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Objective: Machine learning algorithms excel at leveraging big data to identify complex pat-
terns that can be used to aid in clinical decision-making. The objective of this study is to 
demonstrate the performance of machine learning models in predicting postoperative com-
plications following anterior cervical discectomy and fusion (ACDF).
Methods: Artificial neural network (ANN), logistic regression (LR), support vector ma-
chine (SVM), and random forest decision tree (RF) models were trained on a multicenter 
data set of patients undergoing ACDF to predict surgical complications based on readily 
available patient data. Following training, these models were compared to the predictive 
capability of American Society of Anesthesiologists (ASA) physical status classification. 
Results: A total of 20,879 patients were identified as having undergone ACDF. Following 
exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for test-
ing data sets. ANN and LR consistently outperformed ASA physical status classification in 
predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous 
thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF mod-
els were no better than random chance at predicting any of the postoperative complications 
(p < 0.05).
Conclusion: ANN and LR algorithms outperform ASA physical status classification for pre-
dicting individual postoperative complications. Additionally, neural networks have greater 
sensitivity than LR when predicting mortality and wound complications. With the growing 
size of medical data, the training of machine learning on these large datasets promises to 
improve risk prognostication, with the ability of continuously learning making them excel-
lent tools in complex clinical scenarios.

Keywords: Anterior cervical discectomy and fusion, Predicting, Complications, Machine 
Learning, Spine

INTRODUCTION

With the advent of digital technology, machine learning and 
deep learning in particular, is increasingly making it possible to 
utilize big data to more precisely risk stratify and prognosticate 
how an individual patient will behave based on a given a dis-
ease or intervention. Machine learning has already been used 

in other realms such as retail and search engines. However, 
healthcare has lagged in the uptake of newer techniques to le-
verage the rich information contained in electronic health re-
cords.

The practice of evidence-based medicine has sustained the 
progress seen in modern care and diagnosis. Traditional statis-
tical approaches have gleaned much about what is known re-

Neurospine 2018;15(4):329-337. 
https://doi.org/10.14245/ns.1836248.124

Neurospine
eISSN 2586-6591 pISSN 2586-6583 

This is an Open Access article distributed under 
the terms of the Creative Commons Attribution 
Non-Commercial License (http://creativecom-
mons.org/licenses/by-nc/4.0/) which permits 
unrestricted non-commercial use, distribution, 
and reproduction in any medium, provided the 
original work is properly cited.

Copyright © 2018 by the Korean Spinal 
Neurosurgery Society 

http://crossmark.crossref.org/dialog/?doi=10.14245/ns.1836248.124&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.14245/ns.1836248.124&domain=pdf&date_stamp=2018-12-21


Predicting Complications Using Machine LearningArvind V, et al.

https://doi.org/10.14245/ns.1836248.124330  www.e-neurospine.org

garding risk factors used for prognostication. Machine learning 
combines these fundamental statistical insights with modern 
high-performance computing to learn patterns that can be used 
for recognition and prediction. Importantly, machine learning 
often identifies patterns that are not readily apparent to human 
intuition, thus identifying otherwise unknown connections.1 
Multivariate logistic regression (LR) and artificial neural net-
work (ANN) are the 2 most commonly used machine learning 
models employed in medicine.2 ANNs were first developed to 
model the neural architecture of the brain. Harnessing the struc-
ture of biology, ANNs are particularly well suited for modeling 
complex, nonlinear data when little is known regarding the un-
derlying distribution of the data or colinearity among the vari-
ables.3 Importantly, ANNs can perform these functions without 
prior assumptions, leading to a highly adaptable system with 
little bias.3 Other models such as support vector machines (SVMs) 
and random forest decision trees (RFs) have been used for clas-
sification tasks.

