical optimization procedures to estimate MAR

coefficients sometime leads to unstable estimates that represent local minimum likelihood

Fig 6. Food web of the Barents Sea. Showing capelin (focal species) and its link to both lower and higher trophic level

species (redrawn after [22]).

https://doi.org/10.1371/journal.pone.0208078.g006
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values. We therefore applied a full MAR model (including unrealistic relationships, such as the

influence of fish on temperature) to the data and tested this against a model where unrealistic

relationship has been excluded. The results of this test are summarized in Table 3. The AIC for

the model without the influence of fish on temperature has consistently less AIC value than for

the full MAR model. This applies for all capelin age groups considered. The inferred diagrams

for 1–3 capelin ages and inference on the influence of temperature on the four-species consid-

ered was based on calculated ΔLL using the estimated MAR coefficients, as shown in Fig 10.

Since the temperature was included as biotic factor to estimate MAR coefficients, the inferred

diagrams indicate slightly different dynamics comparing with the inferred diagrams shown in

Fig 8. The MAR orders for capelin age 2 and 3 were one while the orders in the case of Fig 8

were two. The relationship between capelin and herring were not captured in this case. Since

MAR model includes full coefficients, the model that the abiotic factor is treated as an exoge-

neous variable seen in [26] could capture more significant relationship between capelin and

herring. If we focus on the influence of temperature on the four-species, the obtained ΔLL was

greater than 2.5 for all cases. The effect of temperature on cod was stronger (based on ΔLL)

than on capelin and krill.

Fig 7. The five time series data for biotic and abiotic factors. The biotic and abiotic data including capelin ages 1–4 biomasses (×106 kg on y-axis), cod and

herring biomasses (kg on y-axis), krill density (×103 g / m2 on y-axis), and Bird Island-Bear Island temperature (degree of Celsius). The x-axis indicates year.

https://doi.org/10.1371/journal.pone.0208078.g007
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Conclusions

We have provided a statistical methodology that integrates the pairwise causality methodol-

ogy by Granger and Geweke, with the total causality approach defined by the Akaike’s power

contribution. We have investigated the sensitivity of the method through simulation studies,

using data generated by MAR models. For the simulation examples presented, our algorithm

appears to be accurate in capturing the flow relationships. This is especially true for cases

where the data sample size was at least 100, and the model parameter dimension did not

exceed 8. We have also demonstrated the ability of the algorithm to capture redundancies in

flow relationships. For the example with a sample size of 200, the algorithm captured both

Fig 8. The inferred diagrams by ΔLL. The inferred flow diagrams for four species. The numeric value beside each arrow is indicative of the ΔLL value associated with

flow direction.

https://doi.org/10.1371/journal.pone.0208078.g008
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direct and intermediary (redundant) flows. A potential challenge with application of our

methodology is the computational cost associated with larger data sets. The costs will be

expected to increase with increasing number of possible flow combinations, and in the

dimension of model parameters. A sequel paper will seek to address this computational

drawback. The utility of the proposed methodology has been exemplified with real observa-

tions, by investigating the causal drivers of the Barents Sea capelin population dynamics.

The sample size of the real observation is nearly 50, and the results are consistent with earlier

studies on the trophic interactions between capelin, cod, herring and zooplankton in the

Barents Sea. In addition, we have investigated the effect of temperature on four species using

the MAR model. The results show the ability of our algorithm to identify observations that

need to be treated as exogenous variables, and for which a MARX model (MAR model with

exogenous variables) may be more appropriate.

A basic condition of our methodology is the assumption of data stationarity. For the exam-

ples we have considered, we have implicitly treated the data as stationary processes. This

Fig 9. The ecosystem without capelin. The inferred flow diagrams.

https://doi.org/10.1371/journal.pone.0208078.g009

Table 3. Comparing full covariates model with the model excluding unrealistic relationships.

Capelin age MAR model Log-likelihood # parameters AIC

1 Full relationships -247.7 25 545.3

Excluding relationships fishes! temperature -246.5 20 535.0

2 Full relationships -253.8 50 607.5

Excluding relationship fishes! temperature -249.2 42 583.6

3 Full relationships -235.6 25 520.6

Excluding relationships fishes! temperature -235.5 21 513.0

The unrealistic relationships mean the flow from biological factor to environmental factor such as fishes! temperature.

https://doi.org/10.1371/journal.pone.0208078.t003
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however, does not limit application of the methodology to non-stationary cases. When the

data is nonstationary, we could first decompose it into non-stationary and stationary compo-

nents, and then apply the computational procedure to the decomposed stationary part [27].

A caveat to our results is limitations imposed by the small sample size of the time series of

real observations. The small sample size hinders an intuitive interpretation of the Akaike’s

noise contribution in the short/middle/long individual frequency domain. This caveat not-

withstanding, the proposed methodology gives us more in-depth understanding of the obser-

vations through integration of information along the entire frequency domain. It is a practical,

first-step tool for analyzing the causal relationships in complex dynamical systems, such as,

among marine populations and other biotic and abiotic ecosystem factors.

Finally, methodologies based on the Granger concept have been applied to complex ecosys-

tems, as in recent articles [28] and [29]. The approach in [29] is a deterministic approach that

does not consider stochastic properties the model. The results in [28] combines graph theory

based on cross correlation and Granger causality. Since the method works for small sample

Fig 10. The inferred diagrams among four species and temperature, and the plots for the contributions from temperature to those species. In the plot, solid,

dashed and dotted lines indicate the case for capelin age 1, 2 and 3, respectively.

https://doi.org/10.1371/journal.pone.0208078.g010
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sizes, a comparative study of our approach and that in [28] when applied to biotic and abiotic

data will be given a further consideration.

Supporting information

S1 Zip folder. Matlab codes for generating simulation data and conducting the analysis.
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