Anterior cervical discectomy and fusion is a commonly per-
formed procedure with excellent and reliable outcomes and a 
fast recovery.4-6 The number of ACDF procedures performed in 
the United States has increased almost 8 fold from 1990 to 2004, 
accounting for the majority of outpatient cervical spine surger-
ies.7 In particular, because of the good outcomes associated with 
ACDF, complications are difficult to predict. Thus, novel tools 
that can help predict potential postoperative complications are 
needed. Furthermore, in the burgeoning era of rising health-
care costs and greater scrutiny over surgical outcomes, there 
has been increasing emphasis on understanding the risk factors 
and possible predictors to optimize perioperative planning and 
management. Data-driven clinical decision support tools have 
the potential to lead to cost savings by leveraging the informa-
tion contained in large medical databases. Uptake of machine 
learning approaches in this realm has lagged due to the sparse 
data sets associated with ACDF.8

This study seeks to develop and validate machine-learning 
algorithms to precisely predict complications following ACDF 
using a national database. These algorithms have the capability 
of continuously “learning” using newly generated information 
to improve the quality and efficiency of care. 

MATERIALS AND METHODS

1. Patient Selection and Preprocessing
The National Surgical Quality Improvement Program (NSQ-

IP) database was used for the purpose of training and validat-

ing ANN and LR models. A total of 20,879 patients undergoing 
anterior cervical discectomy and fusion from the years 2010 
through 2014 were reviewed for this study. Patients were ex-
cluded from the present analysis due to incomplete data. No 
other exclusion criteria were employed.

2. Training and Testing Data Sets
For development of our models, 70% of the initial data (train-

ing set) was used for training while 30% (training set) was set 
aside randomly for posttraining evaluation of our models. To 
overcome the low sample size for positive complication cohorts, 
the adaptive synthetic sampling (ADASYN) approach for im-
balanced learning was utilized to generate positive complica-
tions to improve class imbalance. Briefly, ADASYN utilizes a 
weighted distribution for minority class examples that are diffi-
cult to learn, and generates synthetic data based on these exam-
ples to improve model learning and generalizability.9 

This study was reviewed by the Icahn School of Medicine at 
Mount Sinai Institutional Review Board (IRB) and was deemed 
appropriate for exemption from IRB oversight as data was sup-
plied from a deidentified national database.

3. Feature Selection
Input features used for training include sex, age, ethnicity 

(White, Black, Hispanic, or other), history of diabetes, history 
of smoking, steroid use, history of bleeding disorders, function-
al status, American Society of Anesthesiologists (ASA) physical 
status classification ≥ III, body mass index (BMI), and presence 
of pulmonary or cardiac comorbidities. In machine learning 
applications, the number of training examples required to reach 
a given accuracy grows exponentially with the number of irrel-
evant features.10 To combat this feature selection was performed 
to prevent overfitting and improve overall generalizability of 
our models. LR analysis was performed on the training data set, 
to obtain probability coefficients for each feature. The top 6 fea-
tures identified as having the greatest regression coefficient mag-
nitudes were chosen as input variables for all machine learning 
models. Wound complication was defined as superficial or deep 
surgical site infection, organ space infection or wound dehis-
cence. Cardiac complication was defined as cardiac arrest re-
quiring cardiopulmonary resuscitation or myocardial infarc-
tion. Age and BMI were treated as continuous variables, and all 
other features were treated categorically.

4. Machine Learning Construction and Testing
Machine learning models were trained to predict occurrence 
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of mortality, venous thromboembolism (VTE), wound compli-
cations, and cardiac complications. ANNs were constructed us-
ing the Neural Network toolbox in MatLab 2016b (MathWorks, 
Inc., Natick, MA, USA). L2 regularization was used to combat 
ANN overfitting, by augmenting the error function used for 
training with the squared magnitude of the weights used in the 
ANN. This prevents overly complex models that are overfitted 
to a specific dataset, improving predictive generalizability. Mul-
tiple ANNs were created by partitioning the majority class (no 
complication) into subsets in a 1:1 ratio with the minority class 
(positive complication), generating ANNs trained off of each 
partition. Subsequently, each ANN was trained in a 5-fold cross 
validation scheme. Testing data was used for final test of the 
ANN to provide an unbiased assessment of ANN performance. 
Final predictions were based off of individual accuracy-weight-
ed predictions surveyed across each ANN. LR, SVM, and RF 
model was trained and tested on the same data that the ANN 
was evaluated on. Furthermore, these machine learning models 

were compared to the ASA physical status classification system. 
Classification performance for ANN, LR, SVM, RF, and ASA 
was evaluated based on area under the receiver operating char-
acteristic curve (AUC) with reported 95% confidence intervals 
(CIs). 

RESULTS

1. Data and Analysis Pipeline
A total of 20,879 patients were identified as having undergone 

ACDF surgery between 2011 and 2014. Male patients were 48.4%, 
while female were 51.6%. The mean age was 53.2 years old and 
the cohort exhibited low rates of complications across all out-
comes. Among this cohort, 14,615 patients (70%) were includ-
ed into the training set and 6,264 patients (30%) were used as a 
hold out training set for evaluating the trained machine learn-
ing models (Fig. 1). Our study uses cardiac complications, VTE, 
wound complications, and mortality as target outcomes. Spe-

Fig. 1. (A) Schematic of study workflow. (B) Diagram of ANN model. Bar lengths represent number of patient cases. ADASYN 
increases the number of positive cases to combat class imbalance. Negative cases are then partitioned in a 1:1 ratio with the posi-
tive cases to create a class-balanced dataset used for ANN training. Each partition trains an independent neural net. During eval-
uation, data is fed through each neural net where the responses are surveyed, weighted by the model’s accuracy, and the net pre-
diction is used. NSQIP, National Surgical Quality Improvement Program; ANN, artificial neural network; ADASYN, adaptive 
synthetic sampling; LR, logistic regression; ASA, American Society of Anesthesiologists.
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cifically, 0.1% rate of mortality, 0.5% rate of wound complica-
tion, 0.3% rate of VTE, 0.2% rate of cardiac complications (Ta-
ble 1). Additionally, there were low rates of overlap between com-
plications except between mortality and cardiac complications. 

Of those patients with cardiac comorbidities, 47.8% did not sur-
vive. Unsurprisingly, age was a highly predictive feature across 
all outcomes. Diabetic status and tobacco usage were also use-
ful features, which is consistent with their known association with 

Table 1. Patient characteristics for patients included within the dataset for model construction

Characteristic Average Total Cardiac  
complication

VTE  
complication

Wound  
complication Mortality

Sex

   Male 9,978 (48.4) 26 (0.3) 39 (0.4) 54 (0.5) 20 (0.2)

   Female 10,620 (51.6) 8 (0.1) 15 (0.1) 55 (0.5) 3 (0)

Mean age (yr) 53.2

Ethnicity

   White 16,900 (82) 29 (0.2) 36 (0.2) 87 (0.5) 19 (0.1)

   Black 1,862 (9) 3 (0.2) 15 (0.8) 13 (0.7) 3 (0.2)

   Hispanic 175 (0.8) 0 (0) 0 (0) 0 (0) 0 (0)

   Other 1,661 (8.1) 2 (0.1) 3 (0.2) 9 (0.5) 1 (0.1)

Diabetes mellitus

   No 17,698 (85.9) 22 (0.1) 48 (0.3) 92 (0.5) 15 (0.1)

   Type II 1,913 (9.3) 10 (0.5) 4 (0.2) 12 (0.6) 5 (0.3)

   Type I 987 (4.8) 2 (0.2) 2 (0.2) 5 (0.5) 3 (0.3)

Smoking history

   Smoker 6,098 (29.6) 9 (0.1) 9 (0.1) 32 (0.5) 4 (0.1)

   Nonsmoker 14,500 (70.4) 25 (0.2) 45 (0.3) 77 (0.5) 19 (0.1)

Steroid use

   Steroid use 613 (3) 1 (0.2) 2 (0.3) 6 (1) 3 (0.5)

   No steroid use 19,985 (97) 33 (0.2) 52 (0.3) 103 (0.5) 20 (0.1)

   History of bleeding disorder 189 (0.9) 1 (0.5) 0 (0) 1 (0.5) 3 (1.6)

   None 20,409 (99.1) 33 (0.2) 54 (0.3) 108 (0.5) 20 (0.1)

Functional status

   Dependent 291 (1.4) 4 (1.4) 3 (1) 2 (0.7) 5 (1.7)

   Independent 20,307 (98.6) 30 (0.1) 51 (0.3) 107 (0.5) 18 (0.1)

ASA PS classification

   ≥ III 7,700 (37.4) 25 (0.3) 21 (0.3) 50 (0.6) 18 (0.2)

Mean BMI (kg/m2) 30.1

Comorbidities

   Pulmonary 1,678 (8.1) 9 (0.5) 6 (0.4) 15 (0.9) 8 (0.5)

   Cardiac 8,784 (42.6) 26 (0.3) 24 (0.3) 56 (0.6) 18 (0.2)

Complications

   Mortality 23 (0.1) 11 (47.8) 1 (4.3) 0 (0) 23 (100)

   Wound complications 109 (0.5) 1 (0.9) 3 (2.8) 109 (100) 0 (0)

   VTE 54 (0.3) 1 (1.9) 54 (100) 3 (5.6) 1 (1.9)

   Cardiac complications 34 (0.2) 34 (100) 1 (2.9) 1 (2.9) 11 (32.4)

Values are presented as number (%) unless otherwise indicated.
ASA PS, American Society of Anesthesiologists physical status; BMI, body mass index; VTE, venous thromboembolism.
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poor clinical outcomes (Fig. 2).11-13 Due to incomplete data, 923, 
927, 894, and 920 patients were excluded from the cardiac com-
plication, VTE, wound complication, and mortality training sets 
respectively. As previously described, ADASYN was used to gen-
erate data from minority class in the training set. To improve 
learning with class-imbalanced data, 729, 726, 696, and 724 
cases were generated by ADASYN in the cardiac complication, 
VTE, wound complication, and mortality training sets respec-
tively. 

2. �ANN, LR, SVM, RF, and ASA Physical Status 
Classification Performance
ASA physical status classification was used to benchmark 

machine learning performance. AUC was used to measure the 
performance of our classifiers (Fig. 3). The LR and ASA physi-
cal status classifiers were outperformed by the ANN for every 
target (Fig. 4). The ANN performed with an AUC of 0.772 (95% 
CI, 0.766–0.778) for predicting cardiac complications, 0.656 
(95% CI, 0.653–0.658) for predicting VTE, 0.518 (95% CI, 0.510–
0.527) for predicting wound complications, and 0.979 (95% CI, 
0.978–0.981) for predicting mortality. In contrast, the LR per-
formed consistently better than ASA as a classifier with an AUC 
of 0.759 (95% CI, 0.738–0.781) for cardiac complications, 0.639 
(95% CI, 0.632–0.645) for VTE events, 0.501 (95% CI, 0.500–
0.503) for wound complications, 0.974 (95% CI, 0.973–0.976) 
for mortality. The SVM and RF classifier had the poorest per-
formance. Neither the SVM nor the RF classifiers were able to 
predict occurrence of postoperative complication better than 
random chance across all complications (p < 0.05). The ASA 
physical status classification performed least effectively for all 
target outcomes with an AUC of 0.566 (95% CI, 0.544–0.587) 
for cardiac complications, 0.397 (95% CI, 0.388–0.407) for VTE, 
0.455 (95% CI, 0.449–0.461), and 0.346 (95% CI, 0.342–0.350) 
for mortality (Table 2). These findings demonstrate that ANN 
and LR were consistently the best at predicting postoperative 
complications. To compare the top 2 performing models, ANN 
and LR models were asked to predict postoperative mortality 
and wound complication, the easiest and hardest postoperative 
complications, respectively, on a blinded dataset (Fig. 5). The 
ANN had greatly improved sensitivity than LR for predicting 
postoperative mortality and wound complication. 

DISCUSSION

With the advent of large, prospective, multi-institutional clini-

Fig. 2. Coefficient weights obtained from logistic regression 
analysis used for feature selection. Dark cells indicate highly 
weighted features indicating a strong predictive value, and 
lighter cells indicate weakly weighted features. VTE, venous 
thromboembolism; DM, diabetes mellitus; Hx, history; ASA, 
American Society of Anesthesiologists; BMI, body mass index.
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Table 2. Comparison of AUC of machine learning models and ASA evaluated on blinded data

Variable LR ANN SVM RF ASA

Cardiac 0.759 (0.738–0.781) 0.772 (0.766–0.778) 0.559 (0.485–0.633) 0.251 (0.229–0.273) 0.566 (0.544–0.587)

VTE 0.639 (0.632–0.645) 0.656 (0.653–0.658) 0.430 (0.427–0.434) 0.357 (0.299–0.414) 0.397 (0.388–0.407)

Wound 0.501 (0.500–0.503) 0.518 (0.510–0.527) 0.422 (0.413–0.432) 0.489 (0.457–0.522) 0.455 (0.449–0.461)

Mortality 0.974 (0.973–0.976) 0.979 (0.978–0.981) 0.214 (0.193–0.234) 0.393 (0.295–0.491) 0.346 (0.342–0.350)

Values are presented as 95% confidence interval.
AUC, area under the receiver operating characteristic curve; ASA, American Society of Anesthesiologists; LR, logistic regression; ANN, Artifi-
cial neural network; SVM, support vector machine; RF, random forest decision tree; VTE, venous thromboembolism.
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Fig. 3. Receiver operating characteristic curves plotting sensitivity versus 1-specificity for artificial neural network (ANN) (blue), 
logistic regression (LR) (green), American Society of Anesthesiologists (ASA) physical status classification (red), support vector 
machine (SVM) (yellow), random forest decision tree (RF) (purple), and random-chance (black). (A) Cardiac complications, (B) 
venous thromboembolism, (C) wound complications, and (D) mortality.
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Fig. 4. Heatmap of area under the receiver operating characteristic curve values from LR, ANN, SVM, RF, and ASA when pre-
dicting cardiac complications (cardiac), VTE, wound complications (wound), and mortality. LR, logistic regression; ANN, Arti-
ficial neural network; SVM, support vector machine; RF, random forest decision tree; ASA, American Society of Anesthesiolo-
gists; VTE, venous thromboembolism.
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cal registries, physicians have access to large amounts of diverse, 
high quality clinical data. This has given birth to ideas such as 
“precision medicine” with the goal of developing quantitative 
models that can be used to predict health status, prognosticate 

disease processes, prevent disease, and reduce complications. 
Previous groups have employed the use of ANNs and other ma-
chine learning models to these data sets.14-17 However, these stud-
ies either trained models on extremely large databases (>1,400,000 



Predicting Complications Using Machine LearningArvind V, et al.

https://doi.org/10.14245/ns.1836248.124 � www.e-neurospine.org   335

Fig. 5. Confusion matrices of trained ANN and LR machine learners evaluated on testing data set mortality (A) and wound 
complication (B) data sets to demonstrate real-world performance. LR, logistic regression; ANN, Artificial neural network.
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patients) or on complications with high occurrence rates. These 
examples are impractical for independent institutions or for small 
scale procedures with rare complications. Low occurrence rates 
in relatively small datasets lead to large class-imbalances that 
are a significant challenge in medical machine learning.18,19 To 
this end, we have trained several supervised machine learning 
classifiers to predict the probability of postoperative complica-
tions in a relatively small dataset (<15,000 patients) that can ac-
curately learn complications with relatively low occurrence rates 
(<1%). Furthermore, we have rigorously developed and tested 
our models by employing the best practices in machine learn-
ing in this study by performing automated feature selection, L2 
regularization and comparing to a standard risk-scoring system 
to ensure a high standard that is necessary for implementation 
of machine learning in clinical settings. 

The ANN model was superior to the LR, and both were su-
perior to a clinical benchmark, the ASA physical status classifi-
cation, with a statistically significantly higher AUC when pre-

dicting VTE, wound complications, and mortality. The sensi-
tivity of the ANN was superior to LR, indicating an ability to 
identify a greater portion of positive cases, correctly identified 
as positive. Both the SVM and RF classifiers were unable to per-
form better than random chance, suggesting that model selec-
tion is an important design parameter. This is an important 
finding that may be worthy of consideration when developing 
machine learning models for clinical prognostication. Auto-
mated feature selection with LR showed that age and male gen-
der were the strongest independent risk factors for mortality, 
both consistent with current surgical evidence. Wound compli-
cations were predicted by age, Hispanic race, BMI, smoking his-
tory, diabetes mellitus, and bleeding disorders. VTE was pre-
dicted for by BMI, sex, age, diabetes mellitus, and smoking his-
tory. Cardiac complications were predicted by age, bleeding dis-
order, sex, smoking history, cardiac comorbidity, and high ASA 
physical status classification. These findings are echoed heavily 
by domain knowledge in prior spine literature.20,21 While ASA 
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physical status classification was included as a feature of predic-
tion of cardiac complication, it was not included as a feature 
used for prediction of VTE, wound complication, and mortality 
by our models. Thus in these complications ASA physical sta-
tus classification is a good baseline comparison to benchmark 
our machine learning algorithms.

A key strength of this study is the adaptability that can be achi
eved by interrogating medical data with different machine learn-
ing models. Indeed, neural network architectures alone are a 
diverse field of study that seeks to design optimal neural net-
work structures to improve artificial intelligence (AI) predic-
tions.22 In this study, a grid search was performed to identify 
optimal hyperparameters. However, this was only carried out 
over a certain defined domain of hyperparameters not consid-
ering all types of network structures and other macro-scale pa-
rameters that may be more suited for medical prognostication. 
This presents a novel opportunity to design machine learners 
that are adept at learning and prognosticating based on patient 
data that is highly diverse, class-imbalanced, and often limited 
in sample size.23 

The ability of machine learning to identify at-risk-patients and 
predict potential complications has been clearly demonstrated 
here, yet the ability to suggest avenues of treatment based on 
predicted complications has not yet been realized. Future work 
can take advantage of electronic medical records and medical 
literature to suggest optimal treatment strategies based on key 
patient data. Such models can not only guide physicians in the 
decision making process but can also aide health care systems 
in low-resource settings, provide personalized care, and improve 
response times during critical settings. Taken together, the op-
portunities described here can be used to strengthen medical 
AI to improve surgical outcomes.

The performance of any classifier, is rooted, in part, in the 
quality of the training data. Therefore, weaknesses in the NSQ-
IP are represented as weaknesses in the neural network classifi-
er. Larger national in-patient datasets such as the National In-
Patient Sample exist. Such data sets sampling patients with a 
broad demographic spectrum can serve to elucidate patterns in 
the model that are both more generalizable and predictive of 
future complications and risk. A major challenge in medicine is 
the paucity of highly granular and robust large-scale datasets 
for specific operational cohorts. Large-scale databases remain 
scattered across institutions and are isolated to protect patient 
privacy.24 Furthermore, the NSQIP dataset was not designed 
with spine surgery outcomes in mind. As a result, many features 
which may serve as stronger inputs were not available. Addi-

tionally, the large class-imbalance shown in this study serves to 
skew machine learning models during training. Indeed, Fig. 5 
shows that the LR model was skewed to predict the negative 
outcome, while the ANN was less biased. This highlights the 
need for future work to further address the issue of class-imbal-
ance to improve machine learning performance in clinical con-
texts. While these challenges exist, the ability to predict clinical 
outcomes using NSQIP data is an attractive prospect. The ad-
vent of machine learning algorithms and their implementation 
in a healthcare environment makes the utilization of such ma-
chine learning towards increasingly possible. In the past, gener-
alized linear models such as the LR have been the most com-
monly used classifiers for this purpose. However, the machine 
learning models described here, particularly the ANN, are sim-
ilarly powerful and in some circumstances, far exceed LR. As 
the ability to obtain high quality patient data and computing 
power increases over time, it is likely that machine learning 
techniques will find themselves increasingly commonplace in 
the hospital setting. 
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